\qquad

1. (20 points) (4.8.16) Find the best linear approximation $\ell(x)=m x+b$ for the data $f(-1)=-2, f(0)=0$, and $f(1)=3$. (Hint: Use the least squares approximation method.)

Solution: A perfect fit would satisfy $-m+b=-2, b=0$, and $m+b=3$. That is,

$$
\left(\begin{array}{rr}
-1 & 1 \\
0 & 1 \\
1 & 1
\end{array}\right)\binom{m}{b}=\left(\begin{array}{r}
-2 \\
0 \\
3
\end{array}\right)
$$

This is not possible as one can see from row reduction of the coefficient matrix which gives

$$
\left(\begin{array}{rrr}
-1 & 1 & -2 \\
0 & 1 & 0 \\
0 & 2 & 1
\end{array}\right) \longrightarrow\left(\begin{array}{rrr}
-1 & 1 & -2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Thus, we seek the solution corresponding to projection of $(-2,0,3)^{T}$ onto the image. That is, we solve instead

$$
\left(\begin{array}{rrr}
-1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{rr}
-1 & 1 \\
0 & 1 \\
1 & 1
\end{array}\right)\binom{m}{b}=\left(\begin{array}{rrr}
-1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{r}
-2 \\
0 \\
3
\end{array}\right)
$$

That is,

$$
\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right)\binom{m}{b}=\binom{5}{1}
$$

Thus, the best fit has $m=5 / 2$ and $b=1 / 3$.

\qquad
2. (20 points) (8.1.6) We model an evaporating substance with the assumption that the rate of evaporation is proportional to the exposed surface area. If a spherical volume evaporates so that its radius halves in six months, how long will it take for the volume to half?

Solution: We begin with the relation

$$
\frac{d}{d t}\left(\frac{4}{3} \pi r^{3}\right)=-4 \alpha \pi r^{2}
$$

This tells us $r^{\prime}=-\alpha$ is constant. Consequently, $r=-\alpha t+r_{0}$, and $-\alpha / 2+r_{0}=r_{0} / 2$ (measuring time in years). Thus, $\alpha=r_{0}$ and $r=r_{0}(1-t)$. The volume as a function of t is

$$
\frac{4}{3} r_{0}^{3}(1-t)^{3}
$$

We want to know when this quantity is $2 r_{0}^{3} / 3$. That is, when $(1-t)^{3}=1 / 2$ or $t=1-1 / \sqrt[3]{2} \doteq 0.2$ years, or about 2.5 months. Obviously, it will be less than 6 months. Why?
\qquad
3. (20 points) (8.6.34) Solve the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}-5 y^{\prime}+6 y=2 e^{x}+6 x-5 \\
y(0)=0=y^{\prime}(0)
\end{array}\right.
$$

Solution: The general solution of the associated homogeneous ODE is

$$
y_{h}(x)=a e^{2 x}+b e^{3 x} .
$$

There is no interference between this solution and the forcing terms, so we can find a particular solution of $u^{\prime \prime}-5 u^{\prime}+6 u=2 e^{x}$ which has the form $u=\alpha e^{x}$. That solution is $u=e^{x}$. Also, setting $v=\alpha x+\beta$, we can solve $v^{\prime \prime}-5 v^{\prime}+6 v=-5 \alpha+6 \alpha x+6 \beta=6 x-5$ with $v=x$. Thus, a particular solution is $y_{p}=u+v=e^{x}+x$. The general solution of the ODE is therefore

$$
y=a e^{2 x}+b e^{3 x}+e^{x}+x
$$

where a and b are arbitrary constants. In order to get the initial conditions, we need $a+b+1=0$ and $2 a+3 b+2=0$. That is, $b=0$ and $a=-1$. Therefore, the solution of the initial value problem is

$$
y=-e^{2 x}+e^{x}+x .
$$

\qquad
4. (20 points) (8.6.34) Use the Laplace transform to solve the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}-5 y^{\prime}+6 y=2 e^{x}+6 x-5 \\
y(0)=0=y^{\prime}(0)
\end{array}\right.
$$

Solution: Since the initial conditions are all zero (homogeneous), the Laplace transform of the initial value problem is

$$
s^{2} Y-5 s Y+6 Y=\frac{2}{s-1}+\frac{6}{s^{2}}-\frac{5}{s} .
$$

That is,

$$
\begin{aligned}
Y & =\frac{2}{(s-1)(s-2)(s-3)}+\frac{6}{s^{2}(s-2)(s-3)}-\frac{5}{s(s-2)(s-3)} \\
& \frac{2 \mathcal{L}\left[e^{x}\right]}{(s-2)(s-3)}+\frac{6 \mathcal{L}[x]}{(s-2)(s-3)}-\frac{5 \mathcal{L}[1]}{(s-2)(s-3)}
\end{aligned}
$$

By partial fractions,

$$
\frac{1}{(s-2)(s-3)}=\frac{1}{s-3}-\frac{1}{s-2}=\mathcal{L}\left[e^{3 x}\right]-\mathcal{L}\left[e^{2 x}\right] .
$$

Thus, we can use the "convolution" property of Laplace transform to get

$$
\begin{aligned}
Y=2 \mathcal{L} & {\left[\int_{0}^{x} e^{x-\tau} e^{3 \tau} d \tau\right]-2 \mathcal{L}\left[\int_{0}^{x} e^{x-\tau} e^{2 \tau} d \tau\right] } \\
+6 \mathcal{L} & {\left[\int_{0}^{x}(x-\tau) e^{3 \tau} d \tau\right]-6 \mathcal{L}\left[\int_{0}^{x}(x-\tau) e^{2 \tau} d \tau\right] } \\
& -5 \mathcal{L}\left[\int_{0}^{x} e^{3 \tau} d \tau\right]+5 \mathcal{L}\left[\int_{0}^{x} e^{2 \tau} d \tau\right] .
\end{aligned}
$$

Evaluating the integrals, we get

$$
\begin{aligned}
& Y= \mathcal{L}\left[e^{x}\left(e^{2 x}-1\right) / 2\right]-2 \mathcal{L}\left[e^{x}\left(e^{x}-1\right)\right] \\
&+6 \mathcal{L}\left[x\left(e^{3 x}-1\right) / 3\right]-6 \mathcal{L}\left[\int_{0}^{x} \tau e^{3 \tau} d \tau\right]-6 \mathcal{L}\left[x\left(e^{2 x}-1\right) / 2\right]+6 \mathcal{L}\left[\int_{0}^{x} \tau e^{2 \tau} d \tau\right] \\
&= \quad-5 \mathcal{L}\left[\left(e^{3 x}-1\right) / 3\right]+5 \mathcal{L}\left[\left(e^{3 x}-e^{x}\right) / 2-2\left(e^{2 x}-e^{x}\right)\right] \\
& \quad+6 \mathcal{L}\left[x\left(e^{3 x}-1\right) / 3\right]-6 \mathcal{L}\left[x e^{3 x} / 3-\left(e^{3 x}-1\right) / 9\right] \\
& \quad-6 \mathcal{L}\left[x\left(e^{2 x}-1\right) / 2\right]+6 \mathcal{L}\left[x e^{2 x} / 2-\left(e^{2 x}-1\right) / 4\right] \\
& \quad-5 \mathcal{L}\left[\left(e^{3 x}-1\right) / 3\right]+5 \mathcal{L}\left[\left(e^{2 x}-1\right) / 2\right] .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
y= & e^{3 x}+e^{x}-2 e^{2 x}+2 x e^{3 x}-2 x-2 x e^{3 x} \\
& \quad+2 e^{3 x} / 3-2 / 3-3 x e^{2 x}+3 x+3 x e^{2 x}-3 e^{2 x} / 2+3 / 2-5 e^{3 x} / 3+5 / 3+5 e^{2 x} / 2-5 / 2 \\
= & e^{x}-e^{2 x}+x
\end{aligned}
$$

\qquad
5. (20 points) (8.11.9) A damped oscillator is modeled by the operator $L[y]=y^{\prime \prime}+2 y^{\prime}+10 y$, and is started in motion with the initial conditions $y(0)=1, y^{\prime}(0)=0$. At some positive time t_{0} an impulsive force stops the system so that $y(t)=0$ for $t>t_{0}$. At what time can such an impulse be applied? Give also the direction and magnitude of the impulse. (Hint: Model the initial value problem with $L[y]=a \delta\left(t-t_{0}\right)$.)

Solution: The Laplace transform of the problem described above is

$$
\left(s^{2}+2 s+10\right) Y-s-2=a e^{-s t_{0}} .
$$

Since $s^{2}+2 s+10=(s+1)^{2}+9$,

$$
Y=\frac{s}{(s+1)^{2}+9}+\frac{2}{(s+1)^{2}+9}+\frac{a e^{-s t_{0}}}{(s+1)^{2}+9} .
$$

Shifting in s, we see

$$
\mathcal{L}\left[e^{-t} \cos (3 t)\right]=\frac{s+1}{(s+1)^{2}+9}, \quad \mathcal{L}\left[e^{-t} \sin (3 t)\right]=\frac{3}{(s+1)^{2}+9}
$$

Furthermore shifting in s and t, we find

$$
\mathcal{L}\left[e^{-\left(t-t_{0}\right)} \sin \left(3\left(t-t_{0}\right)\right) H\left(t-t_{0}\right)\right]=\frac{3 e^{-s t_{0}}}{(s+1)^{2}+9}
$$

where H is the Heaviside function. It follows that

$$
Y=\mathcal{L}\left[e^{-t} \cos (3 t)\right]+\frac{1}{3} \mathcal{L}\left[e^{-t} \sin (3 t)\right]+\frac{a e^{t_{0}}}{3} \mathcal{L}\left[e^{-t} \sin \left(3\left(t-t_{0}\right)\right) H\left(t-t_{0}\right)\right]
$$

Therefore,

$$
\begin{aligned}
y & =\frac{e^{-t}}{3}\left[3 \cos (3 t)+\sin (3 t)+a e^{t_{0}} \sin \left(3\left(t-t_{0}\right)\right) H\left(t-t_{0}\right)\right] \\
& =\frac{e^{-t}}{3}\left[\sqrt{10} \cos (3 t-\psi)+a e^{t_{0}} \sin \left(3\left(t-t_{0}\right)\right) H\left(t-t_{0}\right)\right]
\end{aligned}
$$

where $\cos \psi=3 / \sqrt{10}$ and $\sin \psi=1 / \sqrt{10}$, that is, $\psi=\sin ^{-1}(1 / \sqrt{10})$. Evidently, the impulse must come at a time when the undisturbed motion passes through equilibrium. This means when $3 t-\psi=\pi / 2+\pi k$ for some $k=0,1,2, \ldots$. Thus, setting $t_{0}=(\psi+\pi / 2+\pi k) / 3$, we desire for $t>t_{0}$ to have

$$
\sqrt{10} \cos (3 t-\psi)+a e^{t_{0}} \sin (3 t-\psi-\pi / 2+\pi k)=0
$$

Since $\sin (3 t-\psi-\pi / 2+\pi k)=-\cos (3 t-\psi+\pi k)=(-1)^{k+1} \cos (3 t-\psi)$, we want

$$
\sqrt{10}+(-1)^{k+1} a e^{t_{0}}=0,
$$

\qquad
or the magnitude can be

$$
a=(-1)^{k} \sqrt{10} e^{-t_{0}}
$$

at time $t_{0}=(\psi+\pi / 2+\pi k) / 3$, for some $k=0,1,2, \ldots$.
The first such time would be $t_{0}=\left(\sin ^{-1}(1 / \sqrt{10})+\pi / 2\right) / 3$, and we would need a positive impulse $a=\sqrt{10} e^{-t_{0}}$ to stop the system. This makes sense since the system is released with positive displacement and will be moving down on the first pass through equilibrium.

