
The Mollifier Theorem

Definition of the Mollifier
The function

Tx =
Kexp −1

1 − |x|2
 if |x| < 1

0 if |x| ≥ 1
, x ∈ Rn

where the constant K is chosen such that ∫
Rn

Txdx = 1, is a test function on Rn. Note
that Tx vanishes, together with all its derivatives as |x| → 1−, so Tx is infinitely
differentiable and has compact support. The graph of Tx is sketched in the following
figure.

The Mollifier Function
.For n = 1 and  > 0, let

Sx = 1
 T x

 and Pεx = T x
 .

Then
Sx ≥ 0 and Pεx ≥ 0 for all x

Sx = 0 and Pεx = 0 for |x| > 

∫
R

Sxdx = 1 ∀ > 0, S0 → +∞ as  → 0,

∫
R

Pxdx → 0 as  → 0, P0 = K/e ∀ > 0,

Evidently, Sx becomes thinner and higher as  tends to zero but the area under the
graph is constantly equal to one. On the other hand, Pεx has constant height but grows
thinner as  tends to zero. These test functions can be used as the ”seeds” from which an
infinite variety of other test functions can be constructed by using a technique called
regularization which we will now describe.

For n ≥ 1 we have

Sx = 1
n T x

 and Pεx = T x
 .
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For U a bounded open set in Rn, and for u ∈ Lloc
1 U, define for any  > 0 and any x ∈ U

= x ∈ U : distx,∂U > ,

Jux = ∫
|x−y|≤

Sx − yuydy 1.1a

= ∫
|z |≤

Szux − zdz 1.1b

= ∫
|z |≤1

S1zux − zdz. 1.1c

We refer to Jux as the mollified ux. This mollified function, Jux, is a smoothed
version of the original function, ux.

Properties of the Mollifier
Note first that Jux is infinitely differentiable; i.e., for any  > 0 and any x ∈ U, it is clear
from (1.1a) that

Jux + e⃗i − Jux
 = ∫

|x−y|≤

Sx + e⃗i − y − Sx − y
 uydy

i.e.,
Jux + e⃗i − Jux

 → ∫
|x−y|≤

∂xi Sx − yuydy as  → 0.

Since Sx is infinitely differentiable, it follows that Jux is infinitely differentiable on the
open set U.

It is evident from (1.1a) that for 1 ≤ p < ∞,  > 0, and x ∈ U,

Jux = ∫
|x−y|≤

Sx − y1−1/p Sx − y1/p uydy.

Then, using Holder’s inequality, we get

|Jux|p = ∫
|x−y|≤

Sx − ydy
p−1

∫
|x−y|≤

Sx − y| uy|p dy

and since ∫
R

Sxdx = 1 ∀ > 0,

∫
V

|Jux|pdx ≤ ∫
V
∫

|x−y|≤
Sx − y| uy|p dy dx

= ∫
W

| uy|p ∫
|x−y|≤

Sx − ydx dy = ∫
W

| uy|pdy

for open sets W = U, and V = W. This result is just that assertion that

||Ju||LpV ≤ ||u||LpW for V ⊂⊂ W ⊂⊂ U 1.2

Next, use (1.1c) to write

Jux − ux = ∫
|z |≤1

S1z ux − z − uz dz.

If the function u = ux is, in fact, continuous on U, then this last result shows that

max
V̄

|Jux − ux| ≤ max
V̄

| ux − z − uz | → 0 as  → 0; 1.3

i.e., Jux converges uniformly to ux for x ∈ V̄ when ux is continuous on .U.
For u ∈ Lloc

p U, W = U, and arbitrary δ > 0, use the fact that the continuous functions
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are dense in LpW to choose v ∈ CW such that

||u − v||LpW ≤ δ.

Then for V = W,

||Ju − u||LpV ≤ ||Ju − Jv||LpV + ||Jv − v||LpV + ||v − u||LpV

≤ ||u − v||LpW + ||Jv − v||LpV + ||v − u||LpW ≤ 2δ + ||Jv − v||LpV

It follows now from (1.3) that for u ∈ Lloc
p U ,

∀V ⊂⊂ U, ||Ju − u||LpV → 0 as  → 0 1.4

We can summarize these results in the following,

Theorem (Local Approximation) Suppose U is open and bounded in Rn, 1 ≤ p < ∞, and for
̇ > 0, let U denote the subset x ∈ U : distx,∂U > .

(a) For every ε > 0, u ∈ Lloc
p U implies Jεu ∈ C∞Uε

(b) (i) u ∈ CU implies u converges to u uniformly on compact subsets of U; i.e.,

‖Ju − u‖CV̄ = max
V̄

|Jεux − ux|  0 for all V ⊂⊂ U

(ii) u converges to u in Lloc
p U; i.e., u ∈ Lloc

p U implies that for all V ⊂⊂ W ⊂⊂ U,

Jεu LpV
≤ u

LpW
and Jεu − u

LpV
 0 as ε  0

(c) u converges to u in Wloc
k,pU;

Result (c) follows from (b) by induction.

Corollary (Global Approximation) Suppose U has a smooth boundary, and 1 ≤ p < ∞.

(a) For every ε > 0, u ∈ LpU implies Jεu ∈ C∞U ∩ LpU.

(b) u ∈ LpU implies that

Jεu LpU
≤ u

LpU
and Jεu − u

LpU
 0 as ε  0

(c) u ∈ Wk,pU implies that there exists functions φm ∈ C∞U ∩ Wk,pU such that

||φm − u||k,p → 0 as m → ∞.

The proof of the corollary makes use of a partition of unity (see theorem 2 pg 251 in
Evans).

Weak Equals Strong
For U a bounded open set in Rn, we define v = vx to be the weak derivative of order α, of
u = ux, x ∈ U if

∫
U

ux∂αφxdx = −1 |α | ∫
U

vxφxdx for all φ ∈ Cc
∞U
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Similarly, we define v = vx to be the strong Lp −derivative of order α, of
u = ux, x ∈ U if

for any V ⊂⊂ U, there exists a sequence φn ∈ Cc
∞U such that

∫
V
|φn − u|pdx → 0 and ∫

V
|∂αφn − v|pdx → 0, as n → ∞.

Using mollifiers, we can show that these two notions are equivalent.

Suppose first that v = vx is the weak derivative of order α, of u = ux. Then, since
S ∈ Cc

∞U,

∂αJux = ∫
|x−y|≤

∂x
αSx − yuydy = −1 |α | ∫

|x−y|≤
∂y
αSx − yuydy

= ∫
|x−y|≤

Sx − yvydy = Jvx (by definition of weak derivative)

Now apply 1.4 to write

∫
V
|Ju − u|pdx → 0 and ∫

V
|∂αJu − v|pdx = ∫

V
|Jv − v|pdx → 0, as n → ∞.

Thus every weak derivative is a strong Lp −derivative.

Conversely, suppose v = vx is the strong Lp −derivative of order α, of u = ux with

∫
V
|φn − u|pdx → 0 and ∫

V
|∂αφn − v|pdx → 0, as n → ∞,

for arbitrary V ⊂⊂ U, and φn ∈ Cc
∞U. Then for any ψ ∈ Cc

∞U,

∫
V
u − φn∂αψdx = ∫

V
u∂αψdx − ∫

V
φn ∂αψdx

= ∫
V

u∂αψdx − −1 |α | ∫
V
∂αφn ψdx

= ∫
V

u∂αψdx − −1 |α | ∫
V

vψdx + −1 |α | ∫
V
v − ∂αφnψdx

Then it follows that

∫
V

u∂αψdx − −1 |α | ∫
V

vψdx ≤ C1 ∫
V
|φn − u|pdx + C2 ∫

V
|∂αφn − v|pdx

which implies that every strong Lp −derivative is a weak derivative.
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Weyl’s Lemma
Weyl’s lemma is a famous result that asserts that for U a bounded open set in Rn, if
u = ux is harmonic in U, (i.e., u ∈ C2U and ∇2ux = 0, x ∈ U ) then ux is infinitely
differentiable in U.

To see why this result is true, recall that every harmonic function has the mean value
property. That is,

∀x ∈ U, r < , ux = ∫
∂Brx

uydŜy = 1
nrn−1An

∫
∂Brx

uydSy.

Then

Jux = ∫
|x−y|≤

Sx − yuydy = 1
n ∫

|x−y|≤
T

x − y
 uydy

= 1
n ∫

0


T r

 ∫
∂Brx

uydSy dr = ux ∫
0

 nAn

n T r
 rn−1dr

= ux ∫
B0

Sydy = ux.

But this says that ∀ > 0, ∀x ∈ U, Jux = ux. Since Jux is infinitely differentiable on
U, it follows that ux is infinitely differentiable on U although u need not even be
continuous on the closure, Ū.
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