The Mollifier Theorem

Definition of the Mollifier

The function

$$
T(x)=\left\{\begin{array}{ll}
K \exp \left(\frac{-1}{1-|x|^{2}}\right) & \text { if }|x|<1 \\
0 & \text { if }|x| \geq 1
\end{array}\right\}, \quad x \in R^{n}
$$

where the constant K is chosen such that $\int_{R^{n}} T(x) d x=1$, is a test function on R^{n}. Note that $T(x)$ vanishes, together with all its derivatives as $|x| \rightarrow 1^{-}$, so $T(x)$ is infinitely differentiable and has compact support. The graph of $T(x)$ is sketched in the following figure.

The Mollifier Function
.For $n=1$ and $\varepsilon>0$, let

$$
S_{\varepsilon}(x)=\frac{1}{\varepsilon} T\left(\frac{x}{\varepsilon}\right) \quad \text { and } \quad P_{\epsilon}(x)=T\left(\frac{x}{\varepsilon}\right)
$$

Then

$$
\begin{array}{llll}
S_{\varepsilon}(x) \geq 0 & \text { and } & P_{\epsilon}(x) \geq 0 & \text { for all } x \\
S_{\varepsilon}(x)=0 & \text { and } & P_{\epsilon}(x)=0 & \text { for }|x|>\varepsilon \\
\int_{R} S_{\varepsilon}(x) d x=1 & \forall \varepsilon>0, & S_{\varepsilon}(0) \rightarrow+\infty & \text { as } \varepsilon \rightarrow 0, \\
\int_{R} P_{\varepsilon}(x) d x \rightarrow 0 & \text { as } \varepsilon \rightarrow 0, \quad P_{\varepsilon}(0)=K / e & \forall \varepsilon>0,
\end{array}
$$

Evidently, $S_{\varepsilon}(x)$ becomes thinner and higher as ε tends to zero but the area under the graph is constantly equal to one. On the other hand, $P_{\epsilon}(x)$ has constant height but grows thinner as ε tends to zero. These test functions can be used as the "seeds" from which an infinite variety of other test functions can be constructed by using a technique called regularization which we will now describe.

For $n \geq 1$ we have

$$
S_{\varepsilon}(x)=\frac{1}{\varepsilon^{n}} T\left(\frac{x}{\varepsilon}\right) \quad \text { and } \quad P_{\epsilon}(x)=T\left(\frac{x}{\varepsilon}\right)
$$

For U a bounded open set in R^{n}, and for $u \in L_{l o c}^{1}(U)$, define for any $\varepsilon>0$ and any $x \in U_{\varepsilon}$ $=\{x \in U: \operatorname{dist}(x, \partial U)>\varepsilon\}$,

$$
\begin{align*}
J_{\varepsilon} u(x) & =\int_{|x-y| \leq \varepsilon} S_{\varepsilon}(x-y) u(y) d y \tag{1.1a}\\
& =\int_{|z| \leq \varepsilon} S_{\varepsilon}(z) u(x-z) d z \tag{1.1b}\\
& =\int_{|z| \leq 1} S_{1}(z) u(x-\varepsilon z) d z . \tag{1.1c}
\end{align*}
$$

We refer to $J_{\varepsilon} u(x)$ as the mollified $u(x)$. This mollified function, $J_{\varepsilon} u(x)$, is a smoothed version of the original function, $u(x)$.

Properties of the Mollifier

Note first that $J_{\varepsilon} u(x)$ is infinitely differentiable; i.e., for any $\varepsilon>0$ and any $x \in U_{\varepsilon}$, it is clear from (1.1a) that

$$
\frac{J_{\varepsilon} u\left(x+\varepsilon \vec{e}_{i}\right)-J_{\varepsilon} u(x)}{\varepsilon}=\int_{|x-y| \leq \varepsilon} \frac{\left[S_{\varepsilon}\left(x+\varepsilon \vec{e}_{i}-y\right)-S_{\varepsilon}(x-y)\right]}{\varepsilon} u(y) d y
$$

i.e.,

$$
\frac{J_{\varepsilon} u\left(x+\varepsilon \vec{e}_{i}\right)-J_{\varepsilon} u(x)}{\varepsilon} \rightarrow \int_{|x-y| \leq \varepsilon} \partial_{x_{i}} S_{\varepsilon}(x-y) u(y) d y \quad \text { as } \varepsilon \rightarrow 0 .
$$

Since $S_{\varepsilon}(x)$ is infinitely differentiable, it follows that $J_{\varepsilon} u(x)$ is infinitely differentiable on the open set U_{ε}.

It is evident from (1.1a) that for $1 \leq p<\infty, \varepsilon>0$, and $x \in U_{\varepsilon}$,

$$
J_{\varepsilon} u(x)=\int_{|x-y| \leq \varepsilon} S_{\varepsilon}(x-y)^{1-1 / p} S_{\varepsilon}(x-y)^{1 / p} u(y) d y .
$$

Then, using Holder's inequality, we get

$$
\left|J_{\varepsilon} u(x)\right|^{p}=\left(\int_{|x-y| \leq \varepsilon} S_{\varepsilon}(x-y) d y\right)^{p-1} \int_{|x-y| \leq \varepsilon} S_{\varepsilon}(x-y)|u(y)|^{p} d y
$$

and since $\int_{R} S_{\varepsilon}(x) d x=1 \quad \forall \varepsilon>0$,

$$
\begin{aligned}
\int_{V}\left|J_{\varepsilon} u(x)\right|^{p} d x & \leq \int_{V} \int_{|x-y| \leq \varepsilon} S_{\varepsilon}(x-y)|u(y)|^{p} d y d x \\
& =\int_{W}|u(y)|^{p} \int_{|x-y| \leq \varepsilon} S_{\varepsilon}(x-y) d x d y=\int_{W}|u(y)|^{p} d y
\end{aligned}
$$

for open sets $W=U_{\varepsilon}$, and $V=W_{\varepsilon}$. This result is just that assertion that

$$
\begin{equation*}
\left\|J_{\varepsilon} u\right\|_{L_{p}(V)} \leq\|u\|_{L_{p}(W)} \text { for } V \subset \subset W \subset \subset U \tag{1.2}
\end{equation*}
$$

Next, use (1.1c) to write

$$
J_{\varepsilon} u(x)-u(x)=\int_{|z| \leq 1} S_{1}(z)[u(x-\varepsilon z)-u(z)] d z .
$$

If the function $u=u(x)$ is, in fact, continuous on U, then this last result shows that

$$
\begin{equation*}
\max _{\bar{V}}\left|J_{\varepsilon} u(x)-u(x)\right| \leq \max _{\bar{V}}|[u(x-\varepsilon z)-u(z)]| \rightarrow 0 \text { as } \varepsilon \rightarrow 0 ; \tag{1.3}
\end{equation*}
$$

i.e., $J_{\varepsilon} u(x)$ converges uniformly to $u(x)$ for $x \in \bar{V}$ when $u(x)$ is continuous on.U.

For $u \in L_{l o c}^{p}(U), W=U_{\varepsilon}$, and arbitrary $\delta>0$, use the fact that the continuous functions
are dense in $L_{p}(W)$ to choose $v \in C(W)$ such that

$$
\|u-v\|_{L_{p}(W)} \leq \delta .
$$

Then for $V=W_{\varepsilon}$,

$$
\begin{aligned}
& \left\|J_{\varepsilon} u-u\right\|_{L_{p}(V)} \leq\left\|J_{\varepsilon} u-J_{\varepsilon} v\right\|_{L_{p}(V)}+\left\|J_{\varepsilon} v-v\right\|_{L_{p}(V)}+\|v-u\|_{L_{p}(V)} \\
& \quad \leq\|u-v\|_{L_{p}(W)}+\left\|J_{\varepsilon} v-v\right\|_{L_{p}(V)}+\|v-u\|_{L_{p}(W)} \leq 2 \delta+\left\|J_{\varepsilon} v-v\right\|_{L_{p}(V)}
\end{aligned}
$$

It follows now from (1.3) that for $u \in L_{l o c}^{p}(U)$,

$$
\begin{equation*}
\forall V \subset \subset U, \quad\left\|J_{\varepsilon} u-u\right\|_{L^{p}(V)} \rightarrow 0 \quad \text { as } \varepsilon \rightarrow 0 \tag{1.4}
\end{equation*}
$$

We can summarize these results in the following,
Theorem (Local Approximation) Suppose U is open and bounded in $R^{n}, 1 \leq p<\infty$, and for $\dot{\varepsilon}>0$, let U_{ε} denote the subset $\{x \in U: \operatorname{dist}(x, \partial U)>\varepsilon\}$.
(a) For every $\epsilon>0, \quad u \in L_{l o c}^{p}(U)$ implies $J_{\epsilon} u \in C^{\infty}\left(U_{\epsilon}\right)$
(b) (i) $u \in C(U)$ implies u_{ε} converges to u uniformly on compact subsets of U; i.e.,

$$
\left\|J_{\varepsilon} u-u\right\|_{C(\bar{V})}=\max _{\bar{V}}\left|J_{\epsilon} u(x)-u(x)\right| \rightarrow 0 \text { for all } V \subset \subset U
$$

(ii) u_{ε} converges to u in $L_{l o c}^{p}(U)$; i.e., $u \in L_{l o c}^{p}(U)$ implies that for all $V \subset \subset W \subset \subset U$,

$$
\left\|J_{\epsilon} u\right\|_{L^{p}(V)} \leq\|u\|_{L^{p}(W)} \quad \text { and } \quad\left\|J_{\epsilon} u-u\right\|_{L^{p}(V)} \rightarrow 0 \text { as } \epsilon \rightarrow 0
$$

(c) u_{ε} converges to u in $W_{l o c}^{k, p}(U)$;

Result (c) follows from (b) by induction.
Corollary (Global Approximation) Suppose U has a smooth boundary, and $1 \leq p<\infty$.
(a) For every $\epsilon>0, \quad u \in L^{p}(U)$ implies $J_{\epsilon} u \in C^{\infty}(U) \cap L^{p}(U)$.
(b) $u \in L^{p}(U)$ implies that

$$
\left\|J_{\epsilon} u\right\|_{L^{p}(U)} \leq\|u\|_{L^{p}(U)} \quad \text { and } \quad\left\|J_{\epsilon} u-u\right\|_{L^{p}(U)} \rightarrow 0 \text { as } \epsilon \rightarrow 0
$$

(c) $u \in W^{k, p}(U)$ implies that there exists functions $\left\{\phi_{m}\right\} \in C^{\infty}(U) \cap W^{k, p}(U)$ such that

$$
\left\|\phi_{m}-u\right\|_{k, p} \rightarrow 0 \quad \text { as } m \rightarrow \infty .
$$

The proof of the corollary makes use of a partition of unity (see theorem 2 pg 251 in Evans).

Weak Equals Strong

For U a bounded open set in R^{n}, we define $v=v(x)$ to be the weak derivative of order α, of $u=u(x), x \in U$ if

$$
\int_{U} u(x) \partial^{\alpha} \phi(x) d x=(-1)^{|\alpha|} \int_{U} v(x) \phi(x) d x \text { for all } \phi \in C_{c}^{\infty}(U)
$$

Similarly, we define $v=v(x)$ to be the strong \boldsymbol{L}_{p}-derivative of order α, of $u=u(x), x \in U$ if
for any $V \subset \subset U$, there exists a sequence $\left\{\phi_{n}\right\} \in C_{c}^{\infty}(U)$ such that

$$
\int_{V}\left|\phi_{n}-u\right|^{p} d x \rightarrow 0 \text { and } \int_{V}\left|\partial^{\alpha} \phi_{n}-v\right|^{p} d x \rightarrow 0, \text { as } n \rightarrow \infty .
$$

Using mollifiers, we can show that these two notions are equivalent.
Suppose first that $v=v(x)$ is the weak derivative of order α, of $u=u(x)$. Then, since $S_{\varepsilon} \in C_{c}^{\infty}(U)$,

$$
\begin{aligned}
\partial^{\alpha} J_{\varepsilon} u(x) & =\int_{|x-y| \leq \varepsilon} \partial_{x}^{\alpha} S_{\varepsilon}(x-y) u(y) d y=(-1)^{|\alpha|} \int_{|x-y| \leq \varepsilon} \partial_{y}^{\alpha} S_{\varepsilon}(x-y) u(y) d y \\
& =\int_{|x-y| \leq \varepsilon} S_{\varepsilon}(x-y) v(y) d y=J_{\varepsilon} v(x) \quad \text { (by definition of weak derivative) }
\end{aligned}
$$

Now apply (1.4) to write

$$
\int_{V}\left|J_{\varepsilon} u-u\right|^{p} d x \rightarrow 0 \text { and } \int_{V}\left|\partial^{\alpha} J_{\varepsilon} u-v\right|^{p} d x=\int_{V}\left|J_{\varepsilon} v-v\right|^{p} d x \rightarrow 0, \text { as } n \rightarrow \infty .
$$

Thus every weak derivative is a strong L_{p}-derivative.
Conversely, suppose $v=v(x)$ is the strong L_{p}-derivative of order α, of $u=u(x)$ with

$$
\int_{V}\left|\phi_{n}-u\right|^{p} d x \rightarrow 0 \text { and } \int_{V}\left|\partial^{\alpha} \phi_{n}-v\right|^{p} d x \rightarrow 0, \text { as } n \rightarrow \infty,
$$

for arbitrary $V \subset \subset U$, and $\left\{\phi_{n}\right\} \in C_{c}^{\infty}(U)$. Then for any $\psi \in C_{c}^{\infty}(U)$,

$$
\begin{aligned}
\int_{V}\left(u-\phi_{n}\right) \partial^{\alpha} \psi d x & =\int_{V} u \partial^{\alpha} \psi d x-\int_{V} \phi_{n} \partial^{\alpha} \psi d x \\
& =\int_{V} u \partial^{\alpha} \psi d x-(-1)^{|\alpha|} \int_{V} \partial^{\alpha} \phi_{n} \psi d x \\
= & \int_{V} u \partial^{\alpha} \psi d x-(-1)^{|\alpha|} \int_{V} v \psi d x+(-1)^{|\alpha|} \int_{V}\left(v-\partial^{\alpha} \phi_{n}\right) \psi d x
\end{aligned}
$$

Then it follows that

$$
\left|\int_{V} u \partial^{\alpha} \psi d x-(-1)^{|\alpha|} \int_{V} v \psi d x\right| \leq C_{1} \int_{V}\left|\phi_{n}-u\right|^{p} d x+C_{2} \int_{V}\left|\partial^{\alpha} \phi_{n}-v\right|^{p} d x
$$

which implies that every strong L_{p}-derivative is a weak derivative.

Weyl's Lemma

Weyl's lemma is a famous result that asserts that for U a bounded open set in R^{n}, if $u=u(x)$ is harmonic in U , (i.e., $u \in C^{2}(U)$ and $\nabla^{2} u(x)=0, x \in U$) then $u(x)$ is infinitely differentiable in U.

To see why this result is true, recall that every harmonic function has the mean value property. That is,

$$
\forall x \in U_{\varepsilon}, r<\varepsilon, \quad u(x)=\int_{\partial B_{r}(x)} u(y) d \hat{S}(y)=\frac{1}{n r^{n-1} A_{n}} \int_{\partial B_{r}(x)} u(y) d S(y) .
$$

Then

$$
\begin{aligned}
J_{\varepsilon} u(x) & =\int_{|x-y| \leq \varepsilon} S_{\varepsilon}(x-y) u(y) d y=\frac{1}{\varepsilon^{n}} \int_{|x-y| \leq \varepsilon} T\left(\frac{x-y}{\varepsilon}\right) u(y) d y \\
& =\frac{1}{\varepsilon^{n}} \int_{0}^{\varepsilon} T\left(\frac{r}{\varepsilon}\right) \int_{\partial B_{r}(x)} u(y) d S(y) d r=u(x) \int_{0}^{\varepsilon} \frac{n A_{n}}{\varepsilon^{n}} T\left(\frac{r}{\varepsilon}\right) r^{n-1} d r \\
& =u(x) \int_{B_{\varepsilon}(0)} S_{\varepsilon}(y) d y=u(x) .
\end{aligned}
$$

But this says that $\forall \varepsilon>0, \forall x \in U_{\varepsilon}, J_{\varepsilon} u(x)=u(x)$. Since $J_{\varepsilon} u(x)$ is infinitely differentiable on U, it follows that $u(x)$ is infinitely differentiable on U although u need not even be continuous on the closure, \bar{U}.

