Math 6701, Exam 1: (practice) Name/Section:

1. (20 points) (4.8.16) Find the best linear approximation ¢(z) = max + b for the data
f(=1) = =2, f(0) = 0, and f(1) = 3. (Hint: Use the least squares approximation
method.)

Solution: A perfect fit would satisfy —m +b = —2, b = 0, and m + b = 3. That is,

-1 1 —2
0 1 ( " ) = o
11 3
This is not possible as one can see from row reduction of the coefficient matrix which
gives
-1 1 =2 -1 1 =2
0 1 0 — 01 0
02 1 00 1

Thus, we seek the solution corresponding to projection of (—2,0,3)” onto the image.

That is, we solve instead
L1 m -1 0 1 —2
01 b )\ 111 0
11 3

-1 01
1 11
20 m Y\ (5
0 3 b )\ 1)
Thus, the best fit has m = 5/2 and b = 1/3.

3k

That is,

-1.0 -0.5 r 05 10




Name and section:

2. (20 points) (8.1.6) We model an evaporating substance with the assumption that the
rate of evaporation is proportional to the exposed surface area. If a spherical volume
evaporates so that its radius halves in six months, how long will it take for the volume
to half?

Solution: We begin with the relation

i éwrs = —damr?
dt \ 3

This tells us " = —« is constant. Consequently, r = —at+rg, and —a/2+1ry = ro/2
(measuring time in years). Thus, o = ry and r = ro(1—t). The volume as a function
of tis 1

57’8(1 — t)s

We want to know when this quantity is 2r3/3. That is, when (1 —¢)3 = 1/2 or
t =1-—1/v/2 = 0.2 years, or about 2.5 months. Obviously, it will be less than 6
months. Why?




Name and section:

3. (20 points) (8.6.34) Solve the initial value problem

{ y" — by + 6y =2e* +6x —5
y(0) =0=y'(0).

Solution: The general solution of the associated homogeneous ODE is
yn(x) = ae* + be®.

There is no interference between this solution and the forcing terms, so we can find a
particular solution of u” —5u’+6u = 2e” which has the form u = ae®. That solution is
u = e*. Also, setting v = ax+ 3, we can solve v” —5v'+6v = —ba+6axr+605 = 62—5
with v = . Thus, a particular solution is y, = u 4+ v = e* + 2. The general solution
of the ODE is therefore

y = ae®® 4+ be*® + ¥ + x

where a and b are arbitrary constants. In order to get the initial conditions, we need
a+b+1=0and 2a+3b+2 =0. That is, b = 0 and a = —1. Therefore, the solution
of the initial value problem is

y=—e+e" + 1.




Name and section:

4. (20 points) (8.6.34) Use the Laplace transform to solve the initial value problem
{ y" — 5y + 6y = 2e" 4+ 6x — 5
y(0) = 0 =y'(0).

Solution: Since the initial conditions are all zero (homogeneous), the Laplace trans-
form of the initial value problem is

Y — 53Y+6Y—i1+§—§
That is,
. 2 . 6 - 5
C(s—=1D(s—=2)(s—=3)  s2(s—2)(s—3) s(s—2)(s—3)
2L[e*] 6L [x] 5L[1]

G-2)(-3) (5-2(-3 (-2(-3)
By partial fractions,

! 1 1 3z 2x
(s—z)(s_g):s_3—$_2=£[e ] — L[e*].

Thus, we can use the “convolution” property of Laplace transform to get

Y =2 {/ T e dT} —2L {/ T em dT}
0 0
+ 6L {/ (x — 7')637 dT} — 6L [/ (x — T)62T dT}
0 0
— 5L [/ €3Td7':| +5L l/ €2Td7'} .
0 0

Evaluating the integrals, we get
Y =2L [e*(e* — 1)/2} — 2L [e"(e* — 1))
+ 6L [x(e* —1)/3] — 6L [/ T’ dT} — 6L [z(e* —1)/2] + 6L [/ e dT}
— 5L [(e* )/3} +5L [(e* —1)/2]
:£[2(e —e")/2 — 2(e? —e””)}
+ 6L [x(e* —1)/3] — 6L [z’ /3 — (e — 1) /9]
— 6L [x(e* —1)/2] + 6L [ze** /2 — (** — 1) /4]
— 5L [(e* —1)/3] +5L [(e* —1)/2] .

Therefore,

y = e + €% — 2% 4 223 — 20 — 2xe”

=" — ¥ 4 1.

+2e% /3 — 2/3 — 3z + 3z + 3we** — 3e** /2 4+ 3/2 — 5e** /3 +5/3 + 5e* /2 — 5/2




Name and section:

5. (20 points) (8.11.9) A damped oscillator is modeled by the operator L[y] = y”+2y'+10y,
and is started in motion with the initial conditions y(0) = 1, /(0) = 0. At some positive
time ¢y an impulsive force stops the system so that y(¢) = 0 for ¢ > t5. At what time
can such an impulse be applied? Give also the direction and magnitude of the impulse.
(Hint: Model the initial value problem with L[y] = ad(t — to).)

Solution: The Laplace transform of the problem described above is
(s +25+10)Y — 5 — 2 = ae ™.

Since s* +2s+ 10 = (s + 1)2 + 9,

s 2 ae st

GH2+9  G+12+9  GGr1Z+9

Shifting in s, we see

Lle cos(3t)] = ﬁ £l sin(30)] = 13)2 -
Furthermore shifting in s and ¢, we find
Lle™ ) sin(3(t — to)) H(t — ty)] = e
(s+1)2+9

where H is the Heaviside function. It follows that

to

“g Lle" sin(3(t — to))H(t — to)].

Y = L[e " cos(3t)] + %E[e‘t sin(3t)] +

Therefore,

y = %_t[?) cos(3t) + sin(3t) + ae' sin(3(t — to) ) H (t — to)]

—t

= %[\/Ecos(i’)t — ) + ae’ sin(3(t — to))H(t — to)]

where cosv = 3/4/10 and sint = 1/4/10, that is, ¢ = sin~*(1//10). Evidently, the
impulse must come at a time when the undisturbed motion passes through equilib-
rium. This means when 3t — ¢ = 7/2 + 7k for some k = 0,1,2,.... Thus, setting
to = (Y +7/2 + 7mk)/3, we desire for t > t, to have

V10 cos(3t — 1) + ae’® sin(3t — ¢ — /2 + 7k) = 0.
Since sin(3t — ¢ — 7/2 + 7k) = — cos(3t — o + k) = (—=1)kL cos(3t — 1), we want

V10 + (—=1)F+gel =0,




Name and section:

or the magnitude can be
a=(=1)"V/10e™"
at time to = (¢ + /24 7k)/3, for some k =0,1,2,.. ..
The first such time would be t, = (sin™'(1/4/10) + 7/2)/3, and we would need a
positive impulse a = v/10e % to stop the system. This makes sense since the system

is released with positive displacement and will be moving down on the first pass
through equilibrium.




