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Problem 1 (Boas 8.6.1) Find the general solution of y′′ − 4y = 10. Solve the IVP
{

y′′ − 4y = 10
y(1) = −3, y′(1) = −2.

Use mathematical software to find a numerical approximation of the solution of the
IVP. (Also plot your solution to see the two match.)

Solution: Setting yh = eαt we get y′′h − 4yh = (α2 − 4)eαt. In this way we see the
general solution of the homogeneous equation y′′h + 4yh = 0 is yh = ae−2t + be2t or
equivalently yh = a cosh(2t) + b sinh(2t). Since a particular solution for the original
equation is yp = −5/2, the general solution of the original equation is

y = yh + yp = a cosh(2t) + b sinh(2t)− 5/2.

The initial conditions require
{

a cosh 2 + b sinh 2 = −1/2
a sinh 2 + b cosh 2 = −2.

By Cramer’s rule

a = 2 sinh 2− (1/2) cosh 2 and b = (1/2) sinh 2− 2 cosh 2.
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Therefore,

y = [2 sinh 2− (1/2) cosh 2] cosh(2t) + [(1/2) sinh 2− 2 cosh 2] sinh(2t)− 5/2.

Problem 2 (Boas 8.6.28) Consider the following ordinary differential operators on
complex valued functions of a real variable:

d

dt
: C∞(R → C) → C∞(R → C) by

d

dt
u = u′

and
id : C∞(R → C) → C∞(R → C) by id u = u.

(a) Expand the linear constant coefficient operator

L : C∞(R → C) → C∞(R → C) by Lu =

(

d

dt
− a id

)(

d

dt
− b id

)

u

where a and b are complex numbers to obtain an expression of the form Lu =
u′′ + pu′ + qu for complex numbers p and q.

(b) Find the general solution of Lu = kect where k and c are complex numbers by
solving y′ − ay = kect first and then solving u′ − bu = y (as linear first order
ODEs) in the three cases:

(i) c 6= a and c 6= b.

(ii) a 6= b and c = a.

(iii) a = b = c.

Solution:

(a)
(

d

dt
− a id

)(

d

dt
− b id

)

u =

(

d

dt
− a id

)

(u′ − bu) = u′′ − bu′ − au′ + abu.

That is, Lu = u′′−(a+b)u+abu. Note that if p and q are any complex numbers,
we can take the principal (complex) square root and set

a =
−p−

√

p2 − 4q

2
and b =

−p +
√

p2 − 4q

2
.

Then we will have p = −(a + b) and q = ab.
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(b) u′′ − (a + b)u + abu = kect. It is convenient to use the linear existence and
uniqueness theorem to assert that all equations considered here have solu-
tions existing for all time.

We consider the associated homogeneous equation u′′h − (a + b)u′h + abuh = 0
first. The factorization suggests we find yh with

y′h − ayh = 0.

That is, yh = yh(0)e
at. We then consider

u′h − buh = yh = yh(0)e
at. (1)

Notice that the value yh(0) may be assumed to exist according to the comment
above. From (1) we get

(

uhe
−bt
)′
= yh(0)e

(a−b)t.

There are various cases we need to consider at this point. If b 6= a, then

uh =

[

uh(0) + yh(0)

∫ t

0

e(a−b)τ dτ

]

ebt

=

[

uh(0) +
yh(0)

a− b

(

e(a−b)t − 1
)

]

ebt

= uh(0) e
bt +

yh(0)

a− b

(

eat − ebt
)

=

(

uh(0)−
yh(0)

a− b

)

ebt +
yh(0)

a− b
eat.

In view of the fact that yh(0) and uh(0) may be chosen arbitrarily, we find that
the general homogeneous solution has the form

uh = αeat + βebt where α and β are arbitrary complex constants.

If a = b, then the integration proceeds differently:

uh =

[

uh(0) + yh(0)

∫ t

0

1 dτ

]

ebt

= [uh(0) + yh(0) t] e
bt.
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Therefore, when a = b

uh = (βt+ α)eat where α and β are arbitrary complex constants.

We next attempt to apply the same approach to finding a particular solution
up of the inhomogeneous equation starting with the preliminary equation

y′p − ayp = kect.

As before,

(

ype
−at
)′
= ke(c−a)t, and yp =

[

yp(0) + k

∫ t

0

e(c−a)τ dτ

]

eat. (2)

Here we encounter the cases outlined by Boas:

(i) c 6= a and c 6= b. In this case,

yp =

[

yp(0) +
k

c− a

(

e(c−a)t − 1
)

]

eat =

(

yp(0)−
k

c− a

)

eat +
k

c− a
ect.

Since we are seeking a particular solution, we may choose yp(0) = k/(c−a)
and

yp =
k

c− a
ect.

With this choice, if u′p − bup = yp we get

(

upe
−bt
)′
=

k

c− a
e(c−b)t.

Thus,

up =

[

up(0) +
k

(c− a)(c− b)

(

e(c−b)t − 1
)

]

ebt

=

(

up(0)−
k

(c− a)(c− b)

)

ebt +
k

(c− a)(c− b)
ect.

Again, we may choose up(0) for our convenience and obtain a particular
solution of the form

up =
k

(c− a)(c− b)
ect,
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so the general solution is u = uh + up given by

u = αeat + βebt +
k

(c− a)(c− b)
ect if a 6= b

and

u = (βt+ α)eat +
k

(c− a)(c− b)
ect if a = b.

(ii) a 6= b and c = a. In this case, (2) becomes

yp =

[

yp(0) + k

∫ t

0

1 dτ

]

eat = (yp(0) + kt)eat.

Postponing momentarily a specific choice for yp(0) = 0, we consider next

u′p − bup = yp = yp(0)e
at + kteat.

Noting the assumption a 6= b, we get
(

upe
−bt
)′
= yp(0)e

(a−b)t + kte(a−b)t.

Therefore,

up =

[

up(0) + yp(0)

∫ t

0

e(a−b)τ dτ + k

∫ t

0

τe(a−b)τ dτ

]

ebt

=

[

up(0) +
yp(0)

a− b

(

e(a−b)t − 1
)

+
k

a− b

(

te(a−b)t −
∫ t

0

e(a−b)τ dτ

)]

ebt

=

(

up(0)−
yp(0)

a− b

)

ebt +
yp(0)

a− b
eat +

k

a− b
teat − 1

(a− b)2
(

eat − ebt
)

=

(

up(0)−
yp(0)

a− b
+

1

(a− b)2

)

ebt +

(

yp(0)

a− b
− 1

(a− b)2

)

eat +
k

a− b
teat.

Taking yp(0) = 1/(a− b) and up(0) = 0, we obtain a particular solution

up =
k

a− b
teat

and general solution

u = αeat + βebt +
k

a− b
teat =

(

α +
kt

a− b

)

eat + βebt.
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(iii) a = b = c. We begin again with (2) which as in the previous case gives

yp = (yp(0) + kt)eat.

The final integration is much easier. We have

u′p − aup = yp = yp(0)e
at + kteat,

so
(

upe
−at
)′
= yp(0) + kt.

Therefore, taking up(0) = yp(0) = 0

up =

[

up(0) + yp(0) t+
k

2
t2
]

eat =
k

2
t2eat,

and using the homogeneous solution in the case a = b

u = (βt+ α)eat +
k

2
t2eat =

(

k

2
t2 + βt+ α

)

eat.

Problem 3 (Boas 8.7.5) The shape of a hanging chain is modeled by solutions of

(y′′)2 = k2[1 + (y′)2].

Find the general solution of this (nonlinear) ODE.

Solution: We can write the equation as

y′′
√

1 + y′2
= k,

or
d

dx
sinh−1 y′ = k.

Thus, Integrating once yields

sinh−1 y′ = kx+ b

or
y′ = sinh(kx+ b).

It follows that y(x) = cosh(kx+ b) + c for some constants b and c.
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Problem 4 (Boas 8.7.6) The signed curvature of the graph of a function u ∈
C2[a, b] at the point (x, u(x)) is defined to be the derivative

k =
dψ

ds

with respect to arclength

s =

∫ x

a

√

1 + [u′(ξ)]2 dξ

of the inclination angle ψ defined by

(cosψ, sinψ) =

(

1
√

1 + [u′(x)]2
,

u′(x)
√

1 + [u′(x)]2

)

.

(a) Find the curvature of the graph of u(x) =
√
r2 − x2 for |x| < r.

(b) Find the curvature of the graph of u(x) = −
√
r2 − x2 for |x| < r.

(c) Show the curvature is given in general by

k =
u′′

(1 + [u′(x)]2)3/2
.

(d) Solve the ODE
u′′

(1 + [u′(x)]2)3/2
= c

where c is a (real) constant.

Solution:

(a) Find the curvature of the graph of u(x) =
√
r2 − x2 for |x| < r.

Notice that
u′ = − x√

r2 − x2
.

Also, differentiating the arclength s as a function of x, we have

ds

dx
=

√
1 + u′2 =

√

1 +
x2

r2 − x2
=

r√
r2 − x2

≥ 1 > 0.
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This means, we can think of this semicircle as parameterized by the arclength,
and in particular, we can think of x as a function of the arclength s as well with

dx

ds
=

1√
1 + u′2

=

√
r2 − x2

r
=
√

1− (x/r)2.

We note also that in general
dx

ds
= cosψ

Therefore,

sinψ =
u′√

1 + u′2
= − x√

r2 − x2

√
r2 − x2

r
= −x

r
.

By the chain rule then

d

ds
sinψ =

d

dx

(

u′√
1 + u′2

)

dx

ds
=

u′′

(1 + u′2)3/2
cosψ.

On the other hand,
d

ds
sinψ = cosψ

dψ

ds
= k cosψ

where k is the curvature. Putting these two expressions together and canceling
the cosine, we get

k =
u′′

(1 + u′2)3/2
=

d

dx

(

u′√
1 + u′2

)

=
d

dx

(

−x
r

)

= −1

r
.

The sign is somewhat crucial here. Another approach is to complete the inte-
gration to obtain the arclength as an explicit function of x:

s =

∫ x

0

1
√

1− (ξ/r)2
dξ = r sin−1(x/r)

so that
x = r sin(s/r) and ψ = −s

r
.

Then, as above k = dψ/ds = −1/r. (To get the expression for ψ, write down a
parameterization

γ(s) = (r sin(s/r),
√

r2 − r2 sin2(s/r)) = r(sin(s/r), r cos(s/r)).

Then (cosψ, sinψ) = γ̇(s) = (cos(s/r),− sin(s/r)) = (cos(−s/r), sin(−s/r)). )
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(b) Find the curvature of the graph of u(x) = −
√
r2 − x2 for |x| < r. The difference

is that u′ = x/
√
r2 − x2 so u′/

√
1 + u′2 = x/r, ψ = s/r and

k =
d

dx

(x

r

)

=
d

ds

(s

r

)

=
1

r
.

(c) Show the curvature is given in general by

k =
u′′

(1 + [u′(x)]2)3/2
.

I already did this above in part (a).

(d) Solve the ODE
u′′

(1 + [u′(x)]2)3/2
= c

where c is a (real) constant.

We can write this equation as

d

dx

(

u′√
1 + u′2

)

d

dx
sinψ = c.

Therefore,
u′√

1 + u′2
= cx+ d. (3)

We note here that we must have |cx+ d| ≤ 1. As long as c 6= 0, this condition
determines an interval with endpoints (1− d)/c and −(1 + d)/c of length 2/|c|.
Let us call the endpoints of this interval −d/c−r and −d/c+r where r = 1/|c|.
Squaring in (3), we get u′2 = (cx+ d)2(1 + u′2) or

u′ =
cx+ d

√

1− (cx+ d)2
.

Therefore,

u = u(−d/c) +
∫ x

−d/c

cξ + d
√

1− (cξ + d)2
dξ

= u(−d/c)− 1

c

√

1− (cx+ d)2

= u(−d/c)− c

|c|
√

c2 − (x+ d/c)2.
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If c is negative, we have here the upper semicircle determined by the circle

(

x+
d

c

)2

+

(

u(x)− u

(

−d
c

))2

= c2

with

center

(

−d
c
, u

(

−d
c

))

and radius |c|.

If c > 0, we have found the closed lower half of the same circle. Notice that in
either case,

u ∈ C0[−d/c− r,−d/c+ r] ∩ C1(−d/c− r,−d/c+ r)\C1[−d/c− r,−d/c+ r].

Note that any semicircle in the plane may be obtained as a solution of this
ODE.

The case c = 0 remains. In this case, we do not obtain the graph of a semicircle.
The equation (3) is still valid with c = 0, and upon squaring we find

u′ =
d√

1− d2
.

Note that for each d with |d| < 1, the right side determines a constant m.
Furthermore, the function m : (−1, 1) → R given by

m(d) =
d√

1− d2

is monotone increasing and surjective. Therefore, the solutions in this case give
precisely every affine function u(x) = mx+ b.

In summary, the ODE in this problem (the ODE of graphs of constant curvature)
gives every circle (by upper and lower halfs) and every (non-vertical) straight line
graph as a solution—and exactly these.

It helps to do a problem like this if you have some picture in your mind. The
more you know, the more you know.

Problem 5 (Boas 9.1.2) Assume A = (0, h) is a point on the positive y-axis (with
h > 0) and B = (x0, y0) is a point in the fourth quadrant with x0 ≥ 0 and y0 < 0. Let
c denote the speed of light and assume a “light particle” takes a straight line path from
A to a point p = (x, 0) on the x-axis moving with speed c/n1 and the same particle
continues taking a straight line path from p to B moving with speed c/n2.
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(a) Compute the total time for this particle to travel from A to B as a function of x.

(b) Find the point p on the x-axis for which the travel time from A to B is the
minimum possible.

(c) Use your result to verify Snell’s law of refraction:

n1 sin θ1 = n2 sin θ2

where θ1 is the angle of incidence and θ2 is the angle of refraction.

Solution: The geometry described in the problem is illustrated in Figure 1.

(a) The total time of travel T = T (x) is determined by applying the relation

time of travel =
distance

rate

to each segment of travel so that

T =

√
x2 + h2

c/n1
+

√

(x0 − x)2 + y20
c/n2

.

(b) (initial comments) This problem turns out to be much more difficult than one
might initially guess, so I limit myself here to some preliminary observations.
In particular, I will demonstrate that, assuming x0 > 0, there exists a unique
value x ∈ (0, x0) depending smoothly on x0, y0 < 0, and the ratio λ = n1/n2 >
0. Certain other observations will be established for future reference.

It should be emphasized that, while the problem is difficult, it is a reasonable
problem to consider, and we will show here that it has a well-defined solution.
After presenting a solution for part (c), I will also explain why there should be
(at least in principle) a closed form (formula) for that solution.

We note first that f : R → R by

f(x) =
c

n2
T = λ

√
x2 + h2 +

√

(x0 − x)2 + y20

is a smooth function of x with

f ′(x) = λ
x√

x2 + h2
− x0 − x
√

(x0 − x)2 + y20
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Figure 1: An origin point (0, h) for light that refracts across y = 0 arriving at a
destination point (x0, y0) with x0 > 0 and y0 < 0.

and

f ′′(x) = λ
h2

(x2 + h2)3/2
+

y20
[(x0 − x)2 + y20]

3/2
> 0. (4)

The inequality (4) implies f ′ : R → R is strictly increasing. Furthermore,
f ′(0) < 0 and f ′(x0) > 0. It follows that f has a unique minimum at a point
x ∈ (0, x0). The smoothness of the minimizer x : (0,∞)×(−∞, 0)×(0,∞) → R

by x = x(x0, y0, λ) as a function of the three parameters x0, y0, and λ follows
from the implicit function theorem. We henceforth denote the unique solution
of the problem by x as well as the variable x indicated in Figure 1; the context
should make the intended identity of this symbol clear.

The fact that f ′′(x) > 0 means that x is a, so called, simple zero of f ′′(x) = 0,
and numerical approximation of x should be reasonably easy to obtain for any
specific given values of x0, y0, and λ.

We define an auxiliary value x1 = hx0/(h − y0) giving the x-intercept of the
line connecting (0, h) to the point B = (x0, y0). When λ = 1, the condition
f ′(x) = 0 implies

x2[(x0 − x)2 + y20] = (x0 − x)2(x2 + h2) or x2y20 = h2(x0 − x)2
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so that −xy0 = h(x0 − x) = hx0 − hx and

x = x1 =
hx0
h− y0

.

Thus, when n1 = n2 the path of minimum travel is along the straight line
connecting A = (0, h) and B = (x0, y0). This is one case in which x may be
easily found in terms of an explicit formula.

Holding x0 and y0 fixed and differentiating the defining relation

f ′(x) = f ′(x(λ);λ) = 0

with respect to λ, we obtain

f ′′(x)
∂x

∂λ
+

x√
x2 + h2

= 0.

Consequently,
∂x

∂λ
= − x

f ′′(x)
√
x2 + h2

< 0.

It follows that x > x1 when λ < 1 and x < x1 when λ > 1. This condition is
illustrated on the right in Figure 1 for λ < 1 and may be interpreted to mean
that the light “prefers” to travel a shorter path in the medium in which travel
is slower.

The existence, uniqueness, and regularity of x extends to the case x0 ≤ 0 with
x = x1 = 0 when x0 = 0 and x < 0 when x0 < 0.

(c) Snell’s law of refraction may be obtained directly, given the existence and unique-
ness of x ∈ [0, x0) described above. We simply draw the vertical line through x
as indicated in Figure 2 and observe that the condition

n2f
′(x) = n1

x√
x2 + h2

− n2
x0 − x

√

(x0 − x)2 + y20
= 0

can be written as
n1 sin θ1 = n2 sin θ2

according to the geometry of the figure. This also holds trivially in the case
when x0 = 0 = x = x1 for which θ1 = θ2 = 0.
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Figure 2: Snell’s law.

(b) (further comments)

It may be noted that we did not consider dependence on the initial height h
at which our hypothetical ray of light originated. This is because the condition
defining x is essentially invariant under a scaling of the plane by 1/h. More
precisely, for each h > 0 the defining condition

f ′(x) = λ
x√

x2 + h2
− x0 − x
√

(x0 − x)2 + y20
= 0

is equivalent to

λ
x/h

√

(x/h)2 + 1
− x0/h− x/h
√

(x0/h− x/h)2 + (y0/h)2
= 0.

Thus, if we can solve the problem

λ
x√
x2 + 1

− x0 − x
√

(x0 − x)2 + y20
= 0 (5)

corresponding to the case h = 1, then we can solve the problem with Ã = (0, h)
and B̃ = (x̃0, ỹ0) simply but substituting x0 = x̃0/h and y0 = ỹ0/h in (5) and
taking the solution x̃ = hx. In view of this remark, we henceforth consider
h = 1 and the equation (5).
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If we write (5) in the form

λ
x√
x2 + 1

=
x0 − x

√

(x0 − x)2 + y20

and square both sides, we find x satisfies

λ2x2[(x0 − x)2 + y20] = (x0 − x)2(x2 + 1). (6)

Upon further rearrangement we see x satisfies the quartic polynomial equation

(λ2 − 1)x4 − 2(λ2 − 1)x0 x
3 + [(λ2 − 1)x20 + λ2y20 − 1] x2 + 2x0 x− x20 = 0.

As described in our first discussion of part (b), when λ = 1, we have the explicit
(though somewhat uninteresting) solution

x1 =
x0

1− y0
.

It will be observed that in the case λ = 1, the quartic equation for x becomes

(y20 − 1)x2 + 2x0 x− x20 = 0.

For y0 = −1, this equation gives only the correct root x1 = x0/2, but when
y0 6= −1, we find an extraneous root

x̃1 =
x0

1 + y0

which satisfies x1 < x̃1 if −1 < y0 < 0 and x̃1 < 0 if y0 < −1. In particular, the
limit as y0 tends to −1 of x̃1 does not exist but

lim
y0ց−1

x̃1 = +∞ and lim
y0ր−1

x̃1 = −∞.

This tells us we have rather strong singular behavior of the (extraneous roots
of the) polynomial equation for x as y0 tends to −1 even in this simple case. In
particular, we should expect to consider a number of distinct cases depending
on the values of x0, y0, and λ. See Figure 3.

At this point, it is worth noting something about the study (and the history of
the study) of quartic (and cubic and quadratic) polynomial equations in general.
Actually, we are only interested in the subclass of polynomial equations with
real coefficients.
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Figure 3: Here we have plotted the basic quartic polynomial for the crossing x value
when (x0, y0) = (3,−2). On the left we have taken λ = 1/2, and it can be checked
explicitly that x = 2. On the right we have taken λ = 2, and I do not know the crossing
x explicitly, but I found a numerical approximation for it. This value appears on the
right in Figure 2. It may be noted that in both cases there is precisely one extraneous
root x̃ with x̃ > x0 when λ = 1/2 and x̃ < 0 when λ = 2. It seems unlikely that
there are always only two roots with one extraneous root (and two complex conjugate
roots), but that may indeed be the case. It also seems unlikely that the interval (0, x0)
containing x will always be free of extraneous roots, but that is also true in the two
examples we have here.

1. First let us note that the complex roots of such an equation, if there are
any, must come in complex conjugate pairs. For quadratic equations,
this means there are precisely two possibilities: Either both roots are real
(possibly repeated) or they are nontrivially complex (and distinct). What
precisely happens is, in principle, easily seen from the coefficients and from
the quadratic formula

−b ±
√
b2 − 4c

2

for the equation x2 + bx+ c = 0.

There are also, in principle, known formulas for cubic and quartic equa-
tions, but the property that the nature of the roots is easily determined
from the coefficients is, as far as I know, neither known to hold nor known
to be unprovable.

2. To follow up on the last comment: We do know there are particular cubic
and quartic equations for which the formula for the roots is easily obtained.
In particular, if one real root of a cubic equation is known, then a formula
for each root is easily determined. For example, we know x = c ∈ R is a
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root of x3 − c3 = 0. Thus, the other two roots can be easily written down
using the quadratic formula. A similar comment holds for x4 − c = 0. Of
course, these are very simple equations.

3. It may be that a quartic equation is known to have a real root, and one
might hope there exists a simple(r) formula (than the one presently known)
for the real root in such a case. This does not appear to be known, but as
far as I know it may still be hoped that such a formula can be discovered
at least for some particular special equations.

4. The immediate question arises then: Is our quartic equation special in any
particular sense?

5. We have already seen that even in a simple degenerate case, the polynomial
under consideration can have extraneous roots smaller than or larger than
the desired crossing point x. It would be nice if we at least knew x was,
say, the unique largest (and positive) real root of the polynomial equation.
I am going to give a construction in the case λ < 1 leading to a polynomial
equation with something like this property—essentially with this property
in fact. Hopefully, the construction will appear justified after the details
are given.

6. In the course of the discussion, I will attempt to treat the case λ < 1 in
full generality to the extent I am able to do so.

7. I will also consider a specific example (x0, y0) = (3,−2) and λ = 1/2 for
which I will attempt a full solution.

Returning to our quartic equation (6) obtaind by squaring, we can rearrange
the terms in a different way:

λ2x2y20 = [(1− λ2)x2 + 1](x0 − x)2.

Notice that the quantity (1−λ2)x2+1 is greater than 1. Therefore, the principal
(real positive) square root

µ = µ(x) =
√

(1− λ2)x2 + 1 > 1

is well-defined. Taking a square root in the defining relation, we obtain the
relation

−λxy0 = µ(x0 − x).
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That is,

x =
x0µ

µ− λy0
. (7)

Note that if we can find µ2 > 1, then we can find x:

x =

√

µ2 − 1

1− λ2
.

In particular, making this substitution on the left in (7) and squaring we find

(µ− λy0)
2(µ2 − 1) = (1− λ2)x20µ

2

Simplifying this relation, we obtain

(µ2 − 2λy0µ+ λ2y20)(µ
2 − 1) = (1− λ2)x20µ

2

and
µ4 − 2λy0 µ

3 + (λ2x20 − x20 + λ2y20 − 1)µ2 + 2λy0 µ− λ2y20 = 0.

Thus, µ satisfies a quartic equation. We will show, moreover, that this equation
has a unique positive root. We will show the root is simple, i.e., that the
derivative of the polynomial is nonzero (in fact postive) at the root, and a
number of other properties.

Let

q(µ) =

4
∑

j=0

qjµ
j = µ4 − 2λy0 µ

3 + (λ2x20 − x20 + λ2y20 − 1)µ2 + 2λy0 µ− λ2y20

with the most interesting coefficient

q2 = λ2x20 − x20 + λ2y20 − 1

= λ2(x20 + y20)− x20 − 1

= −(1 − λ2)x20 + λ2y20 − 1

= λ2y20 −m(x0, λ)

where m = m(x, λ) = (1 − λ2)x2 + 1 > 1 is a function we have seen before in
the sense that

µ =
√

m(x, λ).
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The other coefficients have known signs with

q(0) = q0 = −λ2y20 < 0,

q′(0) = q1 = 2λy0 < 0,

q′′′(0) = 6q3 = −12λy0 > 0.

The quantity q′′(0) = 2q2(0) may be either positive or negative, but we can
classify the behavior in terms of the position of the point (x0, y0) in the fourth
quadrant. In fact, the third expression for q2 given above indicates that q2 =
q2(x0, y0) vanishes precisely along the branch of the hyperbola

− x20
1/(1− λ2)

+
y20

1/λ2
= 1

with vertex at (0,−1/λ) as indicated on the left in Figure 4.

In view of the signs of the coefficients indicated above, we note that

q′′(µ) = 12µ2 − 12λy0µ+ 2q2 = 2

[

6

(

µ− λy0
2

)2

− 3λ2y20
2

+ q2

]

has a minimum value

q′′
(

λy0
2

)

= 2q2 − 3λ2y20 = −2(1− λ2)x20 − λ2y20 − 2 < 0

at µ = λy0/2. Therefore, q′′ has precisely two sign changes at precisely the
values

µ± =
λy0
2

±
√

λ2y20
4

− q2
6
.

At most one of these values of µ± is positive. More precisely, if q′′(0) = 2q2 > 0,
then both sign changes of q′′ correspond to negative values ofmu and q is convex
for µ ≥ 0. If q2 = 0, then q′′ has a sign change at µ+ = 0, but q is still (strictly)
convex for µ > 0. If q2 < 0, then there is some interval 0 < µ < µ+ on which
q′′ < 0, but q′′(µ) > 0 for µ > µ+. This last observation is illustrated on the
right in Figure 4.

Recalling that q(0) < 0 and q′(0) < 0, if q′′(µ) > 0 for µ > 0, then there can
be (and there is) precisely one positive root µ of the equation q(µ) = 0. Since
we know the desired root µ corresponding to the desired crossing x satisfies
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Figure 4: On the left we have plotted the curve where the coefficient q2 changes sign
in the (x0, y0) plane when λ = 1/2. It will be noted that our chosen point (3,−2)
lies in the region where q2 < 0 corresponding to a negative second derivative for q at
x = 0. This is clearly seen on the right where we have plotted the polynomial q for
these choices (λ = 1/2 and (x0, y0) = (3,−2)).
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q(µ) = 0 and µ > 1, we know the unique positive root is also this root and
satisfies µ > 1.

Similarly, if q′′(0) < 0, then q′ is decreasing and negative for 0 ≤ µ < µ+. In
particular, q(µ) < 0 for 0 ≤ µ ≤ µ+ with q(µ+) < q(0) < 0 and q′(µ+) <
q′(0) < 0. Furthermore, q is convex on µ+ < µ. Again it follows that there
can be (and there is) precisely one positive root µ of the equation q(µ) = 0.
This root satisfies µ > µ+ and is also the desired root satisfying µ > 1 by the
reasoning above.

Problem 6 (Boas 9.1.1,3) The figure below shows the ellipse x2/2 + y2 = 1 with
semi-axes of lengths

√
2 and 1 and focal points (±1, 0). Also shown are the inscribed

circle x2 + y2 = 1 and the tangent line y = −1 at (0,−1). Each of these three
curves may be considered as the top view of a reflecting wall, and a light ray emitted
from (−1, 0) is shown reflecting off each of these walls at (−1, 0) and subsequently
reaching (1, 0). The angle of reflection is equal to the angle of incidence for this path
in accordance with Hero’s law of reflection.

(a) Assume a ray of light travels with speed c/n (where c is the speed of light in a
vacuum and n > 1 is a constant). Consider all paths along which light may
travel from the point (−1, 0) along a straight line to a point p = (x,−1) and
then travel along a straight line from p to (1, 0). We can say such a path models
the light “bouncing” off the line at p. Show the path bouncing at (0,−1) is the
path of least travel time among all paths that model light bouncing off the flat
wall y = −1 at points p = (x,−1).
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(b) Show all piecewise straight line paths starting at (−1, 0) and reflecting off the
ellipse x2/2 + y2 = 1 at points p = (x, y) and going (straight) to (1, 0) have the
same travel time and the same angles of incidence and reflection.

(c) Show all unions of two straight line segments with the first connecting (−1, 0)
to a point p on the circle and the second connecting p to (1, 0) have travel
times strictly less than the actual path (of reflection through (0,−1)) unless
p = (0,±1).

Problem 7 (Boas §9.2) Let u ∈ C1[a, b].

(a) Given a partition P = {a = x0 < x1 < x2 < · · · < xk = b} Consider the
(Riemann) sum

k
∑

j=1

√

[xj − xj−1]2 + [u(xj)− u(xj−1)]2.

Draw a picture showing the geometric meaning of this sum, and use the mean
value theorem to write this sum as a Riemann sum in the form

k
∑

j=1

F (u′(x∗j )) (xj − xj−1)

for some evaluation points x∗1, x
∗
2, . . . , x

∗
k.

(b) Take the limit

lim
‖P‖→0

k
∑

j=1

√

[xj − xj−1]2 + [u(xj)− u(xj−1)]2

where ‖P‖ = maxj(xj − xj−1) to obtain a functional L : C1[a, b] → R of the
form

L[u] =
∫ b

a

F (u′(x)) dx.

(c) Consider

M = {w ∈ C1[a, b] : L[w] ≤ L[u] for all u ∈ C1[a, b]}.

Characterize the set M . Prove your assertion and determine if M is a vector
subspace of C1[a, b]. M is called the set of minimizers for L.
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(d) Consider A = {u ∈ C1[a, b] : u(a) = 0 and u(b) = 1}. Find the set of minimizers
of the restriction of L to A. Can you prove your assertion?

Problem 8 Let p and q be two distinct points fixed in the plane R
2. The set of C1

paths connecting p to q is

A = {γ ∈ C1([0, 1] → R
2) : γ(0) = p and γ(1) = q}.

(a) Find all circular arcs of a fixed radius in A.

(b) Write down a functional L : A → R for which L[γ] is the length of the path γ.

(c) Compute the first variation of L. (Hint: It may be helpful to write down an
appropriate set V of admissible perturbations for this problem.)

Problem 9 Let L > |q− p| where p = (a, y1) and q = (b, y2) are fixed points in the
plane R2 with a < b. A chain lies in the plane taking a certain shape modeled by the
graph of a function u ∈ C1[a, b] with u(a) = y1 and u(b) = y2.

(a) Imagine the chain consists of “links” modeled by

Lj = {(x, u(x)) : xj−1 ≤ x ≤ xj} for j = 1, 2, . . . , k (8)

where P = {a = x0 < x1 < x2 < · · · < xk = b} is a partition of [a, b]. Imagine
further that the chain is constructed by moving each link Lj vertically from the
position

{(x, u(x)− u(xj)) : xj−1 ≤ x ≤ xj}
to the position (8) through a downward gravitational potential field −g(0, 1).
Write down a Riemann sum giving the total work (i.e., energy) required to
construct the chain in this way. Hint: Assume a uniform linear density ρ along
the chain so that any length ℓ of this (kind of) chain has mass ρℓ.

(b) Take a limit of your approximate potential energy/Riemann sum to obtain a
potential energy function E : A → R assigning a potential energy to each model
chain shape. Hint: Writing down the definition of the admissible class A which
is the domain of E is part of the problem.

(c) Show E is not bounded below on A.
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(d) Introduce an appropriate constraint within the admissible class A according to
which there is some hope to minimize E . Hint: Look at the very first hypothesis
in the statement of this problem, and then use Problem 7 above. Your answer
may be given in terms of an appropriate subset AL of A determined by the
constraint.

Note: You should not expect to be able to carry out the mathematical details of mini-
mizing E on A subject to the constraint you gave in part (d), but you should have a
strong physical intuition that a minimizer for this constrained problem should exist.
Soon you should be able to find it.

Problem 10 The previous problem involved minimizing a real valued function(al)
subject to a constraint. Here is a finite dimensional version of this kind of problem:
Minimize the value of u(x, y) = x2+ y2 on R2 subject to the constraint x2/2+ y2 = 1.
See Boas §4.9 and §9.6.
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