
Math 6701, Exam 1: (practice) Name/Section:

1. (20 points) (4.8.16) Find the best linear approximation ℓ(x) = mx + b for the data
f(−1) = −2, f(0) = 0, and f(1) = 3. (Hint: Use the least squares approximation
method.)

Solution: A perfect fit would satisfy −m+ b = −2, b = 0, and m+ b = 3. That is,





−1 1
0 1
1 1





(

m
b

)

=





−2
0
3



 .

This is not possible as one can see from row reduction of the coefficient matrix which
gives





−1 1 −2
0 1 0
0 2 1



 −→





−1 1 −2
0 1 0
0 0 1



 .

Thus, we seek the solution corresponding to projection of (−2, 0, 3)T onto the image.
That is, we solve instead

(

−1 0 1
1 1 1

)





−1 1
0 1
1 1





(

m
b

)

=

(

−1 0 1
1 1 1

)





−2
0
3



 .

That is,
(

2 0
0 3

) (

m
b

)

=

(

5
1

)

.

Thus, the best fit has m = 5/2 and b = 1/3.
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Name and section:

2. (20 points) (8.1.6) We model an evaporating substance with the assumption that the
rate of evaporation is proportional to the exposed surface area. If a spherical volume
evaporates so that its radius halves in six months, how long will it take for the volume
to half?

Solution: We begin with the relation

d

dt

(

4

3
πr3

)

= −4απr2.

This tells us r′ = −α is constant. Consequently, r = −αt+r0, and −α/2+r0 = r0/2
(measuring time in years). Thus, α = r0 and r = r0(1− t). The volume as a function
of t is

4

3
r3
0(1 − t)3.

We want to know when this quantity is 2r3
0/3. That is, when (1 − t)3 = 1/2 or

t = 1 − 1/ 3
√

2
.
= 0.2 years, or about 2.5 months. Obviously, it will be less than 6

months. Why?



Name and section:

3. (20 points) (8.6.34) Solve the initial value problem

{

y′′ − 5y′ + 6y = 2ex + 6x− 5
y(0) = 0 = y′(0).

Solution: The general solution of the associated homogeneous ODE is

yh(x) = ae2x + be3x.

There is no interference between this solution and the forcing terms, so we can find a
particular solution of u′′−5u′+6u = 2ex which has the form u = αex. That solution is
u = ex. Also, setting v = αx+β, we can solve v′′−5v′+6v = −5α+6αx+6β = 6x−5
with v = x. Thus, a particular solution is yp = u+ v = ex + x. The general solution
of the ODE is therefore

y = ae2x + be3x + ex + x

where a and b are arbitrary constants. In order to get the initial conditions, we need
a+ b+1 = 0 and 2a+3b+2 = 0. That is, b = 0 and a = −1. Therefore, the solution
of the initial value problem is

y = −e2x + ex + x.



Name and section:

4. (20 points) (8.6.34) Use the Laplace transform to solve the initial value problem
{

y′′ − 5y′ + 6y = 2ex + 6x− 5
y(0) = 0 = y′(0).

Solution: Since the initial conditions are all zero (homogeneous), the Laplace trans-
form of the initial value problem is

s2Y − 5sY + 6Y =
2

s− 1
+

6

s2
− 5

s
.

That is,

Y =
2

(s− 1)(s− 2)(s− 3)
+

6

s2(s− 2)(s− 3)
− 5

s(s− 2)(s− 3)

2L[ex]

(s− 2)(s− 3)
+

6L[x]

(s− 2)(s− 3)
− 5L[1]

(s− 2)(s− 3)
.

By partial fractions,

1

(s− 2)(s− 3)
=

1

s− 3
− 1

s− 2
= L[e3x] − L[e2x].

Thus, we can use the “convolution” property of Laplace transform to get

Y = 2L
[
∫ x

0

ex−τe3τ dτ

]

− 2L
[
∫ x

0

ex−τe2τ dτ

]

+ 6L
[
∫ x

0

(x− τ)e3τ dτ

]

− 6L
[
∫ x

0

(x− τ)e2τ dτ

]

− 5L
[∫ x

0

e3τ dτ

]

+ 5L
[∫ x

0

e2τ dτ

]

.

Evaluating the integrals, we get

Y = 2L
[

ex(e2x − 1)/2
]

− 2L [ex(ex − 1)]

+ 6L
[

x(e3x − 1)/3
]

− 6L
[∫ x

0

τe3τ dτ

]

− 6L
[

x(e2x − 1)/2
]

+ 6L
[∫ x

0

τe2τ dτ

]

− 5L
[

(e3x − 1)/3
]

+ 5L
[

(e2x − 1)/2
]

= L
[

2(e3x − ex)/2 − 2(e2x − ex)
]

+ 6L
[

x(e3x − 1)/3
]

− 6L
[

xe3x/3 − (e3x − 1)/9
]

− 6L
[

x(e2x − 1)/2
]

+ 6L
[

xe2x/2 − (e2x − 1)/4
]

− 5L
[

(e3x − 1)/3
]

+ 5L
[

(e2x − 1)/2
]

.

Therefore,

y = e3x + ex − 2e2x + 2xe3x − 2x− 2xe3x

+ 2e3x/3 − 2/3 − 3xe2x + 3x+ 3xe2x − 3e2x/2 + 3/2 − 5e3x/3 + 5/3 + 5e2x/2 − 5/2

= ex − e2x + x.



Name and section:

5. (20 points) (8.11.9) A damped oscillator is modeled by the operator L[y] = y′′+2y′+10y,
and is started in motion with the initial conditions y(0) = 1, y′(0) = 0. At some positive
time t0 an impulsive force stops the system so that y(t) = 0 for t > t0. At what time
can such an impulse be applied? Give also the direction and magnitude of the impulse.
(Hint: Model the initial value problem with L[y] = aδ(t− t0).)

Solution: The Laplace transform of the problem described above is

(s2 + 2s+ 10)Y − s− 2 = ae−st0 .

Since s2 + 2s+ 10 = (s+ 1)2 + 9,

Y =
s

(s+ 1)2 + 9
+

2

(s+ 1)2 + 9
+

ae−st0

(s+ 1)2 + 9
.

Shifting in s, we see

L[e−t cos(3t)] =
s+ 1

(s+ 1)2 + 9
, L[e−t sin(3t)] =

3

(s+ 1)2 + 9
.

Furthermore shifting in s and t, we find

L[e−(t−t0) sin(3(t− t0))H(t− t0)] =
3e−st0

(s+ 1)2 + 9

where H is the Heaviside function. It follows that

Y = L[e−t cos(3t)] +
1

3
L[e−t sin(3t)] +

aet0

3
L[e−t sin(3(t− t0))H(t− t0)].

Therefore,

y =
e−t

3
[3 cos(3t) + sin(3t) + aet0 sin(3(t− t0))H(t− t0)]

=
e−t

3
[
√

10 cos(3t− ψ) + aet0 sin(3(t− t0))H(t− t0)]

where cosψ = 3/
√

10 and sinψ = 1/
√

10, that is, ψ = sin−1(1/
√

10). Evidently, the
impulse must come at a time when the undisturbed motion passes through equilib-
rium. This means when 3t − ψ = π/2 + πk for some k = 0, 1, 2, . . .. Thus, setting
t0 = (ψ + π/2 + πk)/3, we desire for t > t0 to have

√
10 cos(3t− ψ) + aet0 sin(3t− ψ − π/2 + πk) = 0.

Since sin(3t− ψ − π/2 + πk) = − cos(3t− ψ + πk) = (−1)k+1 cos(3t− ψ), we want

√
10 + (−1)k+1aet0 = 0,



Name and section:

or the magnitude can be
a = (−1)k

√
10e−t0

at time t0 = (ψ + π/2 + πk)/3, for some k = 0, 1, 2, . . ..

The first such time would be t0 = (sin−1(1/
√

10) + π/2)/3, and we would need a
positive impulse a =

√
10e−t0 to stop the system. This makes sense since the system

is released with positive displacement and will be moving down on the first pass
through equilibrium.


