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An ordinary differential equation (ODE) is an equation specifying the derivative of an

unknown function of one real variable. The objective is to determine which function(s) if

any, has that specified derivative. Roughly speaking, then, these equations have the form

y′ = f .

The “form” of this equation should be read as being very open to interpretation and rather

broad in application. Only the domain of the function y is specified. The co-domain of

y, as well as the domain and co-domain of the specification function f , may be, roughly

speaking, “anything that makes sense.” We will look at various specific examples presently.

It should be noted, however, that the defining characteristic here, if there is one, is that the

domain of y must be an interval in the real line and the derivative of y appearing on the left

must be a derivative with respect to the one real variable in this interval. This is what makes

an ODE an ODE. Thus, it is natural to begin the subject with a discussion of derivatives

with respect to one real variable. In fact, whenever you encounter an ODE, as soon as you

know the co-domain of the unknown function y, it is a good idea to ask yourself

What kind of function is the derivative of y?

If the meaning of this question is not clear to you at the moment, we should endeavor to

make it clear.

Exercise 1 If y : R → R by y(x) = x2, what are the domain and co-domain of y′? Draw

pictures of the graphs of y and y′. Draw any other useful illustrations that help you under-

stand these functions.

Exercise 2 If y : R → R2 by y(t) = (cos(2t), sin(2t)), what are the domain and co-domain

of y? Draw pictures of the images of y and y′. Draw any other useful illustrations that help

you understand these functions.
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1 FTC equations

The simplest ODEs are equations of the form

y′ = f (x)

where x is the independent/domain variable associated with y and both f and y are real

valued. The derivative of y in this case is usually defined as

y′(x) = lim
h→0

y(x + h) − y(x)

h
. (1)

The expression
y(x + h) − y(x)

h

is called a difference quotient, and for the limit in (1) to make sense the function y needs

to be defined for the values x + h with h in some small interval extending both the left and

right about zero. A well-known interval of this sort is one with the form

Bǫ(0) = (−ǫ, ǫ) = {h ∈ R : −ǫ < h < ǫ}.

Here it is assumed that ǫ is a positive number, and this set is called the open ball of radius

ǫ about zero or the symmetric open interval of length 2ǫ about zero. More generally, the

open ball of radius r > 0 with center x0 ∈ R is

Br(x0) = {x ∈ R : |x − x0| < r}.

This kind of set is used to define open sets of real numbers in general. To be precise, a set

U ⊂ R is said to be open if for any x ∈ U, there exists some r > 0 for which Br(x) ⊂ U.

Exercise 3 Show that an open ball is an open set. Find an open set which is not an open

ball.

Exercise 4 Show that any union of open sets is open.

Every open interval has the form

(a, b) = {x ∈ R : a < x < b}

where a and b are extended real numbers with a < b. This means a might be −∞ and

b might be +∞. Such an interval is the natural domain, from calculus, for a differentiable
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function of one real variable, and given y : (a, b) → R and x ∈ (a, b), the derivative

of y, if it exists, is defined by (1). The value of y′(x), if it exists, gives the slope of the

tangent line to the graph of y at the point (x, y(x)). (You should draw pictures of this

tangent line and the secant lines whose slopes are given by the difference quotient, so you

thoroughly understand how this definition of the derivative works. The derivative also

gives the instantaneous rate at which the values of the function y change with respect

to change in the indepdendent variable x.

Exercise 5 Given two values x1 and x2 of the independent variable x with x1 < x2, the

difference x2 − x1 is called the increment of x determined by these values. The increment

of y determined by x1 and x2 is y(x2)− y(x1). Find the average rate of change of y over the

interval [x1, x2]. Think: The average rate of change is the total “distance” divided by the

total “time.”

Beyond elementary calculus there are other intervals that can be of interest. In partic-

ular, one is sometimes interested in a real valued function on an interval [a, b) = {x ∈ R :

a ≤ x < b} with a ∈ R. In such a case, the one-sided derivative

lim
h→0+

y(a + h) − y(a)

h

may be of interest. This is a derivative from the right or a right derivative. There is

also a corresponding notion of left derivative. One sided derivatives are also sometimes

considered in elementary calculus.

Exercise 6 Show that y : (a, b) → R is differentiable at x ∈ (a, b) if and only if y has both

left and right derivatives at x.

1.1 Important Sets of Functions

The collection of real valued functions which are differentiable at each point in an open

interval (a, b), denoted1 by Diff(a, b) or D1(a, b), is of primary interest in calculus. The

subset of these functions which are merely continuous is also important, and we denote

these functions by C0(a, b).

1The names for these collections of functions are intended to both compress a significant amount of

information in a small and convenient “package” on the printed page and to be suggestive of the concept

denoted. Thus, when one sees Diff(a, b) it may be helpful to think the differentiable functions on the interval

(a, b), and similalry when one seesD1(a, b), one may think the functions with one derivative.
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Definition 1 A real valued function u : A → R where A ⊂ R is any set of real numbers is

continuous at x0 ∈ A if for any ǫ > 0, there is some δ > 0 for which the following holds:

|u(x) − u(x0)| < ǫ whenever x ∈ A and |x − x0| < ǫ.

Note that the condition on x can also be written as x ∈ A ∩ Bǫ(x).

A function is continuous on A if it is continuous at every point in A.

the collection of all functions f : A → R which are continuous on A is denoted by

C0(A).

Exercise 7 Show Diff(a, b) ⊂ C0(a, b) but C0(a, b) 1 Diff(a, b). Show that if u : [a, b]→ R
has a right derivative at x = a, then u is continuous at a.

When we say the limit of the difference quotient in (1) exists, we mean (precisely) that

there is a real number L for which given any ǫ > 0, there is some δ > 0 such that the

following holds:
∣

∣

∣

∣

∣

y(x + h) − y(x)

h
− L

∣

∣

∣

∣

∣

< ǫ whenever |h| < δ.

When such a real number L exists, we call it the derivative of y at x and write L = y′(x).

Exercise 8 Show that if u : [a, b]→ R satisfies the following:

1. u ∈ D1(a, b), by which we mean the restriction of u to the interval (a, b), denoted by

u∣∣
∣

(a,b)

: (a, b)→ R,

is inD1(a, b) or equivalently that u is differentiable at each point in the open interval

(a, b),

2. u has a right derivative at a, and

3. u has a left derivative at b,

then there is an extension u : R→ R with u ∈ D1(R) and

u∣∣
∣

[a,b]

= u.
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If we write Diff[a, b] or D1[a, b] we can mean either the collection of functions that are

differentiable on the open interval (a, b) and have left and right derivatives at b and a

respectively, or we can mean the the collection of functions u which have an extension

u : (a − ǫ, b + ǫ)→ R for some ǫ > 0 with u ∈ D1(a − ǫ, b + ǫ). These are the same thing.

A third collection of functions appearing in the statements of many theorems from

elementary calculus is the collection of functions with a continuous derivative. These are

also called the continuously differentiable functions and are denoted by C1(a, b). That is,

C1(a, b) = {u ∈ Diff(a, b) : u′ ∈ C0(a, b)}.

We will mostly stick to open intervals as the domain of the functions of interest in ODE. It

does not hurt, however, to know about other possibilities.

Exercise 9 If U is any open subset of R, explain why it makes good sense to think about

the collection C1(U) of functions which are continuously differentiable on U.

If we write u ∈ C1(A), we mean there is an open set U with A ⊂ U and an extension

u : U → R with

u∣∣
∣

A

= u.

Exercise 10 Find a function u ∈ C0(a, b) with left and right derivatives at b and a respec-

tively and for which

u∣∣
∣

(a,b)

∈ C1(a, b),

but u < C1[a, b]. Consequently, C1[a, b] ( D1[a, b].

1.2 The Fundamental Theorem of Calculus

The collections of functions C0(a, b), C1(a, b), and C1[a, b] are often used in simple state-

ments of the fundamental theorem of calculus:

Theorem 1 (FTC definite integral version) If f ∈ C1[a, b], then

∫ b

a

f ′(x) dx = f (b) − f (a).

Theorem 2 (FTC indefinite integral version) If f ∈ C0(a, b), then for any x0 ∈ (a, b), the

function F : (a, b)→ R by

F(x) =

∫ x

x0

f (t) dt

satisfies F ∈ C1(a, b) and F′(x) = f (x).
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Notice that the fundamental theorem for definite integrals says (roughly) that if you dif-

ferentiate f first and then integrate the result, you get back the values of f . The indefinite

integral version says more: It says that if you integrate first, then you get something you

can differentiate, and it tells you what you get for the derivative.

The requirement f ∈ C1[a, b] in the definite integral version is natural because the most

well-known condition under which the Riemann integral of a function exists is that it be

continuous:

Theorem 3 (existence theorem for Riemann integrals) If u ∈ C0[a, b], then there exists a

number L such that for any ǫ > 0, there is a number δ > 0 for which the following holds:

Whenever there are points

a = x0 < x1 < . . . < xn = b (2)

with x j − x j−1 < δ for j = 1, 2, . . . , n and points

x0 ≤ x∗1 ≤ x1 ≤ x∗2 ≤ x2 ≤ . . . ≤ xn−1 ≤ x∗n ≤ xn, (3)

then
∣

∣

∣

∣

∣

∣

∣

n
∑

j=1

u(x∗j)(x j − x j−1) − L

∣

∣

∣

∣

∣

∣

∣

< ǫ.

Under these conditions the limit L is called the Riemann integral of u and we write

L =

∫ b

a

u(x) dx.

The construction of the Riemann integral given in this theorem does not require u ∈
C0[a, b], but this is a very convenient condition under which the limit defining the Rie-

mann integral is well-defined. The points x0 < x1 < · · · < xn in (2) are called partition

points and considered as a set

P = {x0, x1, . . . , xn}
they are called a partition of the interval [a, b]. The points x∗

1
, x∗

2
, . . . , x∗n appearing in (3)

are called evaluation points. The length of the largest increment in a partition is called

norm of the partitition:

‖P‖ = max{x1 − x0, x2 − x1, . . . , xn − xn−1}.
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Thus, the condition for the existence of the Riemann integral of any function u : [a, b]→ R
may be expressed as

lim
‖P‖→0

n
∑

j=1

u(x∗j)(x j − x j−1) exists,

and in this case we can write

∫ b

a

u(x) dx = lim
‖P‖→0

n
∑

j=1

u(x∗j)(x j − x j−1).

Given a partition and evaluation points, the number

n
∑

j=1

u(x∗j)(x j − x j−1)

is called a Riemann sum.

Exercise 11 Draw pictures illustrating the geometric meaning of the Riemann sum and the

integral in terms of areas.

Sometimes a more general version of the fundamental theorem for definite integrals is

given which is also somewhat more complicated to state. In particular, it involves another

important collection of functions we haven’t mentioned. Let Riem[a, b] denote the collec-

tion of all Riemann integrable functions on the interval [a, b]. The Riemann integrability

theorem says C0[a, b] ⊂ Riem[a, b].

Exercise 12 Find a function u ∈ Riem[a, b]\C0[a, b].

Exercise 13 Show the functions u0 : [0, 1]→ R and u1 : [0, 1]→ R by

u0(x) =

{

0, x ∈ [0, 1]\Q
1, x ∈ [0, 1] ∩ Q

and

u1(x) =

{

1, x ∈ [0, 1]\Q
0, x ∈ [0, 1] ∩ Q ,

where

Q =

{

p

q
: q ∈ N0 = {0, 1, 2, . . .} and p ∈ Z = {0,±1,±2, . . .}

}

denotes the rational numbers as usual, satisfy u j < Riem[a, b] for j = 0, 1.
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The more general version of the fundamental theorem for definite integrals is the fol-

lowing:

Theorem 4 If f ∈ Diff[a, b] and f ′ ∈ Riem[a, b], then
∫ b

a

f ′(x) dx = f (b) − f (a).

Exercise 14 Find a function which is differentiable on [a, b] and has a Riemann integrable

derivative, but is not in C1[a, b].

Exercise 15 Prove Theorem 1 using Theorem 2. Does your proof work for Theorem 4?

Most proofs of Theorems 1, 2, and 4 usually depend on some version of the mean value

theorem which, in turn, is usually proved using Rolle’s theorem. I will state these theorems

with a couple comments below, but first let me give a short proof of Theorem 2:

The difference quotient [F(x + h) − F(x)]/h may be written as

1

h

[∫ x+h

x0

f (t) dt −
∫ x

x0

f (t) dt

]

=
1

h

∫ x+h

x

f (t) dt.

We wish to show

lim
h→0

1

h

∫ x+h

x

f (t) dt = f (x) =
1

h

∫ x+h

x

f (x) dt

or equivalently

lim
h→0

∣

∣

∣

∣

∣

∣

1

h

∫ x+h

x

f (t) dt − 1

h

∫ x+h

x

f (x) dt

∣

∣

∣

∣

∣

∣

= lim
h→0

∣

∣

∣

∣

∣

∣

1

h

∫ x+h

x

[ f (t) − f (x)] dt

∣

∣

∣

∣

∣

∣

= 0.

Let ǫ > 0. By continuity (of f at x), there is some δ > 0 for which | f (t) − f (x)| < ǫ/2
whenever |t − x| < δ. Taking |h| < δ, all the arguments t appearing in the integrand of

∫ x+h

x

[ f (t) − f (x)] dt,

since they are between x and x + h, satisfy |t − x| ≤ |h| < δ. Consequently, for |h| < δ we

have
∣

∣

∣

∣

∣

∣

1

h

∫ x+h

x

[ f (t) − f (x)] dt

∣

∣

∣

∣

∣

∣

≤ 1

|h|

∣

∣

∣

∣

∣

∣

∫ x+h

x

| f (t) − f (x)| dt

∣

∣

∣

∣

∣

∣

≤ 1

|h|

∣

∣

∣

∣

∣

∣

∫ x+h

x

ǫ

2
dt

∣

∣

∣

∣

∣

∣

=
ǫ

2
< ǫ.

This is exactly what it means to have

lim
h→0

∣

∣

∣

∣

∣

∣

1

h

∫ x+h

x

[ f (t) − f (x)] dt

∣

∣

∣

∣

∣

∣

= 0. �
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1.3 Other Integrable Functions

You may have noted that C1[a, b] ⊂ C0[a, b] ⊂ Riem[a, b]. We say these collections of

functions have decreasing levels of regularity. Of course, our regularity heirarchy can be

extended to functions with higher regularity:

Cω[a, b] ⊂ C∞[a, b] ⊂ Ck[a, b] ⊂ Riem[a, b].

As you might guess, a function in Cω[a, b] is one with an extension having a power series

representation in some open ball with center at each point in [a, b]. Similarly, u ∈ C∞[a, b]

if u has an extension u ∈ C∞(a − ǫ, a + ǫ) for some ǫ > 0. Usually extensions, if they exist,

are not unique.

Exercise 16 Show that the extension of a real analytic function in Cω[a, b] is unique. This

is called analytic continuation.

The open set, and the open interval in particular, is the simplest kind of set on which to

consider regularity. We did not, however, define Riem(a, b) for an open interval. Here is

one way to do that: We first set

Riem
loc

(a, b) =
⋂

0<ǫ<(b−a)/2

Riem[a + ǫ, b − ǫ].

That is, u is locally Riemann integrable on (a, b) if (the appropriate restriction of) u is

Riemann integrable on the closed subintervals [a+ ǫ, b− ǫ] for all small enough positive ǫ.

It should be noted that according to our definition of Riemloc(a, b), it may be the case that

u ∈ Riemloc(a, b) but still
∫ b

a

u(x) dx

may not be well-defined.

Exercise 17 Find a function u ∈ Riemloc(a, b) for which

∫ b

a

u(x) dx

is not a well-defined real number. Hint: It is easy to arrange to have

lim
ǫց0

∫ b−ǫ

a+ǫ

f (x) dx = +∞.

Here limǫց0 means the same as limǫ→0+ .
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Exercise 18 Find a function u ∈ Riemloc(a, b) for which

∫ b

a

u(x) dx

is not a well-defined extended real number. Maybe your example from the previous exer-

cise already works.

Usually, we want functions in Riem(a, b) to have a finite valued Riemann integral given in

the following sense:

Riem(a, b) =

{

u ∈ Riem
loc

(a, b) : lim
ǫց0

∫ b−ǫ

a+ǫ

u(x) dx exists (in R)

}

.

the value of
∫ b

a

u(x) dx

for u ∈ Riem(a, b) is defined to be

∫ b

a

u(x) dx = lim
ǫց0

∫ b−ǫ

a+ǫ

u(x) dx

and such an integral is said to be an improper integral.

Exercise 19 Find a function in Riem(a, b)\Riem[a, b].

Exercise 20 Our discussion of Riem(a, b) only applies when a, b ∈ R. Extend the definition

of improper integrals and Riem(a, b) to the case where a and b might have appropriate

extended real values.

Returning to our regularity heirarchy

Cω[a, b] ⊂ C∞[a, b] ⊂ Ck[a, b] ⊂ Riem[a, b],

we note that the functions u0 and u1 defined in Exercise 13 are not in Riem[a, b]. Never-

theless, the values of the integrals

∫

(0,1)

u0 and

∫

(0,1)

u1

are almost obvious.
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Exercise 21 The rational numbers Q are in one to one correspondence with the integers.

Such sets are said to be countable and the rational numbers are one example. Find a

bijective function γ : N → [0, 1] ∩ Q. When you have such a function you can write

r j = γ( j) as the j-th rational number in [0, 1]. So we have

Q ∩ [0, 1] = {r1, r2, r3, . . .}

where r1 is the first rational number in [0, 1] ∩ Q and r2 is the second one and so on. Now,

let ǫ be any positive number. Consider the interval

Bǫ j
(r j) = (r j − ǫ/2 j+1, r j + ǫ/2

j+1)

centered at r j. Calculate the total length of the union of these intervals.

Note that whatever the total length ℓ of these intervals is one should have

0 ≤
∫

(0,1)

u0 ≤ ℓ.

Why?

Determine the values of
∫

(0,1)
u0 and

∫

(0,1)
u1. Hint: Note that u1(x) = 1 − u0(x). Use the

fact that (at least it should be the case that)
∫

(0,1)

u1 =

∫

(0,1)

1 −
∫

(0,1)

u0

where 1 here in the integrand represents the function with constant value 1.

I hope you have convinced yourself that u0 and u1 are integrable functions which are not in

Riem(0, 1) or Riem[0, 1] or any collection of Riemann integrable functions. You might ask

then: What kind of functions are they? The answer is that they are Lebesgue integrable

functions. The collection of Lebesgue integrable functions on an interval, usually taken to

be an open interval, is L1(a, b). These functions provide a natural extension of our regularity

heirarchy to less regular functions:

Riem[a, b] ⊂ L1(a, b) and Riem(a, b) ⊂ L1(a, b).

Exercise 22 Write down the natural definition of L1
loc

(a, b) and show Riemloc(a, b) ⊂ L1
loc

(a, b).

Let me leave this preliminary discussion of integrable functions by mentioning that if you

want to push the assertion(s) of the fundamental theorem of calculus to apply to more

general functions, i.e., in more general situations, then these are the kinds of collections

you need to consider.
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1.4 The Mean Value Theorem and Rolle’s Theorem

These are usually stated for functions u ∈ C0[a, b] ∩ Diff(a, b) which, as usual, means

continuous on the (finite) closed interval [a, b] and differentiable on the open subinterval

(a, b). This explains the (weaker) hypothesis on the function f in Theorem 4.

Theorem 5 (the mean value theorem) If u ∈ C0[a, b] ∩ Diff(a, b), then there exists some

ξ ∈ (a, b) with

f ′(ξ) =
f (b) − f (a)

b − a
.

Theorem 6 (Rolle’s theorem) If u ∈ C0[a, b] ∩ Diff(a, b) with

f (b) = f (a),

then there exists some ξ ∈ (a, b) with

f ′(ξ) = 0.

Exercise 23 Prove Rolle’s theorem, and then use Rolle’s theorem to prove the mean value

theorem. Hints: Show that if a differentiable function has a maximum value at ξ, then

u′(ξ) = 0. To get the mean value theorem from Rolle’s theorem, consider u(x) − ℓ(x) where

ℓ(x) = mx + b is an appropriate affine function.

With this notation/discussion/review in hand, let us return to our discussion of FTC

equations.

2 Existence and Uniqueness

The simplest FTC equation is y′ = 0. This equation (and FTC equations in general) should

not be expected to have a unique solution.

The solution of y′ = 0, in this case, is y(x) = c for any constant c. More properly, we

should say that the solution set

Σ = {u ∈ C1(a, b) : u′ = 0}

is the collection of all constant functions. This solution set Σ is isomorphic as a vector space

to the vector space R1 over the field R. As the previous section may have suggested, the

collection of functions C1(a, b) used here is natural in a certain sense, but is used primarily
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for convenience and other choices are possible. For example, were we to look for functions

in Diff(a, b) satisfying y′ = 0, then the identification of

Σc = {u ∈ Diff(a, b) : u′ = 0},

the classically differentiable solutions, with the constant functions may not be so easy. We

could also consider even more general solution sets as follows:

ΣR =

{

u ∈ Riem
loc

(a, b) : −
∫

(a,b)

uφ′ = 0 for all φ ∈ C∞c (a, b)

}

where C∞c (a, b) denotes the collection of functions in C∞(a, b) having compact support

contained in (a, b), that is, there exists some ǫ > 0 for which {x ∈ (a, b) : φ(x) , 0} ⊂
(a+ǫ, b−ǫ). The functions in ΣR are called the (locally) Riemann integrable weak solutions

of u′ = 0. More generally,

ΣW =

{

u ∈ L1
loc(a, b) : −

∫

(a,b)

uφ′ = 0 for all φ ∈ C∞c (a, b)

}

is the collection of weak solutions of u′ = 0.

Here is a proof for Σ: If u ∈ Σ, then given x1 and x2 with a < x1 < x2 < b, we

know u ∈ C0[x1, x2] by Exercise 7. Thus, if u(x2) , u(x1), then it follows from the mean

value theorem that there exists a point ξ between x1 and x2 in (a, b) with u′(ξ) , 0. This

contradicts the fact that u′(ξ) = 0 and shows u must be constant. �

The same proof works for Σc. It does not work for ΣR or ΣW . One major advantage of

using the classically differentiable functions in C1(a, b) is that the collection of derivatives

of these functions has a nice characterization:

{u′ : u ∈ C1(a, b)} = C0(a, b).

But what is

{u′ : u ∈ Diff(a, b)}?
I don’t know a nice characterization of this vector space. Accordingly, let’s proceed with Σ

for now.

It will also be noted that L : C1(a, b) → C0(a, b) by Lu = u′ is a linear function. Thus,

our ODE is a question about the linear map L, namely, given f ∈ C0(a, b) what is

Σ = {u ∈ C1(a, b) : u′ = f }.
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From this point of view, we can recognize the solution set with f ≡ 0 mentioned above

as the kernel of L. Moreover, the indefinite integral version of the fundamental theorem of

calculus gives us existence of solutions: For any x0 ∈ (a, b), the function F : (a, b)→ R by

F(x) =

∫ x

x0

f (t) dt (4)

satisfies F ∈ Σ.

Theorem 7 (uniqueness of C1 solutions for the general FTC equation) Let f ∈ C0(a, b) be

given. Then

1. If y ∈ Σ = {u ∈ C1(a, b) : u′ = f }, then y differs from F by a constant.

2. Σ = {F + yh : yh ∈ ker(L)} where F is given in (4).

3. Σ = {yp + yh : yh ∈ ker(L)} where yp is any particular solution of y′ = f .

4. For any x0 ∈ (a, b) and any y0 ∈ R the initial value problem (IVP)
{

y′ = f

y(x0) = y0

has a unique solution.

Proof:

1. If y ∈ Σ, then y − F ∈ C1(a, b), and L(y − F) = Ly − LF = y′ − F′ = 0. Therefore,

y − F ∈ ker(L) which is the set of constant functions.

2. Let y ∈ Σ, then setting yh = y−F, we have calculated above that yh = y−F ∈ ker(L).

Thus, we simply need to notice that

y = F + (y − F) = f + yh.

3. Let y ∈ Σ, ten setting yh = y− yp where yp is any particular solution, we can compute

y′
h
= y′ − y′p = f − f = 0. Thus, yh ∈ ker(L) and y = yp + (y − yp) = y + yh.

4. First note that y : (a, b)→ R given by

y1(x) = y0 + F(x) = y0 +

∫ x

x0

f (t) dt

is a solution of the IVP. We know that every solution of y′ = f differs from y1 by a

constant c. But if y is any solution of the IVP, then we must have

c = y(x0) − y1(x0) = y0 − y0 = 0. �
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Exercise 24 Show the reverse inclusion in parts 2 and 3 of the proof of Theorem 7.

Some aspects of our discussion of the FTC equation and the proof of Theorem 7 apply

in a rather more general context:

Theorem 8 (linear theory: first observations) If L : V → W is a linear function the

associated to every equation

Lv = w

with w ∈ W, there is an associated homogeneous equation

Lv = 0 ∈ W

and a well-defined (nonempty) solution set ker(L).

Given a particular solution vp of the equation Lv = w, the solution set

Σ = {v ∈ V : Lv = w}

may be written as

Σ = {vp + vh : vh ∈ ker(L)}.

Exercise 25 Prove Theorem 8.

A Summary of our discussion of the FTC equation y′ = f and the associated initial

value problem may be given as follows: The linear function L : C1(a, b) → C0(a, b) is

surjective (onto), and given x0 ∈ (a, b) there is a (linear) solution operator

σ : C0(a, b) × R→ C1(a, b)

given by σ[ f , y0] = y where

y(x) = y0 +

∫ x

x0

f (t) dt.

The function σ is a bijection.

3 Less Convenient Assumptions

Were we to consider other natural frameworks in which to consider the FTC equation y′ = f

our summary would not work out so nicely. There are two obvious alternatives which are

both mentioned briefly above. I will attempt to fill in some of the details of one of those

here.
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3.1 Classically Differentiable Functions

One alternative would be to consider the classically differentiable functions Diff(a, b) as a

source of solutions for y′ = f . As mentioned above, the collection of derivatives

{u′ : u ∈ Diff(a, b)}

of classically differentiable functions is not so easy to understand. We should at least know

that C1(a, b) ( Diff(a, b). That is, we would like to see a function which is classically

differentiable but does not have a continuous derivative. One such example is f : R → R
by

f (x) =

{

x2 sin(1/x), x , 0

0, x = 0.

Exercise 26 Plot the function f either by hand or using mathmatical software. Show that

f ∈ Diff(R)\C1(R).

It does happen to be known that the derivative of any function in Diff(a, b) must be continu-

ous at uncountably many points that happen to be dense in the interval (a, b). “Uncountably

many” means there are more than you can put in one-to-one correspondence with the in-

tegers, or alternatively that they can be put in one-to-one correspondence with all the real

numbers. “Dense” means that you can find points of continuity arbitrarily close to every

point of (a, b). So this suggests the derivative of a function in Diff(a, b) has many points of

continuity. It should be noted, however, that the set of points of discontinuity can (some-

times) also have these same properties. For an interesting example with “many” points of

discontinuity, you can look up Volterra’s function.

3.2 Weakly Differentiable Functions

A more satisfactory treatment of FTC equations (and a more general version of the funda-

mental theorem of calculus) may be obtained using weak derivatives and weak solutions.

The foundation for these collections of functions lies in finding a more general notion of

integrability—a more general notion of the integral—than that afforded by the Reimann

integral. An alternative is the Lebesgue integral which, in turn, has a definition resting

on the ability to measure the length of a wider variety of sets than just intervals. We will

not, and hopefully do not need to, go into the details of the measure theory of sets and

the definition of the Lebesgue integral, though for an introduction you may see my notes

on integration. It is worthwhile, however, to know about the possibility of a more general

integral and some of the things you can do with such a thing. Thus, let us start with the

following simple and somewhat vague foundation:
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3.2.1 Measurability and Lebesgue integration

We have mentioned the Riemann integral as a limit of Riemann sums above. The main

theorem concerning Rieman integrability was Theorem 3, which is called the Riemann

integrability theorem and states (roughly) that any continuous function has a well-defined

Riemann integral. We observed that some discontinuous functions may also have a well-

defined Riemann integral and thus introduced the collections Riem[a, b] and Riem(a, b) of

Riemann integrable functions.

In Exercise 13 the functions u0 and u1 are seen to be non-Riemann integrable. One way

to think of this is in terms of upper and lower Riemann sums.

Exercise 27 The upper Riemann sum is defined just like the Riemann sum

n
∑

j=1

f (x∗j)(x j − x j−1)

except that the values f (x∗j) at the evaluation points x∗j ∈ [x j−1, x j] are replaced by the

supremum of the values of f on the interval [x j−1, x j]. The supremum of any nonempty

collection A ⊂ R is the smallest extended real valued number M ∈ (−∞,∞] with M ≥ a

for every a ∈ A. Such a number is always well-defined and is denoted by

sup
a∈A

a or sup A = min{M ∈ (−∞,∞] : M ≥ a for all a ∈ A}.

Thus, the upper Riemann sum is

n
∑

j=1

sup{ f (x) : x j−1 ≤ x ≤ x j}(x j − x j−1).

This number always exists as an extended real number in (−∞,∞].

(a) Show my claim about the supremum of any nonempty collection of real numbers being

well-defined is true. (Hint: You’ll need the greatest lower bound property of the real

numbers for this.)

(b) Define the infemum of any set of real numbers in a manner similar to that used for the

supremum.

(c) Using the infemum, define the lower Riemann sum of a function f : [a, b]→ R.
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(d) Show that the limits

lim
‖P‖→0

n
∑

j=1

sup{ f (x) : x j−1 ≤ x ≤ x j}(x j−x j−1) and lim
‖P‖→0

n
∑

j=1

inf{ f (x) : x j−1 ≤ x ≤ x j}(x j−x j−1

always exist and satisfy

lim
‖P‖→0

n
∑

j=1

sup{ f (x) : x j−1 ≤ x ≤ x j}(x j−x j−1) ≤ lim
‖P‖→0

n
∑

j=1

inf{ f (x) : x j−1 ≤ x ≤ x j}(x j−x j−1).

(e) Show that a function f : [a, b]→ R is Riemann integrable if and only if

lim
‖P‖→0

n
∑

j=1

sup{ f (x) : x j−1 ≤ x ≤ x j}(x j−x j−1) = lim
‖P‖→0

n
∑

j=1

inf{ f (x) : x j−1 ≤ x ≤ x j}(x j−x j−1).

(f) Find

n
∑

j=1

sup{uk(x) : x j−1 ≤ x ≤ x j}(x j−x j−1) and

n
∑

j=1

inf{uk(x) : x j−1 ≤ x ≤ x j}(x j−x j−1)

for k = 0 and 1 where u0 and u1 are the functions defined in Exercise 13.

...More on this later

4 Other Linear ODE

Given the manner in which we have defined ordinary differential equations, you may be

wondering where linear equations like y′′ = −y with solutions

Σ = {a cos x + b sin x : a, b ∈ R}

fit in. How does this ODE y′′ = −y specify a single derivative? I will answer that question

soon, but for now let’s stick with the framework of first order equations and consider the

somewhat broader set of ODE of the form

Ly = y′ + p(x)y = g(x) (5)
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for the unknown function y ∈ C1(a, b) of which the FTC equations considered above are

the special case with p ≡ 0 and f = g. Equations of the form (5) do fit into our framework

if we write

y′ = g(x) − p(x)y = f (x, y) (6)

where now the derivative is specified by a function f : (a, b) × R → R having the special

quasi-linear (i.e., affine in y) form f (x, y) = g(x) − p(x)y.

If we stick to the elementary framework in which f ∈ C0(R × (a, b)) and y ∈ C1(a, b),

then the theory of this equation is nice and simple. Perhaps the most important aspect of

that theory is the existence and uniqueness theorem:

Theorem 9 (linear existence and uniqueness—first order) If p, g ∈ C0(a, b), x0 ∈ (a, b),

and y0 ∈ R, then the IVP
{

Ly = g

y(x0) = y0

has a unique solution y ∈ C1(a, b).

The result follows from an easy application of linear theory along with application of the

fundamental theorem of calculus, or equivalently the theory of FTC equations above:

The associated homogeneous equation is

Ly = y′ + py = 0. (7)

This equation is easy to solve thanks to the existence of a positive integrating factor

µ(x) = e

∫ x

x1
p(t) dt
.

The integrating factor is, naturally, only determined up to a positive multiple depending on

the initial point of integration which may be chosen for convenience. For this reason, the

expression for µ is often written as

µ(x) = e
∫ x

p(t) dt

with no lower limit of integration. In any case, the key fact is that µ ∈ C1(a, b) with

µ′(x) = p(x)µ(x). This follows from the fundamental theorem of calculus and the chain

rule. In particular, (7) can be written as

(µy)′ = 0

which is the homogeneous FTC equation. Thus, the kernel of L when Ly = y′ + py is given

by

ker(L) =

{

c

µ
: c ∈ R

}

=

{

ce
−

∫ x

x1
p(t) dt

: c ∈ R
}

.
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Exercise 28 Note that given any positive number m and any x1 ∈ (a, b), the function

µ(x) = me

∫ x

x1
p(t) dt

works as an integrating factor to solve (7). Is it always possible to choose an initial point

t1 ∈ (a, b) such that

me

∫ x

x1
p(t) dt
= e

∫ x

t1
p(t) dt
,

that is given x1 ∈ (a, b) fixed, are the two sets

{

µ ∈ C1(a, b) : µ(x) = me

∫ x

x1
p(t) dt

for some m > 0

}

and
{

µ ∈ C1(a, b) : µ(x) = e

∫ x

t1
p(t) dt

for some t1 ∈ (a, b)

}

equal?

Exercise 29 Recall the discussion of (6) in which we wrote f (x, y) = g(x) − p(x)y. Show

the regularity hypothesis f ∈ C0((a, b) × R is equivalent to the regularity hypothesis p, g ∈
C1(a, b) from Theorem 9.

General linear theory now tells us the solution set for Ly = g is given by

Σ = {y ∈ C1(a, b) : y′ + py = g} = {yp + yh : yh ∈ ker(L)}

where yp is any one particular solution of y′ + py = g.

A particular solution is obtained from the familiar modification of our approach to the

homogeneous equation:

(µyp)′ = µg

is an FTC equation. Integrating both sides from x0 (fixed in (a, b)) to x ∈ (a, b) and assum-

ing yp(x0) = 0 (since we are seeking any one particular solution), we get

µyp =

∫ x

x0

µ(ξ)g(ξ) dξ =

∫ x

x0

e

∫ ξ

x1
p(t) dt

g(ξ) dξ.

That is,

y(x) = e
−

∫ x

x1
p(t) dt

(

y0 +
∫ x

x0
e

∫ ξ

x1
p(t) dt

g(ξ) dξ

)

= y0e
−

∫ x

x1
p(t) dt
+

∫ x

x0
e
∫ ξ

x
p(t) dtg(ξ) dξ.

20



This should be a formula with which you are familiar, and you should be able to use it.

As in the case of the FTC equation, σ : R ×C0(a, b)→ C1(a, b) by

(y0, g) 7→ y

is a linear isomorphism of vector spaces.

Exercise 30 Note that the linear isomorphism σ = σp depends (primarily) on one coeffi-

cient function p ∈ C0(a, b) with σ0 giving the solution operator for the FTC equation.

(a) On what else does σp depend?

(b) If x0, x1 ∈ (a, b) are fixed, show σp and σ p̃ are different isomorphisms if p , p̃. Thus,

p 7→ σp gives an injection

Ψ : C0(a, b)→ L(R × C0(a, b)→ C1(a, b))

where L(R × C0(a, b) → C1(a, b)) is the vector space of all linear functions from

R × C0(a, b) to C1(a, b).

(c) Is Ψ onto?

(d) Is Ψ linear?

(e) Let p1 : (a, b)→ R be the constant function with p1(x) ≡ 1. Write down the expressions

for σ0(y0, g), Ψ(p1)(y0, g), and Ψ(cp1)(y0, g).

Exercise 31 Consider the singular linear ordinary differential operator L : C1(R) →
C0(R) given by

Ly = a(x)y′ + b(x)y

for a, b ∈ C0(R) fixed and satisfying {x ∈ R : a(x) = 0} = {0} and 0 < {x ∈ R : b(x) = 0}.
Show that given any g ∈ C0(R) and any ǫ > 0, there does not exist a solution y ∈ C1(−ǫ, ǫ)
of

Ly = g.

Exercise 32 State and prove an existence and uniqueness theorem for the singular linear

first order ODE tx′ = 0 for x = x(t).
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5 The Spaces C0(Rn → Rn) and C1((a, b)→ Rn).

C0(Rn → Rn) is the space of continuous vector fields. A function F ∈ C0(Rn → Rn) has

the form

F = ( f1, f2, . . . , fn) with f j ∈ c0(Rn) for j = 1, 2, . . . , n.

Remember what it means for a function f : Rn → R to be in C0(Rn):

Given any x0 ∈ Rn and any ǫ > 0, there is some δ > 0 for which

| f (x) − f (x0)| < ǫ whenever |x − x0| < δ.

Thus, we are requiring this condition to hold for each component function f = f j ( j =

1, 2, . . . , n).

Exercise 33 Show that the continuity condition above holding for f = f j ( j = 1, 2, . . . , n)

is equivalent to the condition

Given any x0 ∈ Rn and any ǫ > 0, there is some δ > 0 for which

|F(x) − F(x0)| < ǫ whenever |x − x0| < δ.

These vector valued functions of a vector variable might also look like

v = (v1, v2, . . . , vn) or F =



































f1

f2

...

fn



































.

C1((a, b) → Rn) is the collection of continuously differentiable parametric curves

with image in Rn. These have the form

x = (x1, x2, . . . , xn) or x =



































x1

x2

...

xn



































where x j ∈ C1(a, b) for each j = 1, 2, . . . , n. In particular,

x′ = (x′1, x
′
2, . . . , x

′
n) or x =



































x′1
x′

2
...

x′n



































.
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Exercise 34 If x ∈ C1((a, b)→ Rn), then for each t ∈ (a, b)

x′ = lim
h→0

x(t + h) − x(t)

h
.

Here is a short list of ODEs:

x′ = F(t). (8)

The ODE (8) is an FTC system. Simple assumptions are F ∈ C0((a, b) → Rn) and x ∈
C1((a, b)→ Rn).

x′ = F(x). (9)

The ODE (9) is an autonomous system. Simple assumptions are F ∈ C0(Rn → Rn) and

x ∈ C1((a, b)→ Rn).

x′ = F(x, t). (10)

The ODE (10) is an general system of ODEs. Simple assumptions are F ∈ C0(Rn×(a, b)→
Rn) and x ∈ C1((a, b)→ Rn).

Alternative assumptions for each of the ODEs above are obtained by taking the codomain

of x to be the complex numbers.

Exercise 35 If x is assumed to be in C1((a, b)→ Cn) in each of the ODEs above, what kind

of function is F (by implication)?

We conclude this section by writing out the general autonomous system x′ = F(x), so

you can see that it looks (roughly) like a system of single autonomous equations of the

form x′ = f (x):


































x′
1
= f1(x1, x2, . . . , xn)

x′2 = f2(x1, x2, . . . , xn)
...

x′n = fn(x1, x2, . . . , xn),

Exercise 36 Write out the general system of ODEs x′ = F(x, t).

6 Autonomous Single Equations

Let’s consider a single ODE of the form

x′ = f (x).

We know that if f (x) has the form f (x) = −ax+b for some constants a and b, then we have

a linear equation, and we can determine everything about it using linear theory.
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Exercise 37 Assuming x′ = −ax + b for constants a and b, identify the appropriate linear

operator L for the ODE and find the kernel of L. Find a particular solution and solve the

ODE in general.

Generally, f will not be an affine function. There is still some general theory associated

with autonomous equations x′ = f (x) and much of it applies also to autonomous systems

x′ = F(x).

The first thing to consider with an autonomous system is the possibility of equilibrium

points. Equilibrium points are constant solutions of the ODE. There is one associated with

every value x∗ of the equation

f (x∗) = 0.

That is, the equilibrium points are zeros of the specification2 function f .

Exercise 38 If f (x∗) = 0, then x : R → R by x(t) ≡ x∗ is a solution of x′ = f (x). (Verify

that this is the case.) When you understand this assertion, formulate what it means to

have an equilibrium solution for a system x′ = F(x), and formulate an analogous assertion

concerning constant solutions for systems.

While equilibrium solutions are defined for all “time,” it is not true that all solutions of

autonomous systems are defined for all time, even if the specification function is smooth.

Here is a simple version of the main theorem on existence for nonlinear autonomous ODE:

Theorem 10 (nonlinear existence and uniqueness theorem—autonomous ODE) If f ∈
C1(R), then given any t0 ∈ (a, b) and any x0 ∈ R, there exists some δ > 0 such that the

IVP
{

x′ = f (x)

x(t0) = x0

has a unique solution x ∈ C1(t0 − δ, t0 + δ).

Essentially the same result holds for systems. The statement is as follows:

If F ∈ C1(Rn → Rn), then given any t0 ∈ (a, b) and any x0 ∈ Rn, there exists some δ > 0

such that the IVP
{

x′ = F(x)

x(t0) = x0

has a unique solution x ∈ C1((t0 − δ, t0 + δ)→ Rn).

2Note carefully that f is not an “inhomogeneity” here. The terms “homogeneous” and “inhomogeneous”

only apply when you have linear equations, and autonomous equations are ususally not linear.
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The following example is fundamental in illustrating the nonlinear existence and unique-

ness theorem:
{

y′ = y2

y(t0) = y0

Notice there is no singularity in the equation—there is no reason to believe, aside from the

nonlinearity that there should be any problem with the regularity and long time existence

of solutions.

The equilibrium solution is y∗ = 0. If y0 , 0, then we may locally divide by y = y(t) (if

there is a solution). Then we can integrate both sides from t0 to t to obtain

∫ t

t0

y′(τ)

[y(τ)]2
dτ = t − t0.

Changing variables in the integral on the left with ξ = y(τ) so that dξ = y′(τ) dτ, we have

∫ y

y0

1

ξ2
dξ = t − t0.

That is,

−1

y
+

1

y0

= t − t0 or y(t) =
1

1
y0
− (t − t0)

=
y0

1 − y0(t − t0)
.

Evidently, this solution has a singularity—finite time blow-up—at time

t1 =
1

y0

+ t0.

If y0 is positive, then the finite blow-up time, is future to the initial time t = t0. In particular,

we can only say

y ∈ C1

(

−∞, t0 +
1

y0

)

,

and there is no obvious way to guess this without solving the ODE. If y0 is negative, then

there is a negative time blow-up. Still, even though f ∈ C∞(R), we don’t get y ∈ C(R).

We should return to this example after we discuss phase diagrams (below). Before we

take up that discussion, I want to make a simple observation concerning the time depen-

dence/relation for autonomous ODEs and give some definitions.

Obviously, the existence and uniqueness theorem is somewhat disappointing in regard

to existence. Nevertheless, if we have existence, the theorem gives a solid conclusion with

regard to uniqueness:
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Theorem 11 (global uniqueness of solutions for nonlinear ODE) If F ∈ C1(Rn → Rn) and

y ∈ C1(a, b) is a solution of the IVP

{

x′ = F(x)

x(t0) = x0

for some t0 ∈ (a, b) and x0 ∈ Rn, then y is the unique solution of this problem in C1(a, b).

Exercise 39 Use the local existence and uniqueness theorem to prove the global unique-

ness theorem.

Furthermore, an interesting “invariance in starting time” applies to autonomous ODEs. If

y0 ∈ C1(R→ Rn) is a solution of the initial value problem

{

x′ = F(x)

x(t0) = x0,

then y(t) = y0(t + t1) is a solution of

{

x′ = F(x)

x(t0 − t1) = x0,
.

This doesn’t mean all solutions of the ODE are obtained by shifting in time, but it does

mean that any two solutions taking on the same value at any time are essentially the same

solution—they just differ by a shift in time.

Exercise 40 Consider the autonomous ODE x′ = x. Draw all solutions in solution space.

(Solution space, in this case, is the t, x-plane where the graphs of solutions x = x(t) are

plotted.) Notice that any pair of solutions x1 and x2 with any common value x1(t1) =

x2(t2) = x0 are shifts in time of one another. Notice also that, up to a shift in time, the

behavior of every solution satisfying x(t1) = x0 for some time t may be seen in the solution

satisfying x(0) = x0.

The ODE in Exercise 40 is linear and has solutions existing for all time. Generally, we

must make that an assumption, but it does happen sometimes.

Definition 2 An equilibrium point x∗ for the autonomous ODE x′ = F(x) is stable if for

any r > 0, there is some δ > 0 for which the following holds:

If x0 ∈ Bδ(x0), then
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1. The IVP
{

x′ = F(x)

x(0) = x0

has a (unique) solution y defined for all t ∈ R, and

2. y(t) ∈ Br(x∗) for all t ≥ 0.

Definition 3 An equilibrium point x∗ for the autonomous ODE x′ = F(x) is asymptotically

stable if there is some δ > 0 for which the following holds:

If x0 ∈ Bδ(x0), then

1. The IVP
{

x′ = F(x)

x(0) = x0

has a (unique) solution y defined for all t ∈ R, and

2.

lim
t→∞

y(t) = x∗.

Exercise 41 Show that every asymptotically stable equilibrium point is stable.

Definition 4 Phase space is the term used to refer to the codomain of solutions in an

autonomous ODE x′ = F(x). Thus, if the equation is for x : R → Rn, then the phase

space for the system is Rn. A phase space diagram is an explantion of the orbit structure of

solutions in phase space. An orbit is a set containing all images of a solution:

O = {x(t) : t ∈ R}
where x ∈ C1(R → Rn) and x′ = F(x). When we consider phase space, we always require

F to have adequate regularity to ensure the uniqueness of solutions. Thus, we assume

solutions are determined by an initial value x(0) = x0. Accordingly, orbits are determined

by the initial value as well, and If x(0) = x0, we write O = O(x0) for the orbit passing

through x0.

Technically, we sometimes consider phase space and orbits for solutions whose domain is

some open interval (a, b) rather than the entire real line R. The definition above requires

some minor modifications in this case.

Exercise 42 Show that if x(t0) = x0, then

{x(t) : t ∈ R} = O(x0).

Exercise 43 Show, more generally, that if two orbits have a point in common or “cross”

then they are the same orbit.
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7 Autonomous Systems

The study of equilibrium points and stability becomes rather more interesting when the

dimension of a system is greater than one. In particular, the case of two-dimensional au-

tonomous systems

x′ = F(x)

for x : R → R2 (or alternatively x : (a, b) → R2, though the identification of the domain

interval (a, b) is often ambiguous in this context) offers some reasonable idea of what may

be involved in general. This situation is rather analogous to the study of linear functions L :

R2 → R2 in linear algebra and, in fact, we will have opportunity to revisit our consideration

of this topic.

Here is an example of a (marginally interesting) autonomous system for two imagined

populations:
{

r′ = 0.5r(1 − 0.2r − f )

f ′ = 0.1 f (−1 + 2r − 0.3 f ).
(11)

When rabbits, whose population is represented here (perhaps measured in the thousands)

by the quantity r, are left to themselves, they tend to increase in numbers. In this model,

that growth in population is exponential according to r′ = 0.5r. The presence of predator

foxes, whose population is represented in this model by f : R → R, leads to a decrease

in the rabbit population. This is modeled by the fact that for f > 1 − 0.2r the quantity

r′ = r(1 − 0.2r − f ) < 0. Foxes, according to this model, are in the somewhat precarious

position of experiencing inevitible extinction in the absence of rabbits. The presence of

many tasty rabbits, however, leads also to an increasing fox population.

Exercise 44 Consider the single autonomous ODE for rabbits in the absence of foxes ac-

cording to (11). Plot and interpret the phase line diagram for the rabbit population in this

case. Note that this is a logistic equation.

Exercise 45 Consider the single autonomous ODE for foxes in the absence of rabbits ac-

cording to (11). Plot and interpret the phase line diagram for the rabbit population in this

case. Is this a logistic equation?

Notice that the phase line diagrams from Exercises 44 and 45 may be transferred directly

to the appropriate axes of the phase plane diagram for the system (11).

Exercise 46 Plot the orbits in the r, f -phase plane corresponding to solutions satisfying

the initial condition f0 = 0. The existence and uniqueness theorem for systems tells us that

no other orbit can cross these orbits.
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The actual coefficients I have chosen are presumably not very realistic, but our consid-

erations are only for illustrative purposes; no rabbits nor foxes have been directly harmed

in the making of these notes. (I will leave that activity to my students.) Also, the model is

presumably not a very realistic one, but the study of population dynamics (or more broadly

mathematical biology) is a rather crude field in which models like this one are quite com-

mon.3 Whether the crudeness of the study of population dynamics leads to greater (actual)

damage of wildlife populations, or lesser damage is not clear. What does seem clear is that

we have the dubious privilege of seeing the simultaneous increase of technology (or more

properly technocracy), sophistication of mathematical and scientific models, absurd hubris

in a certain ever growing number of individual humans, and the unprecedented destruction

of the environment and many of the biological inhabitants of the earth (including humans).

A humorous (though still quite sad) illustration of this complicated phenomenon was

presented recently by the Atlanta Journal Constitution. An article dated March 31, 2020

presented the model findings of Emory “infectious disease expert” Carlos del Rio. Dr. del

Rio was using “the best models we have” and predicted, among other things, that “there

should be no more deaths due to the carona virus after June 9.” This was one of many

predictions which were all equally absurd and meaningless.

It is not unreasonable to expect that humans using models know the limitations of the

modeling—and in particular if the model predictions are meaningless—before predictions

are used as the basis of destructive action. Apparently, however, this is almost universally

not the case, and it is an extremely interesting question as to why this inexplicably destruc-

tive behavior persists among humans. Given that technology (or perhaps more properly

technocracy) and advances in scientific understanding are so strongly linked to the destruc-

tion of the environment, living organisms, and even other humans, why does it seem nearly

universally assumed that the same behavior is a desirable “good” leading to essentially the

precise opposite of the pretended outcomes of “saving lives,” “saving the environment,”

“solving problems,” and generally improving the situation?

In any case, let’s see what we can say about the future of our model rabbits and foxes.

The function F : R2 → R2 in this case determines a vector field on the plane. One can

plot this vector field either by hand or using mathematical software. Let’s see what we

can tell directly. We know the vanishing of the vector field corresponds to the presence of

constant solutions, or equilibria in the phase plane. These occur at (r∗, f∗) = (0, 0) when

both populations start (and remain) zero, or when f ≡ f∗ = 0 and we obtain from the first

equation in (11) r∗ = 5. There is also a non-meaningful equilibrium at r∗ = 0, f∗ = −10/3.

Finally, if we seek an equilibrium in which both populations are modeled with a positive

3Look up “predator-prey” or ‘Lotke-Volterra” equations. You will see these are “frequently used” and are

even simpler than the model I have used here.
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value, we find (r∗, f∗) = (65, 90)/103.

Nullclines

The curves (which in this instance are straight lines) where one of the components of the

specification field vanish have special significance. Along the r-axis, for example, we have

f ≡ 0 and, consequently f ′ ≡ 0. As mentioned above, existence and uniqueness tells us

that no orbit can cross the axes. The line −1 + 2r − 0.3 f = 0, or 20r − 3 f = 10, in phase

space is also a nullcline but is not along an orbit. Every orbit, however, that crosses the line

20r−3 f = 10 must do so having a horizontal tangent at the point of crossing. Furthermore,

the two lines f = 0 and 20r − 3 f = 10 comprise the only set of points where an orbit can

have a horizontal tangent. Thus, all other points on all other orbits are either “moving” up

or down—and can not change direction in this sense, except when crossing these two lines.

The vertical nullclines given by the f -axis r = 0 and the line r+ 5 f = 5 along with the

horizontal nullclines f = 0 and 20r − 3 f = 10 discussed above partition the phase plane

into eleven regions:

I : {(r, f ) : r > 0 and f < min{0, 10(2r − 1)/3, 1 − r/5}}
II : {(r, f ) : r > 5 and 1 − r/5 < f < 0}

III : {(r, f ) : r > 65/103 and max{1 − r/5, 0} < f < 10(2r − 1)/3}
IV : {(r, f ) : 1/2 < r < 5 and 0 < f < min{10(2r − 1)/3, 1 − r/5}}
V : {(r, f ) : r > 0 and f > max{10(2r − 1)/3, 1 − r/5}}

VI : {(r, f ) : 0 < f < 1 and 0 < r < min{ f (1 − f ), (3 f + 10)/20}}
VII : {(r, f ) : 0 < r < 1/2 and 10(2r − 1)/3 < f < 0}

VIII : {(r, f ) : r < 0 and f > 1 − r/5}
IX : {(r, f ) : r < 0 and 0 < f < 1 − r/5}
X : {(r, f ) : r < 0 and 10(2r − 1)/3 < f < 0}

XI : {(r, f ) : r < 0 and f < 10(2r − 1)/3}.

Exercise 47 Draw these eleven regions in the r, f -phase plane and indicate the “compass

direction” associated with each region. For example, in region I the vector field at every

point is in a direction “up and to the right.” This may be seen in different ways. For

example, because a portion of the horizontal nullcline f = 0 (with value r < 5 where

the logistic form of the corresponding ODE for rabbits in the absence of foxes dictates an

increasing rabbit population) lies along the boundary of region I, we know the vector field
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in region I must point to the right. Similarly, the vector field along the f -axis for very

negative f points “up,” so the same must be true in region I.

Alternatively, F(1,−1)T = (90, 27)T/100 is pointing up and to the right and (1,−1)T is

in region I, so all other points in region must share the same direction.

The regions of Exercise 47 give some general information about the future values of r

and f for given starting populations r0 and f0. For example, if (r0, f0) is in one of the regions

III, V, VI, or IV, then the solution must generate an orbit which moves the population point

(r, f ) = (r(t), f (t)) across the nullclines from one of these regions to the next in the listed

order (and then from region IV to region III repeating the pattern). Thus, the orbits of

interest “cycle” around the equilibrium point (90, 27)/100, and the local behavior of orbits

near this equilibrium point is of particular interest.

Again, one may attempt to use mathematical software to determine the behavior in

question. We will take a different approach.

7.1 Linear Constant Coefficent Systems

Let us briefly consider systems of the form x′ = Ax for x : R → R2 where A is a constant

coefficient matrix. The linear existence and uniqueness theorem gives us that the domain

of all solutions is all of R, so we have here a dynamical system.

You may recall that we mentioned briefly in our study of linear functions L : R2 → R2

certain canonical forms. These were given by multiplication Lx = Ax by matrices A of the

forms

(

λ1 0

0 λ2

)

,

(

λ 1

0 λ

)

, and

(

λ −µ
µ λ

)

=
√

λ2 + µ2

(

cosφ − sinφ

sinφ cosφ

)

.

These are called the real canonical forms. They are diagonal, Jordan form, and rotational

form. Taken over the complex numbers, there are only two canonical forms: Diagonal and

Jordan form.

Hopefully, you picked up on (or were convinced) of the following

1. A linear function L : R2 → R2 given by multiplication Lx = Ax where A is one of

the canonical forms is relatively easy to understand.

2. Not every linear function is as simple as one with canonical form, and the complica-

tion has (roughly speaking) to do with eigenvectors which are not orthogonal.
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In short, not every linear function L : R2 → R2 is equivalent to one with canonical form.

Some, however, are. In particular, Boas emphasizes linear transformations L : R2 → R2

given by Lx = Ax where A is a real symmetric matrix, i.e., AT = A. These transformations

are equivalent, up to a rotation, to a diagonal matrix.

There is another relation between matrices called similarity. We also mentioned this

briefly, though we may not have used this name. Here is the main result:

Theorem 12 Every linear function L : R2 → R2 given by Lx = Ax with respect to the

standard matrix may be expressed as

Lx = Q−1ΛQx

where Q is an invertible 2× 2 matrix and Λ is a matrix with one of the three real canonical

forms.

The matrices A and Λ = QAQ−1 are said to be similar. Moreover, the form of the

matrix Λ is uniquely determined by A, though the matrix Q is not uniquely determined. In

particular, A cannot be similar to two different canonical forms.

The conjugacy relations in Theorem 12 are illustrated in the following matrix/mapping

diagram

R2 A−→ R2






yQ






yQ

R2
Λ−→ R2

Note that Theorem 12 is not (quite) saying the matrix Λ is unique. Some choices with

regard to the matrix Q are possible and, for example, every matrix A which is similar to the

diagonal matrix
(

1 0

0 2

)

is also similar to the matrix
(

2 0

0 1

)

.

Such a matrix A, however, cannot be similar to a Jordan form matrix or a rotational form

matrix.

As we should have learned, similarity does not capture the geometric mapping prop-

erties of a linear function L completely. It does capture some properties of L, however,

and most importantly similarity is adequate (and very useful) for certain computations.

In particular, computing a matrix exponentiation is realatively easy using similarity to a

canonical form. This brings us to the connection wtih ODEs.
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Say you want to solve the constant coefficient linear system

x′ = Ax

for x : R→ R2.

Exercise 48 Say A = Q−1ΛQ where Λ is a matrix with one of the canonical forms. Show

that given a solution x : R→ R2 of x′ = Ax, the function Qx : R→ R2 is a solution of

y′ = Λy.

It follows from this exercise that if you can solve y′ = Λy where Λ is any matrix with one

of the canonical forms (and this is relatively easy to do), then you can solve the similar

system x′ = Ax.

Exercise 49 Solve x′ = Λx if Λ has one of the canonical forms.

The only “loose end” still to be addressed is how to find the change of basis matrix Q.

Let us deal with this question in the two “easy” cases now. We can tackle the remaining

case in the next section.

Here are the crucial observations:

1. The matrix A is diagonalizable, i.e., similar to a diagonal matrix, if and only if, there

exists a basis for R2 consisting of eigenvectors of Lx = Ax.

2. The matrix A is similar to a Jordan form matrix if and only if there exists a single

eigenvalue and the associated eigenspace is one dimensional.

3. The real matrix A is similar to a rotational form matrix if and only if the eigenvalues

of Lx = Ax are nontrivially complex, i.e., if there does not exist any real eigenvalue.

Exercise 50 Give an example of a linear function L : R2 → R2 with only one real eigen-

value which is not similar to a Jordan shear transformation.

If one has a basis {v,w} of eigenvectors for Lx = Ax, and the eigenvalue-eigenvector

pairs are written as (λ1, v) and (λ2,w), then Q is the matrix whose inverse has columns v

and w:

Q−1 =





















| |
v w

| |





















. (12)

Note that Q is determined by the mapping conditions v 7→ e1 and w 7→ e2.
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Exercise 51 Based simply on the mapping conditions v 7→ e1 and w 7→ e2 for Q and the

mapping conditions e1 7→ v and e2 7→ w for Q−1, compute

QAQ−1e1 and QAQ−1e2

(where (λ1, v) and (λ2,w) are eigenvalue-eigenvector pairs for Lx = Ax). These vectors

you have computed are the columns of the diagonal form Λ.

The other easy case is when Λ has the Jordan form. We may assume one eigenvector v

generating the one dimensional eigenspace

{x ∈ R2 : Ax = λx}.
In this case, it is always possible to find a solution of

(A − λI)w = v.

The vector w is called a generator of the cyclic subspace associated with A. Note that

(A−λI)2x ≡ 0. In this case, we take the basis {v,w} to construct the change of basis matrix

Q according to the same formula given in (12).

Exercise 52 Prove (L − λI)2 ≡ 0 in the Jordan form case with eigenvalue λ. Compute the

columns QAQ−1e1 and QAQ−1e2 of the Jordan canonical form matrix Λ.

7.2 Linearization

Given an equilibrium point x∗ of a nonlinear autonomous system x′ = F(x), the vector field

F : R2 → R2 is, to zero order near x = x∗ approximated by

F(x) ≡ 0.

This, of course, does not tell you much about the behavior of solutions (and orbits) hear the

equilibrium point x∗. In order to get some useful information about the local behavior of

solutions near an equilibrium point x = x∗, we can try a first order approximation of the

vector field F. Sometimes this approach works.

In order to start we need a version of Taylor’s first order approximation formula for

vector valued functions of a vector variable. To make a long story short, this formula is

F(x) ∼ F(x0) + DF(x0)(x − x0).

In the case of an equilibrium point x0 = x∗ this becomes

F(x) ∼ DF(x∗)(x − x∗). (13)

I still haven’t explained the derivative DF(x0), or more immediately of interest DF(x∗), so

let me try to do that.
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7.3 The total derivative of a function of several variables

The derivative, sometimes called the total derivative of a function F : Rn → Rm is the

m × n matrix of partial derivatives
(

∂ fi

∂x j

)

i, j

where F = ( f1, f2, . . . , fm) has m component functions each of which is a function of n

variables x = (x1, x2, . . . , xn). In the case m = 1 of a real valued function of several

variables, this derivative is sometimes called the gradient. In the case of one independent

variable, the case of ODEs, this derivative is called the velocity vector.

Associated with this matrix is a linear function L : Rn → Rm given by

L(v) = DF(x0)v.

This linear function is called the differential and is often denoted by L = dF or dFx0
. Thus,

Taylor’s first order approximation formula may be written as

F(x) ∼ F(x0) + dFx0
(x − x0) for x close to x0.

7.4 The associated linear ODE

Returning to our consideration of the ODE x′ = F(x) near an equilibrium point x = x0, the

approximation (13) suggests consideration of the ODE

y′ = DF(x∗)(y − x∗)

or equivalently,

y′ = DF(x∗)y.

This latter constant coefficient linear system of ODEs is usually referred to as the linearized

system.

Exercise 53 Why are the linear constant coefficient systems y′ = DF(x∗)(y − x∗) and y′ =

DF(x∗)y equivalent?

Let’s take a look at how this can be used near the population equilibrium point (r∗, f∗) =

(65, 90)/103 for modeling rabbits and foxes. In that case we had

F

(

r

f

)

=

(

0.5r(1 − 0.2r − f )

0.1 f (−1 + 2r − 0.3 f )

)

.
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See (11). Consequently,

DF =























∂ f1
∂r

∂ f1
∂ f

∂ f2
∂r

∂ f2
∂ f























=

(

1/2 − r/5 − f /2 −r/2

f /5 −1/10 + r/5 − 3 f /50

)

and

A = DF

(

65/103

90/103

)

=

(

−13/206 −65/206

18/103 −27/1030

)

. (14)

The principle of linearization for ODEs is roughly this:

Under certain circumstances the linearized system y′ = Ay captures certain

features of the orbit structure associated with the nonlinear system x′ = F(x)

near the equilibrium point.

I realize there is a good deal of ambiguity in this statement. You should have questions like

these:

1. Which features are captured? What exactly can solving the linear system tell me

about the phase diagram for the nonlinear system?

2. What does it mean to say “under certain circumstances?” When does linearization

fail to give desired information?

Let me try to approach answering these questions using some examples. In our example

of the rabbits and foxes a change of notation turns out to be useful. Let us write our system

as r′ = F(r) where r = (r, f )T . Then the linearized system can be written as x′ = DF(r∗)x.

We will also write this as x′ = Ax where A = DF(r∗) is the constant coefficient derivative

(matrix).

When a constant coefficent matrix A is diagonalizable and has distinct real eigenvalues

λ1 , λ2, there are recognizable (and important) straight line solutions. Let us also assume

the matrix A is invertible, so there is a unique equilibrium point of x′ = Ax at the origin.

This terminology of “straight line solutions” is my own, but it is a good one. Each straight

line solution tells you about three orbits on a line through the equilibrium:

ℓ1(t) = eλ1tv

tells you that two orbits point in toward the equilibrium point along the line in the direction

of the eigenvector v if λ1 < 0. These orbits point out if λ1 > 0.
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Exercise 54 Why are we not considering the case λ1 = 0?

Exercise 55 Check directly that ℓ1(t) = eλ1tv is a (straight line) solution of x′ = Ax if

(λ1, v) is an eigenvalue-eigenvector pair for A.

In our case, we have two straight line solutions. The other is

ℓ2(t) = eλ2tw.

In more standard terminology, the lines {tv : t ∈ R} and {tw : t ∈ R} are called something

like principal manifolds, and various adjectives are applied according to the sign of the

eigenvalue. For example, if λ < 0, then {tv : t ∈ R} is called a stable manifold.

Exercise 56 Draw the phase plane diagram associated with x′ = Ax when A has the

canonical form

A =

(

λ1 0

0 λ2

)

in the following cases:

(a) λ1 < λ2 < 0.

(b) λ1 < 0 < λ2.

(c) 0 < λ1 < λ2.

In the case we are describing, linearization gives a great deal of information about what

is happening near the equilibrium point. Take for example the equilibrium point r∗ = (5, 0).

The linearized equation at this point is

x′ =

(

−1/2 −5/2

0 9/10

)

x.

Notice that it is obvious that the coefficient matrix A = Dr(5, 0)T here has eigenvalues

λ1 = −1/2 and λ2 = 9/10 with e1 an eigenvector for λ1. The eigenvector w for λ2 satisfies

−7

5
w1 =

5

2
w2.

Thus, we may take w = (25,−14)T . This suggests considering the conjugate system

y′ = QAQ1y = Λy
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where

Q−1 =

(

1 25

0 −14

)

.

Thus, the solutions of the linearized system are given by

x(t) = Q−1

(

e−t/2 0

0 e9t/10

)

Q x0.

Alternatively, one can write down these solutions directly as a linear combination of the

straight line solutions:

x(t) = x0e−t/2v + y0e9t/10w. (15)

It will be noticed that there is a decay direction (or stable manifold) along the x-axis.

Notice how this information translates to information we already know about the nonlinear

system r′ = F(r) near the equilibrium point r∗ = (5, 0)T .

Exercise 57 Plot the orbits for (15) corresponding to initial points (1, 0) and (−1, 0). Re-

call Exercises 44-46, and explain how the behavior for the orbits of the linearized system

matches the local behavior of orbits on the r-axis near r∗ = (5, 0)T but not the global

behavior.

Consider the unstable/growth direction for the linearized system along −w = (−25, 14).

The existence of this growth direction tells us there is a special orbit determined by solu-

tions r = r(t) starting in the first quadrant and satisfying

lim
tց−∞

r(t) =

(

5

0

)

.

Every solution in this orbit satisfies also

lim
tց−∞

r2

r(t) − 5
= −14

25

in accord with the unstable manifold of the linearized system. This special orbit is also

called an unstable manifold for the nonlinear system at the equilibrium point r∗ = (5, 0)T .

It is also called a separatrix because it locally separates certain solutions near the equi-

librium point based on their qualitative behavior. In this case, the special orbit separates

those solutions with decreasing rabbit population in a neighborhood of the equilibrium (in

the first quadrant) from those with increasing rabbit population in a neighborhood of the

equilibrium point. Note that all solutions passing near the equilibrium point in the first
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quadrant have increasing fox population. Compare this to the monotonicity of x2 in the

linearlized system when x2 > 0. This particular separatrix does not have much significance

for the global system, especially in forward time. Do you see why? But sometimes, these

special orbits play a very significant role in phase plane analysis.

Exercise 58 How do the slopes of the unstable manifold at R∗ = (5, 0)T and that of the

vertical nullcline passing through (5, 0)T ?

Exercise 59 Draw the phase plane diagram associated with the conjugate system

y′ =

(

−1/2 0

0 9/10

)

y.

We know the solutions, and consequently the orbits, of the linearized system are obtained

by applying the linear transformation associated with Q−1 to those of the conjugate system.

In particular, the straight line solutions along the eigendirections are easy to understand.

This gives us a pretty good picture of the orbit structure for the linearized system. In

this case, the equilibrium for x′ = Ax is still called a hyperbolic equilibrium or saddle

point. The same terms apply to the orbit structure of the original nonlinear system near

r∗ = (5, 0)T . The stable manifold is, in fact, still a straight line along the r-axis, though

this property is not always preserved under linearization. The unstable separatrix is not

a straight line, but it is a curve meeting the equilibrium point at the same angle as in the

linearization. The angle is preserved under linearization.

As a final note about this equilibrium point, the stable manifold along the r-axis may

also be considered a separatrix. It is not separating orbits corresponding to meaningful

populations, but setting that detail aside, it separates orbits with solutions having increasing

f in forward time near the equilibrium point from those having decreasing f in forward

time. In this case, the long time global behavior (though not meaningful for this particular

model) is very different for solutions on different sides of the separatrix.

7.5 Complex eigenvalues

As mentioned above, the equilibrium point r∗ = (65/103, 90/103)T is the most important

equilibrium point in this system and model. So we return to consider the linearization

x′ = Ax with A given by (14). The characteristic equation in this case is

λ2 +
130 + 54

2060
λ +

(13)(27)

(103)2(20)
+

(65)(9)

(103)2
= 0. (16)
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The roots may be written as

1

2



















− 46

(103)(5)
±

√

(46)2

(103)2(25)
− (9)(13)

(103)(20)



















=
−46 ∓ i

√
58139

1030
.

A change of notation is again convenient. Let us call the eigenvalue in (16) ζ and write

ζ = λ ∓ µ i. The crucial point is that we have complex eigenvalues.

At this point, if one remembers the general behavior of systems x′ = Ax where the

matrix A has complex eigenvalues ζ = λ ∓ iµ with nonzero real part λ, then usually no

further work is required. Of course, one needs to know that general behavior before one

can remember it. I will show you some ways to know it in the next section, but for now, let

me try to tell you what I remember:

1. Complex eigenvalues for x′ = Ax always indicates rotation in the sense that orbits

cycle around the equilibrium point.

2. If λ < 0, then solutions spiral in to the equilibrium point, and the equilibrium point

is asymptotically stable.

3. If λ > 0, then solutions spiral out from the equilibrium point, and the equilibrium

point is unstable.

4. The direction of the rotation can be read off from the field.

These properties transfer to the local picture for the nonlinear system. In our case, modeling

the foxes and rabbits, this is enough. All orbits in the (open) first quadrant spiral in to the

stable equilibrium with r∗ = 65/103 or about 650 rabbits and f∗ = 90/103 or about 900

foxes.

As to the direction of rotation, one can choose a point of known relation to the equilib-

rium point and check the field there. For example, the point (1, 1)T lies roughly up and to

the right of the equilibrium point, and not too far away. The field value at this point is

F(1, 1)T =

(

−1/10

7/100

)

.

This direction, it will be noted, is up and to the left indicating a counterclockwise rotation.

One comes to the same conclusion by considering the nullclines.

Exercise 60 Apply the discussion above (with remembered properties) to the canonical

form system

y′ =

(

λ −µ
µ λ

)

y.
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One thing should be noted: If λ = Re(ζ) = 0, that is, one has pure imaginary eigenval-

ues, then no conclusion may be drawn about the spiraling in or spiraling out of solutions

from the linearization. One needs more refined analysis to determine what happens.

Exercise 61 Solve the canonical form system

y′ =

(

0 −µ
µ 0

)

y.

Hint: write down a single second order equation for y1, and then ask yourself what func-

tions you know satisfying that second order equation.

7.6 Explicit solutions for systems with complex eigenvalues

We have seen above that one usually does not need to solve a system x′ = Ax when A has

complex eigenvalues ζ = λ ∓ iµ. In order to know the behavior of solutions for such a

system, however, one needs to solve it at least once. Here is one approach to solving such

a system.

It can always be arranged to have eigenvalue-eigenfunction pairs of the form λ∓ iµ, v±
iw) where v and w are real vectors.

Exercise 62 Show that in the case of complex eigenvalues with eigenvalue-eigenfunction

pairs λ ∓ iµ, v ± iw), the set

{v,w}
is a basis for R2.

Taking a change of basis matrix Q determined by

Q−1 =





















| |
v w

| |





















where v and bw are the real and imaginary parts of the eigenvectors as described above, the

conjugate canonical form is the rotational form

y′ =

(

λ −µ
µ λ

)

y.

As usual, the solutions of x′ = Ax may be obtained as x = Q−1y or, if y = Σ(t)y0 with inital

value y0 in the conjugate phase space, by

x = Q−1Σ(t)Qx0
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where x0 = Q−1y0. As usual, this solution is also x(t) = eAtx0.

In order to solve the canonical system y′ = Λy with Λ in rotational canonical form,4

we proceed as follows: Consider the equation as an equation for y : R → C2 instead of

y : R→ R2. Over C the matrix Λ is diagonalizable. In fact, the characteristic equation is

(ζ − λ)2 + µ2 = 0,

so the eigenvalues are the same ζ = λ∓ iµ, but the eigenvectors are easily seen to be e1± ie2.

Thus, there are straight line solutions ℓ1 : R→ bbc2 given by

ℓ1(t) = e(λ−iµ)t(e1 + ie2)

and ℓ2 : R→ bbc2 given by

ℓ2(t) = e(λ−iµ)t(e1 + ie2).

We could work with these directly, but (just to make sure we understand the details) let’s

diagonalize. Remember that {e1, e2} is still a basis for C2 over C, so we can take {e1 +

ie2, e1 − ie2} as a second basis to determine a change of basis matrix R by

R−1 =

(

1 1

i −i

)

.

Notice that the columns of R−1 are the two complex vectors in the second basis (written in

coordinates with respect to the standard basis) as usual. A second conjugate system is then

given by

z′ = Mz

where M = RΛR−1 is the complex diagonal matrix

M =

(

λ − iµ 0

0 λ + iµ

)

.

The system z′ = Mz for z : R→ C2 decouples and has general solution

z(t) =

(

ζ1e(λ−iµ)t

ζ2e(λ+iµ)t

)

= eλt
(

e−iµt 0

0 eiµt

) (

ζ1
ζ2

)

.

From this solution, we can read off the general solution for y′ = Λy:

y(t) = R−1z(t) = eλtR−1

(

e−iµt 0

0 eiµt

) (

ζ1
ζ2

)

= eλtR−1

(

e−iµt 0

0 eiµt

)

Ry0.

4You may wish to have a look at Exercise 63 below at this point to help you better anticipate what should

come out of the solution to follow.
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We need to compute the inverse of the change of basis matrix R−1 to get R:

R = − 1

2i

(

−i −1

−i 1

)

=
1

2

(

1 −i

1 i

)

.

Thus,

R−1

(

e−iµt 0

0 eiµt

)

R =
1

2

(

1 −i

1 i

) (

e−iµt −ie−iµt

eiµt ieiµt

)

=

(

cos µt − sin µt

sin µt cos µt

)

.

This is the key calculation. It tells us that

y(t) = eλt
(

cos µt − sin µt

sin µt cos µt

)

y0.

This gives all solutions of y′ = Λy for y : R→ C2 including any real ones, if there are any.

Indeed, the matrix Λ is a real matrix, so the specification y′ = Λy says that if y is a real

vector, then y should “move” in a real direction. It is very natural to have real solutions. In

particular, taking y0 to be e1 and e2, we obtain the basis of real solutions {y1, y2} given by

y1(t) = eλt
(

cos µt

sin µt

)

and y2(t) = eλt
(

− sin µt

cos µt

)

.

These two solutions span all solutions y : R → C2 over C, and they also span all real

solutions over R.

Exercise 63 Check directly that the system y′ = Λy with

Λ =

(

λ −µ
µ λ

)

has two linearly independent solutions

y1(t) = eλt
(

cos µt

sin µt

)

and y2(t) = eλt
(

− sin µt

cos µt

)

,

so that the general solution may be written as a linear combination y = ay1 + by2.

Write the general solution in the form

y(t) = Σ(t)y0

where Σ is a matrix valued function of t. This matrix Σ is eΛt.
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Finally, the explicit general solution for x′ = Ax where A has complex eigenvalues

ζ = λ ∓ iµ is

x(t) = eλtQ−1

(

cos µt − sin µt

sin µt cos µt

)

Qx0.

Exercise 64 Draw the matrix/mapping diagrams for the first and second conjugate systems

associated with x′ = Ax when A has complex eigenvalues ζ = λ ∓ iµ.

8 Summary for linear constant coefficient systems

Every linear constant coefficient system x′ = Ax is conjugate to a canonical system y′ = Λy.

In the real 2 × 2 case there are essentially three canonical forms to consider: diagonal,

Jordan, and rotational. Solving a system y′ = Λy when Λ is a real diagonal diagonal matrix

is easy

y(t) = aeλ1te1 + beλ2te2.

Solving a diagonalizable system x′ = Ax is just as easy using straight line solutions:

x(t) = x0eλ1tv + y0eλ2tw.

The Jordan form system partially decouples and is also not too difficult to solve. The ro-

tational form system is relatively easy to solve if you remember the form of the solutions,

though the conjugate system you obtained from linearization probably has a relatively com-

plicated solution. Fortunately, one usually does not need to solve these systems, but it is

enough to remember the basic behavior of solutions for the ODE x′ = Ax when A has

complex eigenvalues.

9 Existence and Uniqueness

A simple version of the general existence and uniqueness theorem is the following:

Theorem 13 If F ∈ C0(Rn × (a, b)→ Rn) and for each fixed t the function v : Rn → Rn by

v(x) = F(x, t)

satisfies v ∈ Liploc(R
n), then for any (x0, t0) ∈ Rn × (a, b), there is some δ > 0 for which the

IVP
{

x′ = F(x, t)

x(t0) = x0

has a unique solution x ∈ C1((t0 − δ, t0 + δ)→ Rn).
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As usual, this should be contrasted to the linear existence and uniqueness theorem

along the following lines:

Theorem 14 If A = A(t) is a matrix valued function depending continuously on t ∈ (a, b),

more precisely, A ∈ C0((a, b) → Mn×n) where Mn×n denotes the ring of n × n matrices

(whose entries may be taken to be either real or complex), and b ∈ C0((a, b) → Rn, then

for any t0 ∈ (a, b) and any x0 ∈ Rn the IVP

{

x′ = Ax + b(t)

x(t0) = x0

has a unique solution x ∈ C1((a, b)→ Rn). In short, if the coefficients are continuous, then

one can count on existence and uniqueness.

10 Higher Order Equations

The discussion above may have left you asking the following questions:

1. What about second order linear equations?

2. Where do Laplace transforms fit in with all this?

3. What about higher order equations?

Indeed second order equations (not just linear ones) can sometimes be important and are

worth thinking about on their own, especially in for oscillators and also in physical systems

modeled by Newton’s second law

mx′′ = F

which is a second order ODE with F depending typically on x, x′ and t. Thus, one-

dimensional motion, when x = x is real valued, is most naturally treated in terms of a

single second order ODE. The special case of a one-dimensional linear oscillator is mod-

eled with an equation of the form

mx′′ = −px′ − qx + f

where p and q are positive constants (or possibly functions of t and f is a function of t

called the inhomogeneiety or forcing. The equation(s) modeling RLC circuits also fall into

this category of oscillators, and these can be more easily treated (at least in some respects)

as single second order equations.
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Generally, speaking any ODE of order k has the form

G(x(k), x(k−1), . . . , x′, x, t) = 0

where G is a function of many (the appropriate number) of variables. That number would

be nk+ 2 if x takes values in Rn. It is usual to restrict attention to regular equations which

may be written in the form

x(k) = f (x(k−1), . . . , x′, x, t). (17)

The first key observation is the following

Every single ODE (of any order) is equivalent to a first order system.

In fact, every higher order system like (17) is also equivalent to a first order system. Thus,

if our discussion of the system x′ = F(x, t) were carried to completion, we would then have

obtained any information that can be obtained about a single ODE. To see the equivalence,

start with a single regular k-th order ODE

y(k) = f (y(k−1), . . . , y′, y, t), (18)

and set x1 = y. Then we consider the system of equations:











































x′1 = x2

x′
2
= x3

...

x′
k−1
= xk

x′
k
= f (xk, xk−1, . . . , x2, x1, t).

Notice that if we can find a solution x ∈ C1((a, b)→ Rk) of this system, then letting x = x1

be the first coordinate, we find for j = 1, 2, . . . , k

x( j) =
d jx

dt j
= x j+1.

Thus, x ∈ Ck(a, b) and the last equation in the system says that x is a solution of the single

ODE (18).

If we have a solution y ∈ Ck(a, b) of the original equation, then x : (a, b)→ Rk by

x(t) = (y(t), y′(t), . . . , y(k−1)(t))

gives a solution of the system with x ∈ C1((a, b) → Rk). Thus, the system is equivalent to

the single equation.
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This equivalence also tells us the natural initial values/conditions for a single equation:

Since the system requires a starting point

x0 =



































x1(t0)

x2(t0)
...

xk(t0)



































=



































y(t0)

y′(t0)
...

y(k−1)(t0)



































,

the natural initial conditions for the single equation are of the form

y(t0) = y0, y′(t0) = y′0, . . . , yk−1(t0) = y
(k−1)

0

where y0, y
′
0, . . . , y

(k−1)

0
are some given k real numbers (or complex numbers).

Exercise 65 State existence and uniqueness theorems for single nonlinear and linear ODEs

of order k.

Having said all this, it is often convenient to think about single higher order equations

directly in some framework of single higher order equations rather than in the (equivalent)

framework of systems. In particular, linear theory as applied to single higher order linear

equations is very familiar and convenient. One has

Lu = f

where L is a k-th order linear operator. There is an associated homogeneous equation and

the search for particular solutions. The kernel of L is, using the equivalent system, seen to

be a vector space of dimension k.

Exercise 66 Given a linear operator L : Ck(a, b)→ C0(a, b) by

Lu =

k
∑

j=0

a j(t)
d ju

dx j

where ak ≡ 1, use the equivalent system and the linear existence and uniqueness theorem

to show

ker(L) = {u ∈ Ck(a, b) : Lu = 0}
is a k-dimensional subspace. Hint: Initial values e j for j = 1, 2, . . . , k.
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Looking at the form of the inhomogeneity f and guessing the form of a particular solu-

tion, with appropriate constants to be determined by plugging the guess into the operator,

has been dignified as the method of undetermined coefficients and has associated with it

a fairly well-defined set of techniques for guessing the forms.

A kind of algebraic approach to solving the homogeneous equation and finding a par-

ticular solution solving a specific initial value problem is called the method of Laplace

transforms. Aside from being a time-saving algebraic technique in some instances, the

main contribution of the Laplace transform method from the engineering point of view is

that it offers a way to model impulse forcing which is not easily modeled in the framework

of conventional forcing functions.

These are topics which you may wish to review, but are being left out of this course as

somewhat specialized techniques not directly related to an overview of ODEs.
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