Math 6701, Exam 2:

1. (4.8.16) Here is a table of data for a function which is theoretically predicted to have the form $f(x) = ax^p$.

	1.2					
f(x)	2.6	3	3.3	4.8	6.1	6.5

We wish to find the best power p and coefficient a.

(a) (5 points) Compile a table of values of $\ln(ax^p)$ as a function of $\ln(x)$. You do not need to find decimal approximations. For example, when $\xi = \ln(1.2)$, then the corresponding value is $\ln(2.6) \approx \ln(a(1.2)^p)$.

ξ	$\ln(1.2)$			
$g(\xi)$	$\ln(2.6)$			

(b) (5 points) Formulate a linear algebra problem whose solution would be the vector $(\ln a, p)^T$ if there was a perfect fit. In other words, find a matrix A and a vector **b** such that

$$A\left(\begin{array}{c}\ln a\\p\end{array}\right) = \mathbf{b}$$

if it were the case that $2.6 = a(1.2)^p$, $3 = a(1.3)^p$, and so on.

(c) (5 points) Does the problem you formulated in part (b) have a solution? (Justify your answer. You may wish to use the following numerical apprximations (correct to four places):

$$\ln(3.3/2.6) / \ln(1.4/1.2) \approx 1.5466, \ln(3/2.6) / \ln(1.3/1.2) \approx 1.7878.$$

(d) (10 points) Using the matrix A you defined in part (b), formulate a linear algebra problem which has a solution and gives the best fit values $\ln a$ and p. (You do not need to solve the problem on this exam, but describe the solution in terms of A and **b**.)

Solution:

(a) This is easy:

ξ		$\ln(1.2)$	$\ln(1.3)$	$\ln(1.4)$	$\ln(1.8)$	$\ln(2.1)$	$\ln(2.2)$
g($\xi)$	$\ln(2.6)$	$\ln(3)$	$\ln(3.3)$	$\ln(4.8)$	$\ln(6.1)$	$\ln(6.5)$

(b) We would like to have $\ln(2.6) = \ln(a(1.2)^p) = \ln a + p \ln(1.2)$, and $\ln a + \xi p = g(\xi)$ in general. Therefore, a perfect fit would satisfy $\ln a + p \ln(1.2) = \ln(2.6)$, $\ln a + p \ln(1.3) = \ln(3)$, etc., that is,

/ 1	$\ln(1.2)$		$\ln(2.6)$
1	$\ln(1.3)$		$\ln(3)$
1	$\ln(1.4)$	$\left(\ln a \right) =$	$\ln(3.3)$
1	$\ln(1.8)$	$\left(\begin{array}{c} p \end{array} \right)^{-}$	$\ln(4.8)$
1	$\ln(2.1)$		$\ln(6.1)$
$\setminus 1$	$\ln(2.2)$ /		$\ln(6.5)$

(c) This problem has no solution. The first three rows of the coefficient matrix reduce as follows:

$$\begin{pmatrix} 1 & \ln(1.2) & \ln(2.6) \\ 0 & \ln(1.3/1.2) & \ln(3/2.6) \\ 0 & \ln(1.4/1.2) & \ln(3.3/2.6) \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & \ln(1.2) & \ln(2.6) \\ 0 & 1 & \ln(3.2/2.6)/\ln(1.3/1.2) \\ 0 & 1 & \ln(3.3/2.6)/\ln(1.4/1.2) \end{pmatrix}$$
$$\longrightarrow \begin{pmatrix} 1 & \ln(1.2) & \ln(2.6) \\ 0 & 1 & \ln(3.2/2.6)/\ln(1.3/1.2) \\ 0 & 0 & \ln(3.3/2.6)/\ln(1.4/1.2) - \ln(3.2/2.6)/\ln(1.3/1.2) \end{pmatrix}$$
The last equation is inconsistent by the stated approximations.

(d) Given A and **b** as defined in part (b), the least squares approximate solution of the problem stated in (b) is the solution of

$$A^T A \left(\begin{array}{c} u \\ p \end{array} \right) = A^T \mathbf{b},$$

or

$$\left(\begin{array}{c} u\\ p \end{array}\right) = (A^T A)^{-1} A^T \mathbf{b},$$

and we take coefficient $a = e^u$ and power p.

2. (25 points) (8.2.29) The water in a lake has reached a 90% contamination level. Pure water is pumped into the lake at 1000 liters per minute, and the lake overflows into a stream at the same rate. Let p = p(t) denote the contaminant in the lake as a function of time. Assume the water entering the stream contains $p(t)/10^{10}$ contaminant per liter, and determine how long it will take for the stream to run with 50% contaminant.

Solution: The contaminant satisfies

$$\frac{d}{dt}p = -10^3 \frac{p}{10^{10}}$$
 and $p(0) = (9)10^9$.

This tells us $p(t) = (9)10^9 e^{-t/10^7}$.

We want to know when this quantity is $10^{10}/2$. That is, when

 $t = -10^7 \ln(5/9).$

This is in minutes. So that would be a little over 11 years.

3. (25 points) (8.6.33) An undamped oscillator L[y] = y'' + y is driven at frequency ω by the forcing term $f(t) = \cos(\omega t)$. We say the forcing is at the resonant frequency if the resulting motion is unbounded. What is the resonant frequency? (Justify your answer.)

Solution: The general solution of the associated homogeneous ODE is

$$y_h(x) = a\cos t + b\sin t.$$

This function is clearly bounded. If $\omega \neq 1$, we can find a particular solution of the form $y_p = A \cos \omega t + B \sin \omega t$ which will also be bounded. Thus, the only possible resonant frequency is $\omega = 1$. In that case,

$$y = a\cos t + b\sin t + t(A\cos t + B\sin t)$$

which will certainly be unbounded regardless of the choice of A and B (since they can't both be zero).

4. (25 points) (8.11.7) A damped oscillator L[y] = y'' + y' + y is set in motion with

$$y(0) = \frac{2}{\sqrt{3}}e^{\frac{5\pi}{2\sqrt{3}}}$$
 and $y'(0) = -\frac{1}{\sqrt{3}}e^{\frac{5\pi}{2\sqrt{3}}}$,

and experiences a unit impulse at time $t = 5\pi/\sqrt{3}$. Describe the resulting motion y(t).

$$\begin{aligned} \text{Solution: Let } \mathcal{L}[y] &= Y \text{ be the Laplace transform of } y. \text{ Then} \\ s^2 Y - s \frac{2}{\sqrt{3}} e^{\frac{5\pi}{2\sqrt{3}}} + \frac{1}{\sqrt{3}} e^{\frac{5\pi}{2\sqrt{3}}} + sY - \frac{2}{\sqrt{3}} e^{\frac{5\pi}{\sqrt{3}}} + Y = e^{\frac{5\pi}{2\sqrt{3}}s} \\ \text{or} \\ (s^2 + s + 1)Y &= \frac{1}{\sqrt{3}} e^{\frac{5\pi}{2\sqrt{3}}} (2s + 1) + e^{\frac{5\pi}{\sqrt{3}}s}. \\ \text{That is,} \end{aligned}$$

$$\begin{aligned} Y &= \frac{1}{\sqrt{3}} e^{\frac{5\pi}{2\sqrt{3}}} \frac{2s + 1}{(s + 1/2)^2 + 3/4} + \frac{e^{\frac{5\pi}{\sqrt{3}}s}}{(s + 1/2)^2 + 3/4} \\ &= \frac{2}{\sqrt{3}} e^{\frac{5\pi}{2\sqrt{3}}} \mathcal{L} \left[e^{-t/2} \cos \frac{\sqrt{3}}{2}t \right] + \frac{2}{\sqrt{3}} e^{\frac{5\pi}{\sqrt{3}}s} \mathcal{L} \left[e^{-t/2} \sin \frac{\sqrt{3}}{2}t \right] \\ &= \frac{2}{\sqrt{3}} \left\{ e^{\frac{5\pi}{2\sqrt{3}}} \mathcal{L} \left[e^{-t/2} \cos \frac{\sqrt{3}}{2}t \right] + \mathcal{L} \left[u \left(t - \frac{5\pi}{\sqrt{3}} \right) e^{-(t - \frac{5\pi}{\sqrt{3}})/2} \sin \left(\frac{\sqrt{3}}{2}t - \frac{5\pi}{2} \right) \right] \right\} \\ &= \frac{2}{\sqrt{3}} e^{\frac{5\pi}{2\sqrt{3}}} \mathcal{L} \left[e^{-t/2} \cos \frac{\sqrt{3}}{2}t \right] + \mathcal{L} \left[u \left(t - \frac{5\pi}{\sqrt{3}} \right) e^{-t/2} \sin \left(\frac{\sqrt{3}}{2}t - \frac{\pi}{2} \right) \right] \right\} \\ &= \frac{2}{\sqrt{3}} e^{\frac{5\pi}{2\sqrt{3}}} \mathcal{L} \left[e^{-t/2} \cos \frac{\sqrt{3}}{2}t \right] + \mathcal{L} \left[u \left(t - \frac{5\pi}{\sqrt{3}} \right) e^{-t/2} \sin \left(\frac{\sqrt{3}}{2}t - \frac{\pi}{2} \right) \right] \right\} \\ &= \frac{2}{\sqrt{3}} e^{\frac{5\pi}{2\sqrt{3}}} \mathcal{L} \left[e^{-t/2} \cos \frac{\sqrt{3}}{2}t + u \left(t - \frac{5\pi}{\sqrt{3}} \right) \left(-\cos \frac{\sqrt{3}}{2}t \right) \right) \right] \\ &= \frac{2}{\sqrt{3}} e^{\frac{5\pi}{2\sqrt{3}}} \mathcal{L} \left[e^{-t/2} \cos \frac{\sqrt{3}}{2}t \left(1 - u \left(t - \frac{5\pi}{\sqrt{3}} \right) \right) \right]. \end{aligned}$$

Thus,

$$y(t) = \frac{2}{\sqrt{3}} e^{\frac{5\pi}{2\sqrt{3}}} e^{-t/2} \cos\frac{\sqrt{3}}{2} t \left(1 - u \left(t - \frac{5\pi}{\sqrt{3}} \right) \right)$$

is a decaying exponential until the impulse, at which time all motion ceases, and the system remains in equilibrium y = 0 after $y = 5\pi/\sqrt{3}$.