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You know (roughly speaking) what it means for u to be a weak solution of the
FTC equation

u′ = f. (1)

More precisely, given f ∈ L1
loc(a, b), a function u ∈ W 1(a, b) is a weak solution of

u′ = f if f is the weak derivative of u, that is,

−

∫

uφ′ =

∫

fφ for every φ ∈ C∞

c (a, b)

where all integrals are over the interval (a, b). You also know that W 1(a, b) is nothing
more than the subset of functions in L1

loc(a, b) having a weak derivative in L1
loc(a, b).

What you do not really know so well (presumably) is what exactly is the space of
functions L1

loc(a, b). You should, however, know the following about L1
loc(a, b):

1. These are the locally integrable functions u : (a, b) → R.

2. L1
loc(a, b) contains C0(a, b), including functions, like u : (a, b) → R by u(x) =

1/(x− a), which are not globally integrable.

3. L1
loc(a, b) contains many discontinuous functions like χQ : (a, b) → R by χQ(x) =

1 if x ∈ Q and χQ(x) = 0 if x /∈ Q.

Note carefully the the last item here. You may not know all the functions in L1
loc(a, b),

but you should know that these functions can be very far from having a classical
derivative. You should have in your mind that they can be very irregular functions.
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Now a function in L1
loc(a, b) with a weak derivative, that is a function in W 1(a, b) does

have some regularity, but you really have no reason to believe that at the moment.
The point of the first four problems on this exam is to make some connection between
functions in W 1(a, b) and classically differentiable functions in C1(a, b), or at least
functions with some regularity. The topic and notation are common throughout the
first three problems, so I may not repeat all the assumptions of previous problems,
but they should still hold.

These problems are probably a bit of a stretch for you with your current skills in
mathematical analysis. I welcome you to skip down to Problem 5 if you find them
too frustrating or uninteresting. The reward for tackling them is that your skills in
mathematical analysis will be better when you are done. (It can also be said that
many people find the content quite interesting.)

Problem 1 As you may have conjectured in Problem 3 of Assignment 7, show that if
u ∈ W 1(a, b) is a weak solution of u′ = f ∈ L1

loc(a, b), then y = µ∗u ∈ C1(a+ δ, b−δ)
is a classical solution of

y′ = µ ∗ f

where µ is the standard mollifier with support [−δ, δ].

If we knew u was continuous, then we could recover u as the limit (as δ ց 0) of
µ ∗ u. Our strategy in Problem 2 is to determine such a limit without knowing u
is continuous. So we want a limit function, but we do not have a limit. In such a
situation, one uses what is called a Cauchy estimate.

Problem 2 Show that given any ǫ > 0 there is some integer k such that

|µ ∗ u(x)− µ̃ ∗ u(x)| ≤ ǫ whenever |δ − δ̃| <
1

k
and a+ ǫ < x < b− ǫ

where µ(x) = φ(x/δ)/δ and µ̃(x) = φ(x/δ̃)/δ̃ with φ the standard bump function

φ(x) =

{

e1/(x
2−1), |x| < 1

0, |x| ≥ 1.

Hint: Combine the integrals and apply Hölder’s inequality which says
∫

|fg| ≤ max |f |

∫

supp(f)

|g|

when f ∈ C∞
c (a, b) and g ∈ L1

loc(a, b).
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A sequence of real numbers a1, a2, a3, . . ., which we will also denote by

{aj}
∞

j=1,

is Cauchy if the following condition holds:

Given any ǫ > 0, there is some N such that whenever j and k satisfy
j, k > N one has

|aj − ak| < ǫ.

Notice that this condition does not require mentioning a limit of the sequence. The
condition says, roughly, that the terms “bunch up” out at the end of the sequence.
Notice also the (at least vague) similarity between the Cauchy condition for a sequence
and the Cauchy estimate from Problem 2.

Problem 3 (a) Show that every Cauchy sequence {aj}
∞
j=1 of real numbers has a

well-defined limit L ∈ R:
lim
j→∞

aj = L.

This means that for every ǫ > 0, there is some N such that

|aj − L| < ǫ whenever j > N.

This result is called the completeness of the real number line.

(b) Show that for each x ∈ (a, b), the sequence of real numbers
{

j

∫

ξ∈(a,b)

φ(j(x− ξ)) u(ξ)

}∞

j=1

is Cauchy. (The terms in this sequence may not be well-defined when j is small,
but since the Cauchy condition only involves terms of “high enough” index, this
is not really a problem.)

(c) Define a function u : (a, b) → R using the previous two parts of this problem. The
function you define should have the property that u(x) = u(x) if u is continuous
at x. Hints: This should follow from Part (d) of Problem 2 of Assignment 7.
The definition of continuity at x is the following: For any ǫ > 0, there is some
δ > 0 such that

|u(ξ)− u(x)| < ǫ whenever |ξ − x| < δ.

(The number δ appearing in this definition has nothing to do with the mollifi-
cation parameter.)
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As the result of problems 1 through 3 above, we have obtained a function u from
the weak solution u of y′ = f . The point of the next problem is to show two things:

1. u is continuous.

2. u(x) = u(x) at “most points.”

The weak solution u may not be continuous (at any point), but there exists a contin-
uous function with which u agrees at “almost every point.”

Problem 4 Let u be the function you defined in part (c) of Problem 3 (and let µ be
the standard mollifier).

(a) Let K be a set which is closed and compactly contained in (a, b). For example,
you can take some t > 0 and consider K = [a + t, b − t]. Show that µ ∗ u
converges uniformly on K to u. This means that for each ǫ > 0, there is some
k such that

|µ ∗ u(x)− u(x)| < ǫ for all x ∈ K when δ < 1/k.

(b) Show that the uniform limit of continuous functions is continuous. Conclude
from this that u ∈ C0(a, b).

(c) Again, letting K be a closed set which is compactly contained in (a, b), show that

∫

K

|u− u| = 0. (2)

Think about what this means. Two functions f, g ∈ L1
loc(a, b) satisfying

∫

K
|f −

g| = 0 for K⊂⊂(a, b) are said to be equal almost everywhere or equal at
almost every point in (a, b). Two such functions are essentially the same.
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Here is a (nice) linear algebra problem related to Problem 1 of Exam 2 for which
I posted a solution I heartily recommend you read.

Problem 5 Remember the vector space L(CR) of linear functions L : CR → CR of
C considered as a real vector space. The functions L : C → C which are linear on
the vector space C considered as vector space (which is a field) over itself may be
considered as functions in L(CR). We called this subset L(C); let us continue to do
so.

(a) It was observed in Problem 1 of Assignment 4 (at least in my solution) that L(C)
consists of geometrically simple transformations of the plane C: compositions
rotations and dilations. It is not so obvious, however, how the sum of two
rotations is again in this space. Consider Lj : C → C by

Lj(z) = eiθjz for j = 1, 2

and 0 ≤ θ1 < θ2 < π fixed. Find the scaling constant and rotation angle
associated with the sum L1 + L2.

(b) Find the dimension of L(C) considered as a subspace of L(CR).

Here are a couple problems about solving linear systems in canonical form.

Problem 6 Draw the phase plane diagram associated with x′ = Ax when A has the
canonical form

A =

(

λ1 0
0 λ2

)

in the following cases:

(a) λ1 < λ2 < 0.

(b) λ1 < 0 < λ2.

(c) 0 < λ1 < λ2.

(You should solve the system too—using the decoupling—and see how your phase
plane diagram relates to the initial point and form of your solution.)
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Problem 7 Solve the system x′ = Ax when A has the Jordan canonical form

A =

(

λ 1
0 λ

)

by noting that the system partially decouples. Draw the phase plane diagram in the
following cases:

(a) λ < 0.

(b) λ = 0.

(c) λ > 0.

Finally, I leave you with an opportunity to apply what you know about nonlinear
systems and to learn a little more.

Problem 8 Complete the following steps to draw the first quadrant of the phase
plane diagram for the system

{

r′ = 0.5r(1− 0.2r − f)
f ′ = 0.1f(−1 + 2r − 0.3f).

(3)

(a) Find the equilibrium points and linearize about each one.

(b) Plot the nullclines and indicate the “compass direction” of the field.

(c) Put together what you know about the linerizations to draw representative orbits
giving an accurate and detailed indication of the orbit structure and evolution
of the model populations.

(d) Summarize in words the prediction of the model.
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A conserved quantity for the autonomous ODE x′ = F(x) is real valued function
Φ : Rn → R whose domain is phase space and satisfies the following condition:

Given any solution x : R → Rn,

d

dt
Φ ◦ x(t) ≡ 0.

Problem 9 Show that if Φ : Rn → R is a conserved quantity for x′ = F(x), then
every orbit O(x0) lies in the level set

L = {x ∈ Rn : Φ(x) = Φ(x0)}.

Note: We are using the symbol x in two different ways here: (1) as the dependent
vector function in the ODE x′ = F(x) and (2) as the independent vector variable in
phase space.

Problem 10 Consider a pendulum consisting of an arm with length ℓ having a pivot
at one end and a mass m located at the other end.

(a) Apply Newton’s second law to determine the equation of motion for a simple
nonlinear frictionless pendulum having the form

θ′′ = −αsin θ.

Hints: Take θ to be the displacement angle of the pendulum. Assume a constant
downward gravitational field and decompose the force diagram into components
parallel and perpendicular to the pendulum arm. The position of the end of the
pendulum may be something like:

r(t) = ℓ(sin θ(t),− cos θ(t)).

“Simple” here means the arm of the pendulum is assumed to have no mass and
to be perfectly rigid. “Simple” also means there is a mass m concentrated at
the end of the pendulum arm opposite the pivot point. Your constant α should
depend on the gravitational constant and the length of the pendulum arm. (What
happened to the mass?)

(b) Write down the first order system equivalent to θ′′ = −αsin θ and find the equilib-
rium points. Draw pictures of the actual physical system in a state corresponding
to each equilibrium.

7



(c) Show the total energy (kinetic plus potential) is a conserved quantity.

(d) Draw the phase plane diagram for the simple pendulum. (Don’t forget that you
know how to linearize at equilibrium points.)

Problem 11 Draw the phase plane diagram for the autonomous system

{

x′ = x(1− x)
y′ = (2x− 1)y.

Hint: There is a conserved quantity.

Solution: By the chain rule

d

dt
Φ(x, y) =

∂Φ

∂x
x′ +

∂Φ

∂y
y′.

On the one hand, one simple way for this to vanish is if

∂Φ

∂x
= y′ = (2x− 1)y and

∂Φ

∂y
= −x′ = x(x− 1).

The first condition suggests

Φ(x, y) = (x2 − x)y + c(y) = x(x− 1)y + c(y)

where c = c(y) is an arbitrary function of y. Differentiating with respect to y, we find

∂Φ

∂y
= x(x− 1) + c′(y)

which is precisely what we want when c′ = 0. In fact, we can just take c ≡ 0 and
observe that

Φ(x, y) = (x2 − x)y is conserved.

This means the orbits are along the level sets of Φ. The zero level set consists of two
vertical lines x = 0 and x = 1 and one horizontal line y = 0. Each of these lines is
easily seen to consist of orbits as indicated in the figure below.
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Aside from the equilibrium points at (0, 0) and (1, 0), the orbits are represented
by solutions

x(t) ≡ 0, y(t) = e−t

x(t) ≡ 0, y(t) = −e−t

x(t) ≡ 1, y(t) = et

x(t) ≡ 0, y(t) = −et

x(t) = e2t/(e2t − 2), y(t) ≡ 0

x(t) = e2t/(e2t + 1), y(t) ≡ 0

x(t) = 2e2t/1− 2e2t, y(t) ≡ 0.

Note that the existence and uniqueness theorem gives local existence and uniqueness
for solutions of this system (so orbits do not cross), but the nonlinearity can be
expected to (and does) lead to finite time blow-up. For example, two of the three
last three solutions with orbits on the x-axis blow up in finite time. As an exercise,
you could find the general solution of the first ODE (since it is decoupled), substitute
it into the second equation, which will then be a linear first order equation for y,
and then find the general solution of the system. As it is, we are not asked for this
solution, so I will just plot the phase diagram.

We know the other orbits lie on curves Φ(x, y) = c for some nonzero constant c.
This relation can be rewritten as

y =
c

x(x− 1)
.

Thus, the orbits are easy to plot as indicated in the next figure below.
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I didn’t include the arrows on the orbits because one can easily see the field
directions indicated by the orbits on the straight lines. This is also a nice system
to illustrate how the linearization at the equilibrium relates to the local behavior
of solutions. Notice that the global behavior is quite different. (Exercise: Do the
linearizations and compare the explicit solutions of the linearized system(s) with
those of the nonlinear system in this problem.)

Finally, I note that an alternative (and essentially equivalent) approach to the
problem is to consider the perpendicular field

F⊥ = (y(1− 2x), x(1 − x))

and the associated (possibly) exact equation

(x′, y′) · F⊥ = y(1− 2x) x′ + x(1 − x) y′ = 0.

which is also often written

y(1− 2x) dx+ x(1− x) dy = 0.

These equations have the form P x′ + Qy′ = 0 for some vector field (P,Q), and are
said to be exact if there is a function Ψ : R2 → R for which the gradient satisfies

∇Ψ = DΨ = (P,Q).

The necessary condition for the existence of the potential Ψ is

∂P

∂y
=

∂Q

∂x
.

This condition is easily seen to hold in this case, and this approach leads to the same
(implicit) relation Ψ(x, y) = c for the orbits.

Exact equations are discussed in Section 4 of Chapter 8 in Boas and also in
Section 8 of Chapter 6, neither of which were mentioned in my lectures but might be
worth keeping in mind for future reference.
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