
Math 6702, Assignment 2 = Exam 1

Introduction

1. (Exercise 8 in the notes “Introduction” from 2020) What is the first order system equiv-
alent to the ODE

y(n) = F (y(n−1), . . . , y′, y, x)?

Fully justify your answer.

2. (Exercise 24 in the notes “Introduction” from 2020) Find a system of first order equations
equivalent to the hyperbolic PDE

∂2u

∂x2
− ∂2u

∂y2
= 0.

§4.2 Power Series

3. (Boas 4.2.2,5) Find the power series expansions for

(a) cos(x+ y) and

(b)
√
1 + xy.

Solution: It’s pretty clear that Boas intended for us to write down the expansion at
(x0, y0) = (0, 0). She also probably intended for us to use the known series for cosine in
one variable:

cos(x+ y) =

∞
∑

k=0

(−1)k

(2k)!
(x+ y)2k.

You can also expand this out using the binomial formula:

cos(x+ y) =

∞
∑

k=0

(−1)k

(2k)!

2k
∑

j=0

(

2k
j

)

xjy2k−j.

This is probably the simplest expression one can obtain easily, but note an alternative
in Problem 8 below. Writing out the first few terms we get

cos(x+ y) = 1− 1

2
(x2 + 2xy + y2) +

1

4!
(x4 + 4x3y + 6x2y2 + 4xy3 + y4)

− 1

6!
(x6 + 6x5y + 15x4y2 + 20x3y3 + 15x2y4 + 6xy5 + y6) + · · ·

4. The Taylor expansion of a function f ∈ C∞(R) at x0 ∈ R is given by

∞
∑

j=0

f (j)(x0)

j!
(x− x0)

j. (1)

Here f (j) denotes the j-th (ordinary) derivative of f as usual:

f (j) =
djf

dxj
.



A function f ∈ C∞(R) is said to be real analytic in the interval I = (x0 − r, x0 + r) if
the series in (1) converges for each x ∈ I and

f(x) =
∞
∑

j=0

f (j)(x0)

j!
(x− x0)

j.

The set of real analytic functions is denoted by Cω. Verify that cosx is real analytic on
R, i.e., cos ∈ Cω(R).

5. Find a function f : R → R with f ∈ C∞(R)\Cω(R). Hint: Take x0 = 0 and f(x) ≡ 0 for
all x ≤ 0. Then (try to) define f(x) for x > 0 so that all the derivatives f (j)(0) are zero,
but the values of f(x) for x > 0 are nonzero. This is a pretty hard problem if you’ve
never seen such a function before.

6. The Taylor expansion of a function u ∈ C∞(U) at x0 ∈ U ⊂ R
n is given by

∞
∑

j=0

∑

|β|=j

Dβu(x0)

β!
(x− x0)

β. (2)

There are a lot of things in this expansion formula which are probably new to you. Don’t
freak out. First, just compare (2) to (1) and observe that these two formulas are the
“same” or at least sort of the same, so (on the face of it) this is a pretty cool formula, if
it has some sensible meaning—and it does. The exercise will lead you through what it
means.

(a) In this expansion formula β = (β1, β2, . . . , βn) is a multi-index, which simply
means

β ∈ N
n = {(m1, . . . , mn) : m1, . . . , mn ∈ N} where N = {0, 1, 2, 3, . . .}.

The derivative Dβu denotes the partial derivative taken βj times with respect to xj
for each j = 1, 2, . . . , n:

Dβu =
∂|β|u

∂xβ1

1 ∂x
β2

2 · · ·∂xβn

n

.

The “length” of a multi-index β is defined by

|β| =
n
∑

j=1

βj .

Find all the multi-indices β ∈ N
3 with |β| = 2.

(b) Write down all the second partials of a function u : R
3 → R in terms of multi-indices.

Your answers should look like this:

D(2,0,0)u =
∂2u

∂x2

and you should get five more for a total of six.



(c) Now let’s back up a dimension to R
2. The expansion for f(x, y) given by Boas on

page 192 has second order terms

1

2!

[

fxx(x0, y0)(x− x0)
2 + 2fxy(x0, y0)(x− x0)(y − y0) + fyy(x0, y0)(y − y0)

2
]

.

The corresponding second order terms in (2) are

∑

|β|=2

Dβu(x0)

β!
(x− x0)

β

where x0 = (x0, y0) and x = (x, y). To see that these are the same, you need to
know the definition of the factorial of a multi-index, and you need to know how to
take multi-index powers of a vector variable. Here are the definitions for β ∈ N

n

and x = (x1, . . . , xn) ∈ R
n:

β! = β1!β2! · · ·βn!.
xβ = xβ1

1 x
β2

2 · · ·xβn

n .

Show that the second order terms given by Boas for a function of two variables are
the same ones you get from the formula given in (2) when n = 2.

7. Given an open set U ⊂ R
n, a function u ∈ C∞(U) is said to be real analytic if for

each x0 ∈ U , there exists some r > 0 such that the series in (2) converges for each
x ∈ Br(x0) = {x ∈ R

n : |x− x0| < r} and

u(x) =

∞
∑

j=0

∑

|β|=j

Dβu(x0)

β!
(x− x0)

β

for x ∈ Br(x0) ∩ U . The set of real analytic functions on an open set U ⊂ R
n is

denoted by Cω(U). Find a function u ∈ C∞(Rn)\Cω(Rn).

Remark on notation: It is usual to denote the center of expansion of a power series in
one variable by x0 as in (1). For comparison of (2) to (1), we have used x0 as the (vector)
center of expansion in the multivariable expansion. This causes a certain inconvenience
when writing down the coordinates in higher dimensions. For n = 2 as in part (c) of
problem 6, one can use x0 = (x0, y0), and this approach can work for n = 3 as well with
x0 = (x0, y0, z0). For general n, however, one usually resorts to something unpleasant
like

x0 = (x01, x
0
2, . . . , x

0
n).

To further understand the unpleasantness of this expression for the coordinates, you
may write out the multi-index power xβ

0 . My preferred alternative is to replace x0 with
p = (p1, p2, . . . , pn), though some continuity of notation is lost between (1) and (2).

8. Repeat Boas’ Problem 4.2.2 (given above as Problem 3) using the multi-index Taylor
expansion formula.



Solution: In view of the general formula, we are going to have to compute partial deriva-
tives

Dβu(0, 0)

using the chain rule where u(x, y) = cos(x + y). The key observation is that each
additional partial derivative of u, with respect to either variable, can be written in terms
of exactly one additional (regular) derivative of u1(t) = cos(t). That is,

Dβu(0, 0) = D|β|u1(0) =

{

(−1)k, |β| = 2k even
0, |β| odd.

It follows that this factor comes out and

cos(x+y) =

∞
∑

|β|=0

Dβu(0, 0)

β!
(x, y)β =

∑

|β|=2k even

(−1)k

β1!β2!
xβ1yβ2 =

∞
∑

k=0

(−1)k
2k
∑

β1=0

1

β1!(2k − β1)!
xβ1y2k−β1.

The point, with reference to Problem 3 above, is that the multi-index formula has built
into it the relatively easy identity

1

(2k)!

(

2k
j

)

=
1

j!(2k − j)!
.

Writing out the same first few terms we get

cos(x+ y) = 1−
(

1

2
x2 + xy +

1

2
y2
)

+

(

1

4!
x4 +

1

3!
x3y +

1

2!2!
x2y2 +

1

3!
xy3 +

1

4!
y4
)

−
(

1

6!
x6 +

1

5!
x5y +

1

4!2!
x4y2 +

1

3!3!
x3y3 +

1

2!4!
x2y4 +

1

5!
xy5 +

1

6!
y6
)

+ · · ·

Calculus of Variations

9. (Boas 9.2.1) Let a, b, c, and d be fixed positive real numbers with 0 < a < b and set

A = {u ∈ C1[a, b] : u(a) = c, u(b) = d}.

Consider the functional F : A → R by

F [u] =

∫ b

a

√

x(1 + u′(x)2 dx.

(a) Compute the first variation δFu : C∞
c (a, b) → R.

(b) Determine the conditions under which there exist functions u ∈ C2(a, b) ∩ A for
which δFu ≡ 0. Hint: Consider possibilities for the ratio d/c along with the quantity
v(x) = sinψ = u′/

√
1 + u′2 (the sine of the inclination angle).



(c) Assuming the conditions you determined in part (b) for the existence of a C2 weak
extremal in A, find all C2 weak extremals.

(d) Take specific values for a, b, c, and d satisfying the conditions you found in part (b).
Compare the functional values obtained for the C2 weak extremals from part (c)
(applied with these specific values for a, b, c, and d) to other values F [u] obtained
from other admissible functions.

Solution:

(a)

δFu[φ] =

∫ b

a

√
x

u′√
1 + u′2

φ′ dx.

If u ∈ C2(a, b), then we can integrate by parts to write the first variation in the
form

δFu[φ] =
√
b

u′(b)
√

1 + u′(b)2
φ(b)−

√
a

u′(a)
√

1 + u′(a)2
φ′ −

∫ b

a

(√
x

u′√
1 + u′2

)

φ dx.

If we restrict to φ ∈ C∞
c (a, b), then the boundary terms vanish, and we have

δFu[φ] = −
∫ b

a

(√
x

u′√
1 + u′2

)′

φ dx.

(b) This is a little more complicated than the hint suggests. The Euler-Lagrange equa-
tion is

(√
x

u′√
1 + u′2

)′

= 0.

This means that if we have a solution then there must be a constant α such that

sinψ =
u′√

1 + u′2
=

α√
x
. (3)

The first observation is that the right side cannot change signs. This means any
solution is either strictly increasing (if α > 0) or strictly decreasing (if α < 0).
There is also the possibility that α = 0. If α = 0, then we must have u′ ≡ 0 which
means u is constant and to get a C2 solution we must have c = u(a) = u(b) = d.
So this is one condition where we do get a solution:

If c = d, then u(x) ≡ c is a solution,

and this is the unique C2 extremal in this case.

We also know that if c < d (i.e., c/d < 1, then the solution (if there is one) must be
increasing and α > 0. Similarly, if d < c, then the only possibility is α < 0. Thus,
we have two cases to consider.

Let’s consider the case c < d. Then we can assume α > 0.



The function
sinψ(x) =

α√
x

is well-defined, smooth, positive, and decreasing on [a, b] with maximum value

0 <
α√
a
= sinψ(a) < 1.

Therefore, we must have 0 < α <
√
a. Again, if we do have a solution, then we

should be able to integrate (3) as follows: We first rearrange the equation as

u′ =
α/

√
x

√

1− α2/x
=

α√
x− α2

= 2α
d

dx

√
x− α2.

Then integration gives

u(x) = u(a) + 2α
[√

x− α2 −
√
a− α2

]

= c+ 2α
[√

x− α2 −
√
a− α2

]

.

In particular the second boundary condition requires u(b) = d or

f(α) = α
[√

b− α2 −
√
a− α2

]

=
d− c

2
> 0.

The function f : [0,
√
a] → R is smooth with

f(0) = 0, f(
√
a) =

√
a
√
b− a > 0,

and

f ′(α) =
[√

b− α2 −
√
a− α2

]

(

1 +
α2

√

(b− α2)(a− α2)

)

> 0.

In particular, f is increasing, and the equation f(α) = (d− c)/2 will have a unique
positive solution α with 0 < α <

√
a if and only if

d− c

2
< f(

√
a) =

√
a
√
b− a.

Thus, the condition
d− c

2
<

√
a
√
b− a

is required for there to exist a C2 extremal when c < d.

If c > d, then we must have α < 0. In this case, sinψ(x) is negative and increasing
with minimum value sinψ(a) = α/

√
a < 0. We must have α/

√
a ≥ −1, so

−
√
a < α < 0.

The integration proceeds in the same way, but then we must consider

g(α) = α
[√

b− α2 −
√
a− α2

]

=
d− c

<
0.



The function g : [−√
a, 0] → R is negative and increasing with g(−√

a) = −√
a
√
b− a

and g(0) = 0. The equation g(α) = (d − c)/2 will have a unique negative solution
α with −√

a < α < 0 if and only if

d− c

2
> −

√
a
√
b− a.

That is, the condition
c− d

2
<

√
a
√
b− a

must hold for there to exist a C2 extremal when c > d.

Overall, we can summarize the condition for the existence of a unique C2 extremal
as

|d− c| < 2
√
a
√
b− a.

(c) This part is essentially already done above, but this is a good place to summarize
the situation:

(0) If c = d, then the unique C2 weak extremal is u(x) ≡ c.

(i) If c < d and
d− c < 2

√
a
√
b− a,

then the unique C2 weak extremal is

u(x) = c+ 2α
[√

x− α2 −
√
a− α2

]

where α is the unique solution of the equation

α
[√

b− α2 −
√
a− α2

]

=
d− c

2
.

satisfying 0 < α <
√
a.

(ii) If c > d and
c− d < 2

√
a
√
b− a,

then the unique C2 weak extremal is

u(x) = c+ 2α
[√

x− α2 −
√
a− α2

]

where α is the unique solution of the equation

α
[√

b− α2 −
√
a− α2

]

=
d− c

2

satisfying −√
a < α < 0.



(d) I’m going to take a = 1, b = 3, c = 1 and d = 2. This falls into case (i) above since

d− c

2
=

1

2
<

√
2 =

√
a
√
b− a.

Plotting f = f(α) for 0 ≤ α ≤ 1 in this case, along with (d − c)/2 = 1/2, we
find the unique root is around α = 0.6; see Figure 1 below. Using Mathematica’s
FindRoot, we get an approximation α

.
= 0.60484.

Figure 1: A plot of f = f(α).

In Figure 2, we have plotted the C2 extremal (or at least our numerical approxi-
mation of it) on the left. On the right in Figure 2, we have plotted some quadratic
competitors. These are given by

u(x) = αx2 + βx+ γ

where we use α = −0.2,−0.1, 0, 0.1, 0.5, 1 as a parameter with

β =
d− c− (b2 − a2)α

b− a
and γ = d− αb2 − βb.

Note, this parameter α has nothing to do with the parameter α used in the discus-
sion of the extremal.



Figure 2: A plot of the C2 extremal u = u(x) on the left. The plot of u with some
quadratic competitors on the right.

In Figure 3, we have plotted the functional values F [u] associated with each of
the competitors and the value associated with the extremal (as a horizontal line of
comparison).

Figure 3: Functional values. All values are shown on the left. The lowest four
competitors are shown on the right.

The C2 extremal we have found numerically seems to be at least a local minimizer.
In particular the quadratic competitors do not give lower values for F , and the
quadratic competitor u1 corresponding to α = −0.1, which is closest to the C2

extremal, gives the closest functional value with

F [u]
.
= 3.11635 < F [u1]

.
= 3.1195.

Note: I previously had posted a solution of this problem with an error in integration
involving the introduction of a factor 1/2 instead of the correct factor of 2. Without
knowing about the error, I mentioned the possibility of piecewise C2 minimizers with
corners, or so called “broken extremals.” In the mean time I looked up the Erdmann
corner conditions and realized that this was not what was happening. Fortunately,
Ching-Lun Tai found my integration error, so I have written a corrected solution above.

For those who followed any of the discussion on piecewise smooth minimizers, I offer this
nice variational problem from Hans Sagan:

The function u : [−1, 1] → R by

u(x) =

{

0, −1 ≤ x ≤ 0
x, 0 ≤ x ≤ 1



is the unique piecewise C1 minimizer of

F [u] =

∫ 1

−1

[u(x)]2[1− u′(x)]2 dx

in
A = {u ∈ ❁

1[−1, 1] : u(−1) = 0, u(1) = 1}
where ❁

1[a, b] denotes the piecewise C1 functions on the interval [a, b], that is these
functions satisfy u ∈ C0[a, b] (they are continuous) and there is some partition

a = x0 < x1 < · · · < xk = b

such that the restriction of u to [xj−1, xj] is in C1[xj−1, xj] for j = 1, 2, . . . , k. (These
functions can have corners with different derivatives from the left and right at a point.)
It’s a little bit tricky to show the function above is the unique minimizer, but it is easy
to see that it is a minimizer.

10. (Boas 9.2.3) Let a, b, c, and d be fixed positive real numbers with 0 < a < b and set

A = {u ∈ C1[a, b] : u(a) = c, u(b) = d}.

Consider the functional E : A → R by

E [u] =
∫ b

a

x
√

1− u′(x)2 dx.

(a) Compute the first variation δEu : C∞
c (a, b) → R.

(b) Determine the conditions under which there exist functions u ∈ C2(a, b) ∩ A for
which δEu ≡ 0.

(c) Assuming the conditions you determined in part (b) for the existence of a C2 weak
extremal in A, find all C2 weak extremals.

(d) Take specific values for a, b, c, and d satisfying the conditions you found in part (b).
Compare the functional values obtained for the C2 weak extremals from part (c)
(applied with these specific values for a, b, c, and d) to other values E [u] obtained
from other admissible functions.

Solution:

(a) The first variation of this functional is given by

δEu[φ] = −
∫ b

a

x
u′√

1− u′2
φ′ dx.

We should notice right away from this, that we need a restriction |u′| < 1 on
our admissible functions. Furthermore, the mean value theorem tells us that this
condition will be immediately violated for all u ∈ A unless

|d− c|
b− a

< 1. (4)



This is presumably the condition anticipated in part (b) below, though we have to
see if this condition is sufficient to give us C2 extremals. It is certainly necessary.
Continuing with the assumption u ∈ C2[a, b], we can integrate by parts to obtain

δEu[φ] =
∫ b

a

(

x
u′√

1− u′2

)′

φ dx for all φ ∈ C∞
c (a, b).

(b) Now we seek to show that if (4) holds, then we obtain a C2 weak extremal, that is
a solution of the ODE

u′√
1− u′2

=
α

x

for some constant α and some u ∈ C2[a, b] with u(a) = c and u(b) = d.

Noting that the funtion α/x maintains a single sign which is the same as that of α,
since 0 < a ≤ x ≤ b, we see that any C2 extremal must be monotone with u′ > 0
is α > 0 and u′ < 0 if α < 0. With this in mind, we can solve for u′ to obtain:

u′ =
α√

x2 + α2
=

α

|α|
1

√

(x/α)2 + 1
=
α2

|α|
d

dx
sinh−1(x/α).

It is perhaps easier to parse this expression if we consider cases. First of all, this
integration is only valid if α 6= 0. So we might consider

(0) α = 0. In this case, our condition for a C2 extremal tightens to c = d since the
only solutions are constant functions u for which u′ ≡ 0. In this case, however,
(when c = d) we clearly have a unique C2 extremal u ≡ c. This extremal,
however, is not a local minimizer. For example, if we take

uǫ(x) = c+ ǫ(x− a)(x− b) = c+ ǫ[x2 − (a+ b)x+ ab]

with 0 < |ǫ| < 1/(b− a) then

E [u] =
∫ b

a

x
√

1− ǫ2(2x− a− b)2 dx <

∫ b

a

x dx = E [u0].

(i) α > 0 corresponding to d > c. In this case,

u(x) = c+ α
[

sinh−1
(x

α

)

− sinh−1
( a

α

)]

.

A C2 extremal must satisfy

f(α) = α

[

sinh−1

(

b

α

)

− sinh−1
( a

α

)

]

= d− c.

We claim that under our assumption 0 < d − c < b − a, this equation has a
unique positive solution α. For this, we need to establish some properties of
f = f(α).



Lemma 1
lim
αց0

f(α) = 0.

Proof: Using the change of variables β = 1/α we can consider the limit

lim
βր∞

sinh−1(bβ)− sinh−1(aβ)

β
. (5)

It’s of course worth knowing that

sinh x =
ex − e−x

2

so that sinh−1(β) is increasing and asymptotic to ln(2β) as β ր +∞. See
Figure 4.

Figure 4: The graph of the inverse hyperbolic sine function.
This means, in particular, that the numerator in (5) is positive. We can also
see that the numerator is increasing. In fact,

d

dβ

[

sinh−1(bβ)− sinh−1(aβ)
]

=
b

√

1 + b2β2
− a
√

1 + a2β2

=
1

√

1/b2 + β2
− 1
√

1/a2 + β2

> 0

because 1/a2 > 1/b2. Furthermore, the numerator in (5) is bounded, and
this fact makes the assertion of (5) and our lemma obvious. However, it’s not
so obvious that this quantity is bounded. In fact, it has a rather interesting
limiting value, so let’s consider it carefully. First we’ll take the hyperbolic sine
of the quantity in question:

sinh
[

sinh−1(bβ)− sinh−1(aβ)
]

= bβ
√

a2β2 + 1− aβ
√

b2β2 + 1.



Here we have used the difference formula for sinh and the fact that cosh(sinh−1(β)) =
√

1 + β2 because cosh2 x− sinh2 x = 1. Continuing, we can write this quantity
as

β
[

b
√

a2β2 + 1− a
√

b2β2 + 1
]

=
β(b2 − a2)

b
√

a2β2 + 1 + a
√

b2β2 + 1

=
b2 − a2

b
√

a2 + 1/β2 + a
√

b2 + 1/β2
.

Taking the limit in the last expression as β ր 0, we find

lim
βր

sinh
[

sinh−1(bβ)− sinh−1(aβ)
]

=
b2 − a2

2ab
.

Consequently,

lim
βր

[

sinh−1(bβ)− sinh−1(aβ)
]

= sinh−1

(

b2 − a2

2ab

)

<∞.

We have established the lemma. ✷

Exercise 1 We could have avoided getting the explicit limit of the numerator
above. If the limit of the numerator is bounded (as we have shown), then clearly
the assertion of (5) is correct. The alternative is that the numerator limits to
+∞ (which doesn’t actually happen, but let’s say we are going to ignore that
for the moment and also avoid proving it). In this alternative case, we could
apply L’Hopital’s rule. Apply L’Hopital’s rule under this assumption, and show
you get zero for the limit.
Note: One must be very careful with this sort of thing. If you assume the
numerator tends to infinity, and it actually doesn’t, then it is sometimes possible
to apply L’Hopital’s rule (incorrectly) and get the wrong limit. It just happens
that you get zero in this misapplication of L’Hopital’s rule.

Exercise 2 Show f : (0,∞) → R by

f(α) = α

[

sinh−1

(

b

α

)

− sinh−1
( a

α

)

]

is differentiable (from the right) at α = 0. Find the value of f ′(0+).

Lemma 2
lim
αր∞

f(α) = b− a.

Proof: Using the same change of variables β = 1/α, the limit as β ց 0 of the
expression in (5) is indeed an indeterminate form 0/0, and so

lim
βց0

sinh−1(bβ)− sinh−1(aβ)

β
= lim

βց0

[

b
√

1 + b2β2
− a
√

1 + a2β2

]

= b− a. ✷



Lemma 3 f : [0,∞) → R by

f(α) = α

[

sinh−1

(

b

α

)

− sinh−1
( a

α

)

]

is increasing.

Proof: I’m afraid this one is a little tricky, though maybe you can find an easier
way to see it. First, notice that f is increasing if and only if

f(α)

a
=
α

a

[

sinh−1

(

b

α

)

− sinh−1
( a

α

)

]

is increasing. (The left endpoint a is just a positive constant.) Now, f/a
is increasing in α if and only if f/a is increasing as a function of β = α/a
(chain rule), and writing f/a as a function of β = α/a, we get a function
g : [0,∞) → R by

g(β) = β

[

sinh−1

(

t

β

)

− sinh−1

(

1

β

)]

where t = b/a is a positive constant—which we are about to think of as a
variable.
We wish to show g′(β) > 0, so we compute:

g′(β) = sinh−1

(

t

β

)

− sinh−1

(

1

β

)

+ β

[

−t/β2

√

1 + t2/β2
− −1/β2

√

1 + 1/β2

]

= sinh−1

(

t

β

)

− sinh−1

(

1

β

)

− t
√

β2 + t2
+

1
√

β2 + 1
.

This may look pretty bad, but we’re about to do something clever which will
make things a bit simpler. Remember we want this quantity to be positive.
Let’s compute

∂

∂t
g′(β) =

1/β
√

1 + t2/β2
−
[

1
√

β2 + t2
− t2

(β2 + t2)3/2

]

=
t2

(β2 + t2)3/2

> 0.

Let’s now think about what this means. We have a family of functions g =
g(β; t) depending smoothlly on a parameter t = b/a > 1. In fact, there is no



singularity at t = b/a = 1, and in that case, we get g(β; 1) ≡ 0. That is, this
limiting function is not increasing, but it is constant with g′(β; 1) ≡ 0. Now,
when we increase t so that t > 1, the value of g′(β; t) increases from zero. This
means it becomes positive and g′ = g′(β) = g′(β; t) > 0 for t > 1. ✷

Figure 5: The graph of f = f(α) (left). A C2 weak extremal (right). Both are
for the parameters a = 1, b = 3, c = 1, d = 2.

We have established that the function f = f(α) has graph like that indicated
on the left in Figure 5. f is increasing with f(0) = 0 and supremum b− a.

Exercise 3 The method used above to prove Lemma 3 may seem unfamiliar,
but I think you can also use it to prove f ′′(α) < 0, which in view of the first
two lemmas is an alternative approach to showing f ′(α) > 0.

Using a = 1, b = 3, c = 1, and d = 2, we see, as indicated on the left in
Figure 5, that the root of f(α) = (d − c) = 1 is close to α = 1. Numerically,
we find α

.
= 1.09358. The corresponding extremal is indicated on the right in

Figure 5.

(ii) The function f = f(α) in this case is an even function, and I think you can
check that if c > d and c − d < b − a, then there is a unique negative α for
which

f(α) = c− d.

With this negative solution α, the unique C2 extremal is given by the same
formula:

u(x) = c+ α
[

sinh−1
(x

α

)

− sinh−1
( a

α

)]

.

(c) Again, this is essentially done, so we just summarize:

(0) If c = d, then the unique C2 weak extremal is u(x) ≡ c.

(i) If 0 < d− c < b− a, then the unique weak extremal is

u(x) = c+ α
[

sinh−1
(x

α

)

− sinh−1
( a

α

)]

where α > 0 is the unique positive solution of

α

[

sinh−1

(

b

α

)

− sinh−1
( a

α

)

]

= d− c.



(i) If 0 < c− d < b− a, then the unique weak extremal is

u(x) = c+ α
[

sinh−1
(x

α

)

− sinh−1
( a

α

)]

where α < 0 is the unique negative solution of

α

[

sinh−1

(

b

α

)

− sinh−1
( a

α

)

]

= c− d.

(d) None of the C2 extremals above are minimizers of the functional E .

Figure 6: A minimizer for a = 1, b = 3, c = 1, d = 2 (dashed).

Any piecewise differentiable function with |u′| ≡ 1 where the derivative is defined
minimizes E giving E [u] = 0. One example,

u(x) =







x, 1 ≤ x ≤ 1.5,
3− x, 1.5 ≤ x ≤ 2
x− 1, 2 ≤ x ≤ 3

is illustrated in Figure 6. There is obviously no uniqueness of minimizers in this
case. The C2 weak extremals for this functional are probably all local maximizers,
if not global maximizers. This is clearly the case when c = d. Notice that the
extremal we found for a = 1, b = 3, c = 1, and d = 2 is steeper when x is smaller
and less steep when x is greater. This corresponds to maximizing the integrand
factor

√
1− u′2 taking into account its weight of x.


