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This is probably a suitable and useful review for most of you. Technically, most
of this material should be prerequisite for the course. Also, I didn’t want to spend a
lot of time typing up notes and creating graphics. I was thinking to just say what I
was going to say about the material in the lecture, but it probably would be useful
for you to have a printed reference. As a compromise, I’ll type, but you’ll need to
provide your own pictures. These are mostly important in the first section, but that
is also the most important section, so make sure you produce good pictures with all
the details and that you understand them.

1 Calculus I

Differentiation from 1-D (one dimensional) calculus or Calculus I is the basic starting
point for all other differentiation. It’s now time for you to understand it completely.
and it’s important for you to understand it. You should understand it well enough to
teach someone else about it, so I shouldn’t need to write the following. You should
be able to write it. But the fact of the matter is that you probably can’t. At least
you should be able to make the pictures.

This kind of differentiation applies to a function f : (a, b) → R where (a, b) is an
open interval of real numbers:

(a, b) = {x ∈ R : a < x < b}.

One or both of the numbers a and b might be ∞. More precisely, maybe a = −∞ or
maybe b = +∞. Thus, a and b are (fixed) in the set of extended real numbers.

We take a point x0 ∈ (a, b) and form the difference quotient

f(x0 + h)− f(x0)

h
.
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This is where you need to draw your first picture. I’ll describe it. You should draw
the graph of a function f over an open interval with endpoints labeled a and b. If
you’re dreadfully uncreative you can use f(x) = x2 with a = 1/2 and b = 2. Next,
pick out and label a point x0 in the interval (a, b).

The number h is called an increment. The number h can be positive or nega-
tive, but the number h cannot be zero. This is sort of important to remember and
understand. So you should draw two pictures now. One should have h < 0 and the
point x0 + h labeled. The other should have h > 0.

Now you can plot two points on the graph: (x0, f(x0)) and (x0 + h, f(x0 + h)).
You’ll note that these are points in R2 which is the set containing the graph:

G = {(x, f(x)) : x ∈ (a, b)} ⊂ R
2.

The graph is also a subset of R2. Actually, you should plot the two points on each
graph, the graph for h < 0 and the one for h > 0.

Finally, you should draw a right triangle on each graph and label the increment
of the values f(x0 + h)− f(x0). This increment might be positive, and it might be
negative, and it might be zero. If you draw pictures for all the possibilities, you’ll
then need six pictures containing six graphs. You should convince yourself (in each
of the six cases) that the difference quotient is a real number representing the slope
of a certain secant line. You can also extend the hypotenuse of the right triangle in
your pictures to show this secant line. (Of course, if you don’t remember what is the
slope of a line from second grade algebra, you should go back and remind yourself.)

Finally, it’s time to try to take a limit. You should draw yourself a few pictures in
which the limit does not exist (as a real number) for various reasons. The functions

f : (0,∞) → R by f(x) =
√
x,

g : R → R by g(x) = |x− 2|+ 1, and
h : R → R by h(x) = x sin(1/x) and when x 6= 0 and h(0) = 0

might be helpful. Of course, we are primarily interested in situations where the limit
does exist, so be sure to draw your six pictures for this case as well.

When the limit does exist, we call the limiting value the derivative, or to be
more pedantic, the derivative of the function f at the point x0, and we write

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
. (1)

The expression on the left is Leibniz’ notation for the derivative. Newton would
have written

df

dx
=

df

dx
(x0) = lim

h→0

f(x0 + h)− f(x0)

h
,
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but actually, I think he mostly just used the first “fraction” expression, leaving off
the evaluation point x0 as “understood.” These days we use both notations (or all
three if you like) of course, and each has its advantages.

1.1 Interpretations

After the definition, the most important thing is to understand the interpretations.

1. f ′(x0) is the slope of the tangent line to the graph of f at the point
(x0, f(x0)). This is the geometric interpretation.

2. f ′(x0) is the instantaneous rate of change of the value of f at the domain
value x0. This is the physical interpretation. If the domain is measured in
units of u which we can express symbolically as

[x] = u

read “the units of x are u,” and the values of f are measured in units of v,
then the units of f ′(x0) are u/v. For example, if [x] = seconds and [f ] =
meters, then [f ′(x0)] = meters per second. But also if if [x] = miles and
[f ] = degrees Celsius, then [f ′(x0)] = degrees Celsius per mile. Any units will
do. Technically, I’m being a little sloppy here and the bracket notation is not
properly used for specific units like seconds and meters. What I should say
in the first case is [x] = Time = T and [f ] = Length = L. In the second
example, [f ] = Temperature = Temp and [f ′] = Temp/L, so that when we
indicate units, we are really indicating type of units rather than a specific
measurement system for those units.

1.2 Differentials and Linear Approximation

Let’s start here by rewriting the difference quotient in a little different, but pretty
obviously equivalent, form:

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0
. (2)

Notice that we’ve replaced the increment h with h = x − x0 where x is the point
which is “moving” in the limit. The definition of the limit, which I won’t get into in
any detail here, says that when x gets close to x0 (or equivalently when h gets close
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to zero) the difference quotient gets close to f ′(x0). This means, in particular, that
f(x) must get close to f(x0).

The condition

f(x) gets close to f(x0) when x gets close to x0

is the condition for f to be continuous at x0. I won’t get into the details of that
either, but you would do well to think about what it means, and understand the
following fundamental assertion:

Theorem 1 If f is differentiable at x0, then f is continuous at x0.

Differentiability, however, is much stronger than continuity. Remember g(x) = |x| is
continuous but not differentiable. The assertion of (2) is not just that f(x) gets close
to f(x0) but that it gets close in a specific way, namely,

f(x) ∼ f(x0) + f ′(x0)(x− x0) as x tends to x0. (3)

This relation should be read “the value of f(x) is linearly approximated by f(x0)+
f ′(x0)(x− x0) when x is close to x0.”

At this point terminology takes a little bit of a turn toward being confusing, so
let me try to spell some things out a little more clearly. As a function of x (with x0

fixed)
ℓ(x) = f(x0) + f ′(x0)(x− x0) (4)

is not technically linear. Remember, or pay attention to, this important definition:

Definition 1 A function L : V → W from a vector space V to a vector space W is
linear if

1. L(av) = aL(v) for every v ∈ V , and

2. L(v + w) = L(v) + L(w) for every v, w ∈ V .

Exercise 1 The vector space domain of ℓ is V = R and the vector space co-domain
of ℓ is also W = R. Check the two properties required for linearity on ℓ. Distinguish
the circumstances under which ℓ is linear or not (linear).

Nevertheless, whenever f : (a, b) → R is differentiable at x0 ∈ (a, b) the function
ℓ : R → R is called the linear approximation of f at x0, even though ℓ is not
always linear. Clearly ℓ is closely related to a linear function, and functions like ℓ do
have a special name. That name is affine.
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Definition 2 A function ℓ : V → W from a vector space V to a vector space W is
affine if there is a linear function L : V → W such that

ℓ(v) = L(v) + w0.

The value w0 is called an affine shift or an affine translation. The linear function
L is called the linear part of the affine function ℓ.

So, properly, we should say the function ℓ staring in (3) gives and affine approxi-
mation of f and (3) is an affine approximation formula. But nobody ever seems
to say that. They only talk about linear approximation.

Exercise 2 (a) Identify the linear part of the affine function ℓ in the affine approx-
imation formula. Identify the affine shift.

(b) Given any linear function L : V → W and any fixed vectors v0 ∈ V and w0 ∈ W ,
show that ℓ : V → W by

ℓ(v) = L(v − v0) + w0

is an affine function with linear part L.

Here is something else important:

Whenever a function is differentiable, the linear function used to approx-
imate the values near the point where the derivative is calculated, i.e., the
linear part of the affine approximation, is called the differential.

That’s a little bit of a mouthful, but it’s worth thinking about. It still applies in
other cases below which are not just 1-D calculus. Let me repeat it in this special
case: The function L which is the linear part of ℓ is called the differential of f at x0,
or the differential mapping. The differential is always a linear function. It is also
denoted (in the 1-D calculus case)

df : R → R.

Consequently, another way to express the affine approximation formula is

f(x) ∼ f(x0) + df(x− x0).
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The following formula should be one you have written down on your own already by
now, but I’m going to write it down to make sure you haven’t missed it.

df(v) = f ′(x0)v.

If there is a desire to emphasize the point at which the linear approximation is taking
place, a subscript is used and the differential becomes dfx0

. Thus, one also writes

f(x) ∼ f(x0) + dfx0
(x− x0).

Here is a final subtlety probably worthy of note: When we write

df(x− x0) = f ′(x0)(x− x0)

the parentheses around x − x0 on the left and those on the right are representing
quite different things. The parentheses in df(x − x0) are indicating evaluation of
the differential, that is, function evaluation. The same parentheses on the right are
just grouping for multiplication. Function evaluation should never be confused with
multiplication. Sometimes one emphasizes this distinction by using square brackets
for the evaluation of linear functions and writes

df [x− x0] = f ′(x0)(x− x0).

This use of square brackets has nothing to do with the identification of units men-
tioned above. (There are only so many symbols in the world.)

Exercise 3 Go back through the previous section and identify each appearance of the
evaluation of a linear function using round brackets, and rewrite the expression using
square brackets to represent this evaluation.

I have stated in this section just about everything that comes to mind in relation
to the definition of the derivative in 1-D calculus. There are probably more things
to say, but they escape me at the moment. In any case, this is the prototypical
definition of differentiation. All other notions of differentiation are generalizations
of this one, in one way or another. Every time you encounter a different kind of
differentiation, you should go back through the observations above and try to see
how they apply or generalize to the new differentiation. Can you draw pictures?
What are the interpretations? Is there an associated differential approximation?

Exercise 4 Recall that a linear function L : V → W from a vector space V to a
vector space W , of the type defined above, is the primary object of study in linear
algebra. Show that such a linear function always has the following properties:
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(a) L(0V ) = 0W . (Here 0V denotes the zero vector in V and 0W denotes the zero
vector in W .)

(b) L(av + bw) = aL(v) + bL(w) for any scalars a, b and vectors v, w ∈ V . The
expression av + bw is called a linear combination of the vectors v and w.

(c) The parentheses for function evaluation for linear functions, as mentioned above,
are sometimes replaced with square brackets. Sometimes when a linear function
is applied to a single element of its domain no grouping symbols are used (at
all).

L

(

k
∑

j=1

ajvj

)

=
k
∑

j−1

ajLvj

whenever a1, a2, . . . , ak are scalars and v1, v2, . . . , vk ∈ V (are vectors).

Exercise 5 Let L : R
1 → R

1 be a linear function. Prove that there exists some
number m ∈ R such that L has the form

Lx = mx.

2 Partial Derivatives

One of the first and easiest generalizations of differentiation is to real valued functions
of several real variables. Let’s just start with two real variables. Some preliminary
attention needs to be paid to the domain of such a function. For the domain, we
will want an open subset of R2. Let’s call this set U . Thus, we consider a function
f : U → R. The value of f is written f(x, y) and a point in the domain where we
wish to differentiate is (x0, y0) ∈ U ⊂ R2. We fix one of the variables, say y0, and
apply our previous 1-D definition directly:

∂f

∂x
(x0, y0) = lim

h→0

f(x0 + h, y0)− f(x0, y0)

h

is called the partial derivative of f in the x-direction when the limit exists.
One thing to note about increasing the number of dimensions in the domain is the
following meta-principle:

Anything that can go wrong in one dimension. . .
can also go wrong and will go wrong in higher dimensions.
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As an application, there are of course at least as many ways for this limit to not exist
as there were in one dimension.

Exercise 6 Give examples corresponding to each of the three non-differentiable func-
tions given in the previous section for which the partial derivative ∂f/∂x does not
exist. Some of those examples admit more than one obvious generalization.

Exercise 7 Use the limit definition above to calculate ∂f/∂x when f : R2 → R1 by
f(x, y) = x2 + y2.

There is, in principle, another first partial (derivative) of a function f : U → R

when U ⊂ R2. This is

∂f

∂y
(x0, y0) = lim

h→0

f(x0, y0 + h)− f(x0, y0)

h
.

This is, of course, the first partial of f with respect to y, when it exists.

2.1 Picture

Drawing the picture illustrating the partial derivative of a function of two variables
is perhaps a bit more challenging than the pictures drawn for 1-D calculus. There
are some good pictures for this in most calculus books. You can look one up, but it
very well likely might be good for you to learn to draw one yourself. Here are some
pointers.

1. Start by drawing the graph

G = {(x, y, f(x, y)) ∈ R
3 : (x, y) ∈ U}

of a function. The graph of a function of two variables is a surface. The surface
is in R

3, so you’ll need to start with three axes.1 You might draw a region U for
the domain in the x, y-plane. Or you might just leave the region U unspecified in
your picture. You can take, for example, U = R2, the entire x, y-plane. Again,

1A lot of students don’t know how to draw a reasonable set of right-handed coordinate axes for

R3. I hope you do. If not, check a book or ask me about it. The positive x-axis should point mostly

toward you—out of the paper. The positive y-axis should point mostly to the right, but maybe a

little toward you. And the third axis, along which the values of f are taken, should point straight

up.
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if you lack imagination, start with f(x, y) = x2 + y2 and take, say, the (open)
first quadrant or the unit disk

B1(0) = {(x, y) ∈ R
2 : x2 + y2 < 1}.

The unit disk is also called the unit ball, and the “0” in B1(0) represents the
zero (vector) in R

2, namely (0, 0); the “1” represents the (unit) radius. In your
picture, the domain will appear in the x, y-plane as it sits embedded in R3, so
technically the first quadrant will be

{(x, y, 0) : x, y > 0}.
If you use the unit ball, you will draw {(x, y, 0) : x2 + y2 < 1}.

2. Now, take a value of y0 fixed along the y-axis at a point (0, y0, 0). Draw the line
parallel to the x-axis through (0, y0, 0). This line contains the points (x, y0, 0),
and hopefully the graph you have drawn indicates positive values for f along
this line: f(x, y0) > 0. (This isn’t always true, of course, for every function, but
it will make your picture easier to draw.)

3. Next you want to draw the set

G0 = {(x, y0, f(x, y0)) : x ∈ R and (x, y0) ∈ U}.
This will be a curve in the plane y = y0 in R3. The is called the restriction
of f to the line y = y0. More properly, the curve is the restricted graph, but
it corresponds to the restriction of the function f to the line. In any case, it
is this restricted graph you need to use to illustrate the partial derivative with
respect to x.

4. Don’t try to draw secant lines in your picture, just imagine them in your mind.
Draw only a tangent line understanding its meaning and its relation to the
derivative (see the geometric interpretation of the 1-D derivative).

5. One is interested in the slope of the tangent line to G0 with respect to the plane
y = y0. You can think of the plane y = y0 as having a “x” axis pointing along
the line y = y0 and z = 0, though this is not the actual x-axis in R3. Similarly,
you can think of the plane y = y0 as having a “z” axis pointing up along x = 0
and y = y0.

This reference frame for the slope, and the actual slope of the tangent line to
the restriction curve, are difficult to illustrate in your picture, but you it would
be good to have them firmly in your mind.
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6. Incidentally, I didn’t mention that the tangent line will go through the point
(x0, y0, f(x0, y0)), and you’ll probably want to indicate and label the point
(x0, y0) or, more properly, (x0, y0, 0). It’s also usually nice to draw lines (or
dashed lines according to your artistic sensibilities) between the following pairs
of points: (1) (0, y0, 0) and (x0, y0, 0), (2) (x0, 0, 0) and (x0, y0, 0), and (3)
(x0, y0, 0) and (x0, y0, f(x0, y0)). I figured you could probably figure that out on
your own.

Now, you can draw a similar picture for ∂f/∂y.

2.2 More Variables, More Derivatives, and More Notation

Essentially the same definitions apply if f : U → R with U ⊂ R3 or U ⊂ Rn for
n = 4, 5, 6, . . .. For U ⊂ R3, we have

∂f

∂x
(x0, y0, z0) = limh→0

f(x0 + h, y0, z0)− f(x0, y0, z0)

h

∂f

∂y
(x0, y0, z0) = limh→0

f(x0, y0 + h, z0)− f(x0, y0, z0)

h

∂f

∂z
(x0, y0, z0) = limh→0

f(x0, y0, z0 + h)− f(x0, y0, z0)

h

where (x0, y0, z0) ∈ U and, as usual, these limits happen to exist. You can imagine
how this goes for higher dimensional domains. In particular, if U ⊂ Rn, then f will
have n first partials (one for each variable). One thing to note is that when n ≥ 3
one usually starts using subscripts to denote the variables. So for n = 3 we write
f = f(x, y, z), but for n = 5, we write

f = f(x1, x2, x3, x4, x5),

and f = f(x1, x2, . . . , xn when U ⊂ Rn.
You can’t draw any reasonable picture for these cases because the graph is in R

n+1

which is difficult to draw for n ≥ 3. You can do a little something, however, if you’re
willing to stretch your geometric intuition.

Take (x0, y0, z0) ∈ U ⊂ R3. If we fix y0 and z0, then the set of points (x, y0, z0)
with x free to move makes a line. Now, you can pair this line with a fourth axis
representing the values of f . This fourth axis is somewhere outside the domain R

3,
but if you just pair the line

{(x, y0, z0) : x ∈ R}
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with this fourth axis, you get a (two dimensional) plane in which you can plot the
restricted function values x versus f(x, y0, z0), and the slope of the tangent line to
the resulting curve at (x0, f(x0, y0, z0)) (with respect to this plane) is the value of
∂f/∂x(x0, y0, z0). Thus, the geometric interpretation goes through in this sense.

There is no real problem with the physical interpretation. Values can change as
points move in a domain U in any dimension. For example, if [f ] = Temperature and
[x] = [y] = [z] = Length with f measuring the temperature in a room, then

∂f

∂z
(x0, y0, z0)

measures the instantaneous rate at which the temperature changes as one moves
straight up from (or through) the point (x0, y0, z0).

I didn’t mention it in the 1-D case, but derivatives of functions (when considered
as dependent on the point of evaluation (x0, y0, z0) for the derivative) can themselves
be considered as functions—and often differentiated again. That is, for a function of
two variables f = f(x, y), we can take

∂f

∂y

and consider this partial derivative as another function

∂f

∂y
: U → R.

And this function often has derivatives as well, that is, partial derivatives:

∂

∂x

(

∂f

∂y

)

and
∂

∂y

(

∂f

∂y

)

.

These two derivatives are usually indicated using a version of Newton’s notation:

∂2f

∂x∂y
and

∂2f

∂y2
.

In general,
∂2f

∂x∂y
and

∂2f

∂y∂x

take different values. Notice the difference is the order in which the derivatives are
taken. These are calledmixed partials, and the other ones are called homogeneous
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partials. There is, however, a well-known theorem giving conditions under which the
order of differentiation does not matter and all mixed partials are equal (as long as
they are taken with respect to the same variables). I won’t state the mixed partials
theorem here, but you can look it up and see what conditions it requires of a function
f of several variables.

Exercise 8 How many different second partials are there for f = f(x, y, z) (assum-
ing differentiability)? How does your answer change if you assume f satisfies the
hypotheses of the mixed partials theorem?

When there are lots of variables (and lots of partial derivatives and lots of sub-
scripts) an alternative notation is used. Let me quickly tell you about it.

First of all, there is no real analog of Leibniz’ notation for partial derivatives. The
closest things are

fx and Dxf for
∂f

∂x
.

A variation on the second one, when using subscripts, is

Djf for Dxj
f =

∂f

∂xj

.

All of these notations become a bit cumbersome to express something like

the 7-th order partial derivative of f , two times with respect to x4, two
times with respect to x6, and three times with respect to x8.

To be explicit, we would have

∂7f

∂x3
8∂x

2
6∂x

2
4

= Dx8
Dx8

Dx8
Dx6

Dx6
Dx4

Dx4
f = fx4x4x6x6x8x8x8

.

When things get this complicated, one almost always assumes the conclusion of the
mixed partials theorem, so no effort is made to distinguish between

∂7f

∂x3
8∂x

2
6∂x

2
4

and
∂7f

∂x8∂x6∂x8∂x4∂x8∂x4∂x6

.

With this in mind, here is the “simple” notation used for this kind of thing: A
multi-index is like a point in Rn, but all the entries are natural numbers (including
0). Thus, if N = {0, 1, 2, 3, . . .}, then a multi-index is an ordered n-tuple in Nn. For
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example, (0, 0, 0, 2, 0, 2, 0, 3) is a multi-index of order eight. If f : U → R and U ⊂ R8,
then the derivative above is expressed in multi-index notation as

D(0,0,0,2,0,2,0,3)f.

This means “no derivatives in the first, second, third, fifth, or seventh variables, two
partials with respect to x4, two partials with respect to x6, and three partials with
respect to x8.” This may not strike you as a stupendous improvement, but in general,
if β = (β1, β2, . . . , βn) ∈ N

n is a multi-index of order n, then taking βj derivatives
with respect to xj for each j = 1, 2, . . . , n can be written as

Dβf,

and that’s pretty simple. There are other really good reasons for the use of multi-
indices as well. Let me mention one. You may be familiar with the Taylor series
expansion for a function of one variable:

∞
∑

j=0

f (j)(x0)

j!
(x− x0)

j.

There is a version of this series expansion for functions of several variables (and a
Taylor approximation theorem to go along with it). Writing down the expansion
without multi-indices is a nightmare. With multi-indices we can write for a function
f = f(x1, x2, . . . , xn)

∑

β∈Nn

Dβf(p)

β!
(x− p)β.

Here we are writing x = (x1, x2, . . . , xn), and the expansion is at the point p =
(p1, p2, . . . , pn) (which plays the role of x0 from the 1-D case). Aside from that, the
formulas are essentially identical. Of course, you need to know how to calculate the
factorial of a multi-index, and you need to understand multi-index powers of vector
variables, but learning these things is a small price to pay to avoid the nightmare of
having to do multivariable power series without knowing them.

3 Directional Derivatives

These are also derivatives of a function f : U → R with U an open subset of Rn. To
begin the discussion, let’s back up to the definition of partial derivatives (and even
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to the case of U ⊂ R2) and introduce (or point out) the role played by parametric
curves and composition. We can think of the difference quotient

f(x0 + h, y0)− f(x0, y0)

h

as constructed using the composition of the function f and the parameterized curve
γ(t) = (x0 + t, y0). That is,

f(x0 + h, y0)− f(x0, y0)

h
=

f ◦ γ(h)− f ◦ γ(0)
h

.

You should have a picture in your mind (or on your paper) at this point. It’s a picture
of the image of γ in the domain U of f . That simple picture is an image of a directed
segment starting at x0 and pointing horizontally to the right.

Similarly, replacing γ(t) = (x0 + t, y0) with γ(t) = (x0, y0 + t) we get

∂f

∂y
= lim

t→0

f ◦ γ(t)− f ◦ γ(0)
t

.

Directional derivatives generalize this construction to any direction (cos θ, sin θ) start-
ing at (x0, y0). To be precise, the directional derivative of f : U → R in the direction
(cos θ, sin θ) at (x0, y0) ∈ U is

d

dt
f ◦ γ(t)∣

∣

t=0

= lim t → 0
f ◦ γ(t)− f ◦ γ(0)

t
(5)

where γ(t) = (x0 + t cos θ, y0 + t sin θ).

Exercise 9 Prove the equality in (5).

That is the definition of a directional derivative for f : U → R when U ⊂ R
2.

I need to say (at least) two more things. First, I should introduce the notation for
directional derivatives and second I should address the case f : U → R when U ⊂ Rn.
If you understand the 2-D case above, this should all be easy/straightforward.

Definition 3 Given

1. a unit vector u ∈ Rn, and

2. a function f : U → R defined on an open set U ⊂ Rn
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the directional derivative of f in the direction u at the point x ∈ U is

Duf(x) =
d

dt
f ◦ γ(t)∣

∣

t=0

= lim
h→0

f(x+ hu)− f(x)

h

where γ : R → Rn by γ(t) = x+ tu (when the derivative and the limit exist).

There are a few more things to say about this. Here is one of them:

Duf(x) =
n
∑

j=1

∂f

∂xj

(x) uj (6)

when u = (u1, u2, . . . , un).

Exercise 10 Prove the formula (6) giving the directional derivative in terms of the
partial derivatives using the chain rule.

Exercise 11 Rewrite (6) using the Euclidean dot product.

Exercise 12 Draw a picture in the domain of a function f : R3 → R illustrating the
construction of a directional derivative.

Maybe one last thing: Many texts, especially elementary calculus texts, restrict
directional derivatives to only apply to unit vector directions u. And this makes
some sense. There can arise a conflict of notation concerning directional derivatives
along the following lines. Some elementary calculus texts define the directional deriva-
tive of a function f in the direction of any arbitrary nonzero vector v ∈ Rn\{0} to be
the directional derivative of f in the direction u = v/|v|. Thus, one can encounter

Dvf = Duf where u = v/|v|.
In other, sometimes more advanced, contexts it is natural to define

Dvf = Df · v (7)

where Df is the vector of first partial derivatives
(

∂f

∂x1

,
∂f

∂x2

, . . . ,
∂f

∂xn

)

. (8)

The approach taken in elementary calculus preserves the interpretation of the direc-
tional derivative as the rate of change in the direction of v (with respect to unit speed
displacement in the domain). However, the formula in (7) has the advantage of being
linear in v. Using the definition (7) one must interpret the directional derivative to
be measuring the rate of change of the function f with respect to motion at speed
|v|. In either case, one needs to know what is meant by the notation Dvf when v is
not a unit vector.
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4 Total Derivatives and the Gradient

The vector of first partial derivatives appearing in (8) is called the gradient of f ,
and it also represents the total derivative of a function f : U → R when U ⊂ Rn.
Another common notation for the gradient is

∇f =

(

∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

)

.

The gradient Df : U → Rn is an example of a vector field on U ⊂ Rn, and we will
discuss such functions in more detail below.

You may recall that the gradient has some nice properties:

1. The gradient is a vector pointing in the direction of maximum rate of increase
of the value of f at a point.

2. The gradient Df(p) is orthogonal to the level set

Lc = {x ∈ R
n : f(x) = c}

at the point p ∈ U with c = f(p).

It is not our purpose to give a full review of such properties. We’re mostly interested
in solidifying the definitions and the basic meanings of various derivatives. You should
feel free, however, to prove these properties and draw appropriate pictures illustrating
them.

4.1 Affine Approximation

We do want to address what makes the gradient Df a total derivative. The basic
point here is that this vector is integral to what it means for a function f : U → R

with U ⊂ Rn to be differentiable.
. . .

5 Vector Valued Functions of One Variable

I mentioned above that partial derivatives of f : U → R where U ⊂ Rn were among
the first and easiest generalization of 1-D calculus differentiation. There is another
generalization which is, in some respects, even simpler. This is for functions

r : (a, b) → R
k.
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These functions, furthermore, play a central role in physics (analyzing the motion of
point masses, extended bodies, and other things in space, usually R2 or R3) and in
the study of ordinary differential equations which we are going to review in this
course.

. . .

6 Vector Valued Functions of Several Variables

. . .

7 Summary and Conclusion

This completes our catalog of the first and easiest kinds of real differentiation. The
next step might be to consider the differentiation of real valued functions defined on
(real) surfaces or the analog of vector valued functions on (real) surfaces, which are
called tensors.

We are taking a different route and considering a generalization of 1-D differenti-
ation to functions f : U → C where U is an open subset of C using

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
.

This looks almost identical to our alternative form for the 1-D derivative (2), but
we shall see it is quite different. One should expect comparison to the 1-D case, of
course. But in another sense, this kind of differentiation should have certain things to
compare to the differentiation of sections on real valued functions of several variables
and the last one on vector valued functions of several variables. This is because in the
domain a complex variable z = x + iy is rather like a point/vector valued argument
(x, y) ∈ R2, and a complex value f(z) = f1(z) + if2(z) is also rather like a real
vector value (u, v) where u = f1 and v = f2. These comparisons form a large part
of the material we want to cover on complex analysis. But, of course, you need to
understand the real differentiations before you can understand and appreciate the
comparisons.
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