Math 6701 Practice Final Exam

Classical Mathematical Methods in the Physical Sciences I

July 24, 2012

Name and section: \qquad

1. (20 points) (Euler-Cauchy-Wilks ODE; 3.6.10) Solve the ODE

$$
4 x^{2} y^{\prime \prime}+4 x y^{\prime}-y=0
$$

2. (20 points) (Second ODE problem; 10.3.4) Use diagonalization to solve the system

$$
\mathbf{x}^{\prime}=\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right) \mathbf{x}
$$

3. (20 points) (8.6.8) If the matrix

$$
A=\left(\begin{array}{rcc}
2 & 3 & 0 \\
0 & 11 & 14 \\
-1 & 4 & 7
\end{array}\right)
$$

is invertible, use the formula

$$
A^{-1}=\frac{1}{\operatorname{det} A}\left(A^{\operatorname{cof}}\right)^{T}
$$

to find the inverse. If there is no inverse, explain how you know there is no inverse.
4. (20 points) (8.12.4) Determine if the matrix

$$
A=\left(\begin{array}{ll}
0 & 5 \\
1 & 0
\end{array}\right)
$$

is diagonalizable. If A is diagonalizable, find an invertible matrix P such that $P^{-1} A P=$ D is diagonal and compute D.
5. (20 points) (17.3.25) Let $f(z)=z^{2}+\bar{z}^{2}$ Find

$$
\{f(z): \operatorname{Re} z=2 \text { and }|z| \leq 4\}
$$

6. (20 points) (17.5.27) Find the harmonic conjugate of $u(x, y)=\ln \left(x^{2}+y^{2}\right)$.
