\qquad

1. (4.8.16) Here is a table of data for a function which is theoretically predicted to have the form $f(x)=a x^{p}$.

x	1.2	1.3	1.4	1.8	2.1	2.2
$f(x)$	2.6	3	3.3	4.8	6.1	6.5

We wish to find the best power p and coefficient a.
(a) (5 points) Compile a table of values of $\ln \left(a x^{p}\right)$ as a function of $\ln (x)$. You do not need to find decimal approximations. For example, when $\xi=\ln (1.2)$, then the corresponding value is $\ln (2.6) \approx \ln \left(a(1.2)^{p}\right)$.

(b) (5 points) Formulate a linear algebra problem whose solution would be the vector $(\ln a, p)^{T}$ if there was a perfect fit. In other words, find a matrix A and a vector \mathbf{b} such that

$$
A\binom{\ln a}{p}=\mathbf{b}
$$

if it were the case that $2.6=a(1.2)^{p}, 3=a(1.3)^{p}$, and so on.
\qquad
(c) (5 points) Does the problem you formulated in part (b) have a solution? (Justify your answer. You may wish to use the following numerical apprximations (correct to four places):

$$
\begin{aligned}
\ln (3.3 / 2.6) / \ln (1.4 / 1.2) & \approx 1.5466 \\
\ln (3 / 2.6) / \ln (1.3 / 1.2) & \approx 1.7878
\end{aligned}
$$

(d) (10 points) Using the matrix A you defined in part (b), formulate a linear algebra problem which has a solution and gives the best fit values $\ln a$ and p. (You do not need to solve the problem on this exam, but describe the solution in terms of A and b.)

Solution:

(a) This is easy:

ξ	$\ln (1.2)$	$\ln (1.3)$	$\ln (1.4)$	$\ln (1.8)$	$\ln (2.1)$	$\ln (2.2)$
$g(\xi)$	$\ln (2.6)$	$\ln (3)$	$\ln (3.3)$	$\ln (4.8)$	$\ln (6.1)$	$\ln (6.5)$

(b) We would like to have $\ln (2.6)=\ln \left(a(1.2)^{p}\right)=\ln a+p \ln (1.2)$, and $\ln a+\xi p=g(\xi)$ in general. Therefore, a perfect fit would satisfy $\ln a+p \ln (1.2)=\ln (2.6)$, $\ln a+p \ln (1.3)=\ln (3)$, etc., that is,

$$
\left(\begin{array}{cc}
1 & \ln (1.2) \\
1 & \ln (1.3) \\
1 & \ln (1.4) \\
1 & \ln (1.8) \\
1 & \ln (2.1) \\
1 & \ln (2.2)
\end{array}\right)\binom{\ln a}{p}=\left(\begin{array}{l}
\ln (2.6) \\
\ln (3) \\
\ln (3.3) \\
\ln (4.8) \\
\ln (6.1) \\
\ln (6.5)
\end{array}\right) .
$$

(c) This problem has no solution. The first three rows of the coefficient matrix reduce as follows:

$$
\begin{gathered}
\left(\begin{array}{lll}
1 & \ln (1.2) & \ln (2.6) \\
0 & \ln (1.3 / 1.2) & \ln (3 / 2.6) \\
0 & \ln (1.4 / 1.2) & \ln (3.3 / 2.6)
\end{array}\right) \longrightarrow\left(\begin{array}{ccl}
1 & \ln (1.2) & \ln (2.6) \\
0 & 1 & \ln (3.2 / 2.6) / \ln (1.3 / 1.2) \\
0 & 1 & \ln (3.3 / 2.6) / \ln (1.4 / 1.2)
\end{array}\right) \\
\quad \longrightarrow\left(\begin{array}{ccl}
1 & \ln (1.2) & \ln (2.6) \\
0 & 1 & \ln (3.2 / 2.6) / \ln (1.3 / 1.2) \\
0 & 0 & \ln (3.3 / 2.6) / \ln (1.4 / 1.2)-\ln (3.2 / 2.6) / \ln (1.3 / 1.2)
\end{array}\right)
\end{gathered}
$$

The last equation is inconsistent by the stated approximations.
\qquad
(d) Given A and \mathbf{b} as defined in part (b), the least squares approximate solution of the problem stated in (b) is the solution of

$$
A^{T} A\binom{u}{p}=A^{T} \mathbf{b}
$$

or

$$
\binom{u}{p}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b},
$$

and we take coefficient $a=e^{u}$ and power p.
\qquad
2. (25 points) (8.2.29) The water in a lake has reached a 90% contamination level. Pure water is pumped into the lake at 1000 liters per minute, and the lake overflows into a stream at the same rate. Let $p=p(t)$ denote the contaminant in the lake as a function of time. Assume the water entering the stream contains $p(t) / 10^{10}$ contaminant per liter, and determine how long it will take for the stream to run with 50% contaminant.

Solution: The contaminant satisfies

$$
\frac{d}{d t} p=-10^{3} \frac{p}{10^{10}} \quad \text { and } \quad p(0)=(9) 10^{9}
$$

This tells us $\left.p(t)=(9) 10^{9}\right) e^{-t / 10^{7}}$.
We want to know when this quantity is $10^{10} / 2$. That is, when

$$
t=-10^{7} \ln (5 / 9)
$$

This is in minutes. So that would be a little over 11 years.

Name and section: \qquad
3. (25 points) (8.6.33) An undamped oscillator $L[y]=y^{\prime \prime}+y$ is driven at frequency ω by the forcing term $f(t)=\cos (\omega t)$. We say the forcing is at the resonant frequency if the resulting motion is unbounded. What is the resonant freqency? (Justify your answer.)

Solution: The general solution of the associated homogeneous ODE is

$$
y_{h}(x)=a \cos t+b \sin t .
$$

This function is clearly bounded. If $\omega \neq 1$, we can find a particular solution of the form $y_{p}=A \cos \omega t+B \sin \omega t$ which will also be bounded. Thus, the only possible resonant frequency is $\omega=1$. In that case,

$$
y=a \cos t+b \sin t+t(A \cos t+B \sin t)
$$

which will certainly be unbounded regardless of the choice of A and B (since they can't both be zero).

Name and section: \qquad
4. (25 points) (8.11.7) A damped oscillator $L[y]=y^{\prime \prime}+y^{\prime}+y$ is set in motion with

$$
y(0)=\frac{2}{\sqrt{3}} e^{\frac{5 \pi}{2 \sqrt{3}}} \quad \text { and } \quad y^{\prime}(0)=-\frac{1}{\sqrt{3}} e^{\frac{5 \pi}{2 \sqrt{3}}}
$$

and experiences a unit impulse at time $t=5 \pi / \sqrt{3}$. Describe the resulting motion $y(t)$.

Solution: Let $\mathcal{L}[y]=Y$ be the Laplace transform of y. Then

$$
s^{2} Y-s \frac{2}{\sqrt{3}} e^{\frac{5 \pi}{2 \sqrt{3}}}+\frac{1}{\sqrt{3}} e^{\frac{5 \pi}{2 \sqrt{3}}}+s Y-\frac{2}{\sqrt{3}} e^{\frac{5 \pi}{\sqrt{3}}}+Y=e^{\frac{5 \pi}{2 \sqrt{3}} s}
$$

or

$$
\left(s^{2}+s+1\right) Y=\frac{1}{\sqrt{3}} e^{\frac{5 \pi}{2 \sqrt{3}}}(2 s+1)+e^{\frac{5 \pi}{\sqrt{3}} s} .
$$

That is,

$$
\begin{aligned}
Y & =\frac{1}{\sqrt{3}} e^{\frac{5 \pi}{2 \sqrt{3}}} \frac{2 s+1}{(s+1 / 2)^{2}+3 / 4}+\frac{e^{\frac{5 \pi}{\sqrt{3}} s}}{(s+1 / 2)^{2}+3 / 4} \\
& =\frac{2}{\sqrt{3}} e^{\frac{5 \pi}{2 \sqrt{3}}} \mathcal{L}\left[e^{-t / 2} \cos \frac{\sqrt{3}}{2} t\right]+\frac{2}{\sqrt{3}} e^{\frac{5 \pi}{\sqrt{3}} s} \mathcal{L}\left[e^{-t / 2} \sin \frac{\sqrt{3}}{2} t\right] \\
& =\frac{2}{\sqrt{3}}\left\{e^{\frac{5 \pi}{2 \sqrt{3}}} \mathcal{L}\left[e^{-t / 2} \cos \frac{\sqrt{3}}{2} t\right]+\mathcal{L}\left[u\left(t-\frac{5 \pi}{\sqrt{3}}\right) e^{-\left(t-\frac{5 \pi}{\sqrt{3}}\right) / 2} \sin \left(\frac{\sqrt{3}}{2} t-\frac{5 \pi}{2}\right)\right]\right\} \\
& =\frac{2}{\sqrt{3}} e^{\frac{5 \pi}{2 \sqrt{3}}}\left\{\mathcal{L}\left[e^{-t / 2} \cos \frac{\sqrt{3}}{2} t\right]+\mathcal{L}\left[u\left(t-\frac{5 \pi}{\sqrt{3}}\right) e^{-t / 2} \sin \left(\frac{\sqrt{3}}{2} t-\frac{\pi}{2}\right)\right]\right\} \\
& =\frac{2}{\sqrt{3}} e^{\frac{5 \pi}{2 \sqrt{3}}} \mathcal{L}\left[e^{-t / 2}\left(\cos \frac{\sqrt{3}}{2} t+u\left(t-\frac{5 \pi}{\sqrt{3}}\right)\left(-\cos \frac{\sqrt{3}}{2} t\right)\right)\right] \\
& =\frac{2}{\sqrt{3}} e^{\frac{5 \pi}{2 \sqrt{3}}} \mathcal{L}\left[e^{-t / 2} \cos \frac{\sqrt{3}}{2} t\left(1-u\left(t-\frac{5 \pi}{\sqrt{3}}\right)\right)\right]
\end{aligned}
$$

Thus,

$$
y(t)=\frac{2}{\sqrt{3}} e^{\frac{5 \pi}{2 \sqrt{3}}} e^{-t / 2} \cos \frac{\sqrt{3}}{2} t\left(1-u\left(t-\frac{5 \pi}{\sqrt{3}}\right)\right)
$$

is a decaying exponential until the impulse, at which time all motion ceases, and the system remains in equilibrium $y=0$ after $y=5 \pi / \sqrt{3}$.

