Exam 2
 Due Friday October 16, 2020

John McCuan

October 18, 2020

Problem 1 Recall the complex numbers are given by

$$
\mathbb{C}=\{x+i y: x, y \in \mathbb{R}\} .
$$

(a) Show that \mathbb{C} is a vector space over \mathbb{R}. What is the dimension?

Usually, when we consider \mathbb{C} as a vector space we assume it is considered as a vector space of dimension one over \mathbb{C}. Let us denote the vector space \mathbb{C} as a vector space over \mathbb{R} by $\mathbb{C}_{\mathbb{R}}$.
(b) Let $\mathcal{L}(\mathbb{C})$ denote the collection of all linear functions $L: \mathbb{C} \rightarrow \mathbb{C}$. You should have characterized this collection in Problem 1 of Assignment 4. Show that $\mathcal{L}(\mathbb{C})$ is a vector space over \mathbb{C}. What is the dimension?
(c) Let $\mathcal{L}\left(\mathbb{C}_{\mathbb{R}}\right)$ denote the collection of all linear functions $L: \mathbb{C}_{\mathbb{R}} \rightarrow \mathbb{C}_{\mathbb{R}}$. Show that $\mathcal{L}\left(\mathbb{C}_{\mathbb{R}}\right)$ is a vector space over \mathbb{R}. What is the dimension of $\mathcal{L}\left(\mathbb{C}_{\mathbb{R}}\right)$?
(c) Can you compare $\mathcal{L}(\mathbb{C})$ and $\mathcal{L}\left(\mathbb{C}_{\mathbb{R}}\right)$? Hint: Can one be realized as a subset of the other? What happens to the algebraic properties?

Problem 2 Consider the two dimensional vector space of polynomials of degree less than or equal to one:

$$
P_{1}[x]=\{a x+b: a, b \in \mathbb{R}\} .
$$

Let $L: P_{1}[x] \rightarrow P_{1}[x]$ by

$$
L[a x+b]=(a+b) x+b
$$

(a) Express L in terms of differentiation. Hint: Note that if $p(x)=a x+b$, then $a=p^{\prime}(x)$. (So what is b ?)
(b) Show that L is linear.
(c) Express L in terms of matrix multiplication with respect to the basis $\mathcal{B}_{1}=\{x, 1\}$ (for both the domain and the co-domain).
(d) Show that $\mathcal{B}_{2}=\{x+1,3\}$ is a basis for $P_{1}[x]$.
(e) Consider the linear transformation $T: P_{1}[x] \rightarrow P_{1}[x]$ given by matrix multiplication with the matrix

$$
\left(\begin{array}{cc}
2 & 3 \\
-1 / 3 & 0
\end{array}\right)
$$

with respect to the basis \mathcal{B}_{2} (for both the domain and the co-domain). This means

$$
T[a(x+1)+3 b]=(2 a+3 b)(x+1)-(a / 3)(3)
$$

because

$$
\left(\begin{array}{cc}
2 & 3 \\
-1 / 3 & 0
\end{array}\right)\binom{a}{b}=\binom{2 a+3 b}{-a / 3}
$$

Calculate $T[a x+b]$. What interesting thing does this tell you?

Problem 3 (Boas 3.11.35) Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear function. Show the following:
If there exists a basis $\mathcal{B}=\{\mathbf{v}, \mathbf{w}\}$ such that the matrix of L with respect to \mathcal{B} (for the domain and co-domain) is a symmetric matrix, then L has a real eigenvector.

Two more related questions:
(a) What additional conditions are required to show there exists a basis for \mathbb{R}^{2} consisting of eigenvectors of L ?
(b) Is it possible that the matrix of L with respect to the standard unit basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ is not symmetric?

Problem 4 (Boas 3.2.14) Consider the system of linear equations:

$$
\left\{\begin{aligned}
2 x+3 y-z & =-2 \\
x+2 y-z & =4 \\
4 x+7 y-3 z & =11
\end{aligned}\right.
$$

(a) Write down the equivalent matrix equation and identify the coefficient matrix, the unknown vector, and the inhomogeneity.
(b) Find a basis for the column space consisting of columns of the coefficient matrix.
(c) Find a basis for the solution space of the associated homogeneous equation.
(d) What is the solution set of the (original) system?

Problem 5 (Boas 3.11.13) Consider $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
L\binom{x}{y}=\binom{2 x+2 y}{2 x-y}
$$

(a) Find the eigenvalues of L by considering the equation

$$
\operatorname{det}\left(\begin{array}{cc}
2-\lambda & 2 \\
2 & -1-\lambda
\end{array}\right)=0
$$

(b) Consider $\Lambda: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $\Lambda(\xi, \eta)^{T}=T^{-1} \circ L \circ T(\xi, \eta)^{T}$ where $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
T\binom{\xi}{\eta}=\frac{1}{\sqrt{5}}\binom{\xi+2 \eta}{-2 \xi+\eta}
$$

(The linear transformations L and Λ are said to be conjugate or similar).
(i) $\operatorname{Draw}\left\{T(\xi, \eta)^{T}: \xi^{2}+\eta^{2}=1\right\}$ with $\left\{T(\xi, \eta)^{T}: \xi^{2}+\eta^{2}=1, \xi>0\right\}$ red and $\left\{T(\xi, \eta)^{T}: \xi^{2}+\eta^{2}=1, \xi<0\right\}$ blue.
(ii) Use computational software to draw $\left\{L \circ T(\xi, \eta)^{T}: \xi^{2}+\eta^{2}=1\right\}$ with $\left\{L \circ T(\xi, \eta)^{T}: \xi^{2}+\eta^{2}=1, \xi>0\right\}$ red and $\left\{L \circ T(\xi, \eta)^{T}: \xi^{2}+\eta^{2}=1, \xi<0\right\}$ blue.
(iii) Use computational software to draw $\left\{T^{-1} \circ L \circ T(\xi, \eta)^{T}: \xi^{2}+\eta^{2}=1\right\}$ with $\left\{T^{-1} \circ L \circ T(\xi, \eta)^{T}: \xi^{2}+\eta^{2}=1, \xi>0\right\}$ red and $\left\{T^{-1} \circ L \circ T(\xi, \eta)^{T}:\right.$ $\left.\xi^{2}+\eta^{2}=1, \xi<0\right\}$ blue.
(iv) Find an equation of the form

$$
\frac{\xi^{2}}{a^{2}}+\frac{\eta^{2}}{b^{2}}=1
$$

satisfied by the points in $\left\{T^{-1} \circ L \circ T(\xi, \eta)^{T}: \xi^{2}+\eta^{2}=1\right\}$. (Determine the values of a and b.
(v) Find an equation of the form

$$
A x^{2}+B x y+C y^{2}=180
$$

satisfied by the points in $\left\{L(x, y)^{T}: x^{2}+y^{2}=1\right\}$.
(c) Define a function $e^{L}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
e^{L}\binom{x}{y}=\sum_{j=0}^{\infty} \frac{1}{j!} L^{j}\binom{x}{y}
$$

where L^{j} is iteration, meaning apply L over and over again j times, as usual.
(i) Find the values of

$$
L^{2}\binom{x}{y} \quad \text { and } \quad L^{3}\binom{x}{y} .
$$

If you do this directly, it should convince you that it is not exactly straightforward to find the value of e^{L}. You can complete the remaining parts of this problem to find that value.
(ii) Find the value of

$$
\Lambda^{j}\binom{\xi}{\eta} \quad \text { for } k=0,1,2,3, \ldots
$$

(iii) Notice that $L^{j}(x, y)^{T}=T \circ \Lambda^{j} \circ T^{-1}(x, y)^{T}$.
(iv) Notice that the partial sum

$$
\sum_{j=1}^{k} \frac{1}{j!} L^{j}\binom{x}{y}=T \circ\left(\sum_{j=1}^{k} \frac{1}{j!} \Lambda^{j}\right) \circ T^{-1}\binom{x}{y} .
$$

(v) Find the value of

$$
e^{L}\binom{x}{y} .
$$

Solution:
(a) $(2-\lambda)(-1-\lambda)-4=\lambda^{2}-\lambda-6=(\lambda+2)(\lambda-3)$, so the eigenvalues are $\lambda=-2$ and $\lambda=3$.
(b) Matrices in Mathematica:

```
Mu = {{2, 2}, {2, -1}}
Tu = {{1, 2}, {-2, 1}}/Sqrt[5]
Tuinv=Inverse[Tu]
```


Figure 1: The image of the unit circle under L using the matrix M (capital mu).

Mathematica command:

```
Show[
ParametricPlot[Mu.{Cos[t], Sin[t]}, {t, -Pi/2, Pi/2},
PlotStyle -> Red, PlotRange -> {{-3, 3}, {-3, 3}}],
ParametricPlot[Mu.{Cos[t], Sin[t]}, {t, Pi/2, 3 Pi/2},
PlotStyle -> Blue]
]
```

(ii)

Figure 2: The image of the unit circle under $L \circ T$.

Mathematica command:
Show [

ParametricPlot[(Mu.Tu). \{Cos[t], Sin[t]\}, \{t, $-\mathrm{Pi} / 2, \mathrm{Pi} / 2\}$, PlotStyle -> Red, PlotRange -> \{\{-3, 3\}, \{-3, 3\}\}], ParametricPlot[(Mu.Tu).\{Cos[t], Sin[t]\}, \{t, Pi/2, 3 Pi/2\}, PlotStyle -> Blue]
]

Figure 3: The image of the unit circle under $T^{-1} \circ L \circ T$.

Mathematica command:
Show [
ParametricPlot[(Tuinv.Mu.Tu).\{Cos[t], Sin[t]\}, \{t, -Pi/2, Pi/2\}, PlotStyle -> Red, PlotRange -> \{\{-3, 3\}, \{-3, 3\}\}], ParametricPlot[(Tuinv.Mu.Tu).\{Cos[t], Sin[t]\}, \{t, Pi/2, 3 Pi/2\}, PlotStyle -> Blue]
]
(iv) Setting

$$
\binom{\xi}{\eta}=\Lambda\binom{x}{y}=T^{-1} \circ L \circ T\binom{x}{y}=\left(\begin{array}{rr}
-2 & 0 \\
0 & 3
\end{array}\right)\binom{x}{y},
$$

we see

$$
\frac{\xi^{2}}{4}+\frac{\eta^{2}}{9}=x^{2}+y^{2}=1
$$

(as long as $x^{2}+y^{2}=1$). Thus, $a=2$ and $b=3$.
(v) Note that

$$
\left\{L\binom{x}{y}: x^{2}+y^{2}=1\right\}=\left\{\binom{x}{y}:\left|L^{-1}\binom{x}{y}\right|=1\right\} .
$$

Since

$$
L^{-1}\binom{x}{y}=\frac{1}{6}\left(\begin{array}{rr}
1 & 2 \\
2 & -2
\end{array}\right)\binom{x}{y},
$$

we find

$$
\left|L^{-1}\binom{x}{y}\right|^{2}=\frac{1}{36}\left[(x+2 y)^{2}+(2 x-2 y)^{2}\right]
$$

and the equation is

$$
5 x^{2}-4 x y+8 y^{2}=36
$$

I'm not sure what the point of the 108 is, but this can also be written as

$$
15 x^{2}-12 x y+24 y^{2}=108
$$

(c) Define a function $e^{L}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
e^{L}\binom{x}{y}=\sum_{j=0}^{\infty} \frac{1}{j!} L^{j}\binom{x}{y} .
$$

(i)

$$
\begin{aligned}
& L^{2}\binom{x}{y}=\left(\begin{array}{ll}
8 & 2 \\
2 & 5
\end{array}\right)\binom{x}{y} . \\
& L^{3}\binom{x}{y}=\left(\begin{array}{ll}
20 & 14 \\
14 & -1
\end{array}\right)\binom{x}{y} .
\end{aligned}
$$

The point is that no obvious pattern arises in computing these powers/iterates.
(ii) In contrast

$$
\Lambda^{j}\binom{\xi}{\eta}=\left(\begin{array}{cc}
(-2)^{j} & 0 \\
0 & 3^{j}
\end{array}\right)\binom{\xi}{\eta} \quad \text { for } k=0,1,2,3, \ldots
$$

(iii)

$$
\begin{aligned}
L^{j}\binom{x}{y} & =\left(T \circ \Lambda \circ T^{-1}\right)^{j}\binom{x}{y} \\
& =\left(T \circ \Lambda \circ T^{-1}\right) \circ\left(T \circ \Lambda \circ T^{-1}\right) \circ \cdots \circ\left(T \circ \Lambda \circ T^{-1}\right)\binom{x}{y} \\
& =T \circ \Lambda \circ\left(T^{-1} \circ T\right) \circ \Lambda \circ\left(T^{-1} \circ T\right) \circ \Lambda \circ \cdots \circ\left(T^{-1} \circ T\right) \circ \Lambda \circ T^{-1}\binom{x}{y} \\
& =T \circ \Lambda^{j} \circ T^{-1}\binom{x}{y} .
\end{aligned}
$$

(iv)

$$
\begin{aligned}
\sum_{j=1}^{k} \frac{1}{j!} L^{j}\binom{x}{y} & =\sum_{j=1}^{k} \frac{1}{j!} T \circ \Lambda^{j} \circ T^{-1}\binom{x}{y} \\
& =T \circ\left(\sum_{j=1}^{k} \frac{1}{j!} \Lambda^{j}\right) \circ T^{-1}\binom{x}{y}
\end{aligned}
$$

(v)

$$
\begin{aligned}
e^{L}\binom{x}{y} & =\sum_{j=1}^{\infty} \frac{1}{j!} L^{j}\binom{x}{y} \\
& =T\left(\sum_{j=1}^{\infty} \frac{1}{j!}\left(\begin{array}{cc}
(-2)^{j} & 0 \\
0 & 3^{j}
\end{array}\right) T^{-1}\binom{x}{y}\right) \\
& =T\left(\left(\begin{array}{cc}
\sum_{j=1}^{\infty} \frac{(-2)^{j}}{j!} & 0 \\
0 & \sum_{j=1}^{\infty} \frac{3^{j}}{j!}
\end{array}\right) T^{-1}\binom{x}{y}\right) \\
& =T\left(\left(\begin{array}{cc}
e^{-2} & 0 \\
0 & e^{3}
\end{array}\right)\left(\frac{1}{\sqrt{5}}\binom{x-2 y}{2 x+y}\right)\right) \\
& =\frac{1}{\sqrt{5}} T\binom{(x-2 y) e^{-2}}{(2 x+y) e^{3}} \\
& =\frac{1}{5}\binom{(x-2 y) e^{-2}+2(2 x+y) e^{3}}{-2(x-2 y) e^{-2}+(2 x+y) e^{3}} .
\end{aligned}
$$

Thus, $e^{L}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
e^{L}\binom{x}{y}=\left(\begin{array}{cc}
e^{-2}+4 e^{3} & -2 e^{-2}+2 e^{3} \\
-2 e^{-2}+2 e^{3} & 4 e^{-2}+e^{3}
\end{array}\right)\binom{x}{y} .
$$

Thus, the exponential of a diagonalizable transformation is a little complicated, but it can be computed. It is not too bad. Your question should be: How do you find the change of basis $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$?

