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Some of this material is contained in the calculus of variations notes, but this gives a self-contained
treatment which is somewhat different and includes some additional topics. Here is an outline of what is
here:

I. Integration

a. Evaluation

i. Fubini’s Theorem/Principle

ii. Change of Variables

b. Balls and Spheres

c. Convolution

d. Mollification

e. Fundamental Lemma

II. The Divergence

a. Definition

b. Product Rule

c. First Variation Formula for PDEs

II. Preliminary Results (PDE; Laplace’s Equation)

a. Mean Value Property

b. Strong Maximum Principle

c. Higher Regularity

The immediate objective of these notes is to describe/get the divergence theorem and the product
rule for the divergence of a scaled field in order to obtain the Euler-Lagrange PDE for C2 extremals in
several variables. Starting on the preliminaries of integration, however, it appeared that several other “side
topics” could/should be covered along the way.

1 Integration and Scaling Factors

We have noted that the integral of a real valued function f : A → R defined on a set A can often be
obtained as a limit

∫

A

f = lim
‖P‖→0

∑

j

f(p∗j)µ(Aj)
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where µ is a measure on subsets of A and P = {Aj}j is a partition of A for which A = ∪jAj consisting
of finitely many “pieces” Aj having negligible intersection, i.e., µ(Ai ∩ Aj) = 0 when i 6= j, and

‖P‖ = max
j

diam(Aj).

The evaluation points p∗j are required to satisfy p∗j ∈ Aj but are otherwise arbitrary in the sense that there
is a number L ∈ R such that given any ǫ > 0 if P = {Aj}j is any partition as above with ‖P‖ < ǫ, then

∣

∣

∣

∣

∣

∑

j

f(p∗j)µ(Aj)− L

∣

∣

∣

∣

∣

< ǫ

for every possible choice of evaluation points p∗j ∈ Aj. In this event, we call the number L the integral of
f over A and write

∫

A

f = L.

Such is our definition of an integral. Let us declare that in this definition, when it makes sense, the set A
may be called a domain of integration. We also recall the alternative notation

∫

p∈A
f(p)

which can be useful when there are many symbols/variables appearing in the expression for the function f ;
The use of the integration variable p signals which variable is under consideration for the integration—the
rest being considered fixed.

The question immediately arises: How is one to compute the value of such an integral over a set?
Ultimately, everything must be reduced to the familiar integration from 1-D calculus over an interval
on which our abstract integration is obviously modeled (or perhaps the Lebesgue generalization of that
integration). In any case, there are two initial principles which are often used to facilitate this reduction.

1.1 Evaluation Principles

In many instances, our abstract integration is applied to subsets of Rn when n ≥ 2 which have “full
dimension” in Rn, so to speak. It is in this setting that we state our first evaluation principle known,
roughly, as Fubini’s theorem:

Let Π be a hyperplane in Rn passing through a point x0 and having (unit) normal n, say

Π = {x ∈ Rn : (x− x0) · n = 0}.

Let us also assume U ⊂ Rn is a domain of integration and U is a domain of integration in Π such that

U =
⋃

x∈U
Ix (1)

where Ix is a segment with
Ix = {x+ tn : ax ≤ t ≤ bx}.

In this situation
∫

U f can be written as an iterated integral

∫

U
f =

∫

x∈U

∫

Ix

f∣
∣

Ix

. (2)

In many applications of Fubini’s principle the secondary domain of integration U is a subset of a
coordinate hyperplane.
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Example 1 (Boas 5.2.32)
U = {(x, y) : y2 < x < 1, 0 < y < 1}

with f : U → R by

f(x, y) =
ex√
x
.

In this case, we can set Iy = {x : y2 < x < 1} for 0 < y < 1 and write
∫

U
f =

∫

U

ex√
x
=

∫

y∈(0,1)

∫

x∈Iy

ex√
x

=

∫ 1

0

(
∫ 1

y2

ex√
x
dx

)

dy.

The inner integral, it will be observed, cannot be evaluated in terms of elementary functions, but the
entire area integral

∫

U f can. This is accomplished by using Fubini’s theorem in a different way: Taking
Jx = {y : 0 < y <

√
x} for 0 < x < 1, we have

∫

U
f =

∫

x∈(0,1)

∫

y∈Jx

ex√
x

=

∫ 1

0

(

∫

√
x

0

ex√
x
dy

)

dx

=

∫ 1

0

ex√
x

(

∫

√
x

0

1 dy

)

dx

=

∫ 1

0

ex dx

= e.

What is U?

Example 2 (Boas 5.2.50) Here

U = {(x, y, z) : y2 + z2 < x2 < 4, x, y, z > 0}

is part of the inside of a cone with f : U → R by

f(x, y, z) = z.

Setting U = {ζ = (y, z) : y, z > 0, y2 + z2 ≤ 16}, that is, a quarter disk in the y, z-coordinate plane, we
have

Iζ = {x :
√

y2 + z2 < x < 4},
and from Fubini’s principle

∫

U
z =

∫

ζ=(y,z)∈U

∫

x∈Iζ
z

=

∫

ζ=(y,z)∈U

(

∫ 4

√
y2+z2

z dx

)

=

∫

ζ=(y,z)∈U
z

(

∫ 4

√
y2+z2

1 dx

)

=

∫

ζ=(y,z)∈U
z
(

4−
√

y2 + z2
)

.
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Applying Fubini’s theorem to the domain of integration U ⊂ R2, we continue our evaluation:

∫

U
z =

∫ 4

0

∫

√
16−y2

0

(

4z − z
√

y2 + z2
)

dz dy

=

∫ 4

0



2(16− y2)− 1

3
(y2 + z2)

3/2
∣

∣

√
16−y2

z=0



 dy

=

∫ 4

0

(

32− 2y2 − 1

3
(16)3/2 +

1

3
y3
)

dy

=

∫ 4

0

(

32

3
− 2y2 +

1

3
y3
)

dy.

Another common special case of Fubini’s theorem (some instances of which you may not have seen) is
when U is a cross-product:

Example 3 Say h > 0 and

C = {(x, y, z) : x2 + y2 = 1, 0 < z < h} = ∂B1(0)× (0, h)

is a cylinder where B1(0) = {(x, y) ∈ R2 : x2 + y2 = 1}. The cylindrical surface C is a valid domain of
integration having the form required by Fubini’s theorem with U = ∂B1(0), and

∫

C
f =

∫

(x,y)∈∂B1(0)

(
∫ h

0

f(x, y, z) dz

)

.

In order to complete the evaluation in the last example, one needs to know how to integrate on a circle.

Change of Variables and Scaling Factors

In the last example we reduced an integral over a cylinder to an iterated integral involving an integral over
a circle. Say we want to compute

∫

∂Br(0)

f

where ∂Br(0) = {(x, y) ∈ R2 : x2 + y2 = r2}. One way to evaluate such an integral is to use the
parameterization

ψ : [0, 2π] → ∂Br(0) by ψ(θ) = (r cos θ, r sin θ).

Then we can write
∫

∂Br(0)

f =

∫ 2π

0

f ◦ ψ(θ) σ dθ

where σ is an appropriate scaling factor. This construction applies in rather great generality.

The Change of Variables Principle: Assume ψ : A → B is a parameterization of one domain of
integration B with measure µ on another domain of integration A with measure ν. Assume also a scaling
factor

σ : A → [0,∞) exists with σ(p) = lim
Aj→{p}

µ(ψ(Aj))

ν(Aj)

where Aj is a typical “piece” of the domain of integration A and

ψ(Aj) = {ψ(x) : x ∈ Aj}
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is the image of the piece Aj of A. Then

∫

B
f =

∫

A
f ◦ ψ σ. (3)

In order to use the change of variables principle one must determine the scaling factor in each particular
case, but two common situations give us a good start.

1. If B,A ⊂ Rn are both “full dimension” sets in Rn and ψ is differentiable, then

σ = | detDψ|

where Dψ is the (square n× n) matrix of first partial derivatives of the components of ψ:

Dψ =

(

∂ψi

∂xj

)

i,j

.

In this case, σ is often called the Jacobian scaling factor.

2. If A ⊂ Rk and B ⊂ Rn with n > k and Dψ is the n× k matrix of first partials of the components of
ψ, then

σ =
√

det (DψTDψ)

where DψT is the transpose of Dψ. Note that DψTDψ will be a square (k × k symmetric) matrix
with non-negative determinant.

The second scaling factor is what we need for integration on a circle:

ψ(θ) = (r cos θ, r sin θ) (k = 1, n = 2).

Dψ =

(

−r sin θ
r cos θ

)

and DψT = (−r sin θ, r cos θ),

so
DψTDψ = r2 and σ = r.

Exercise 1 Use the first scaling factor rule to derive the scaling factor for polar coordinates in R2, and
cylindrical and spherical coordinates in R3.

As an example of the first scaling factor formula, consider ψ : Ba(p) → Bb(q) by

ψ(x) = q+ b(x− p)/a (4)

where p,q ∈ R2 and a, b > 0. Then the scaling factor associated with ψ is

σ = lim
Aj→{x}

area(ψ(Aj))

area(Aj)
=

(

b

a

)2

and
∫

Bb(q)

f =

∫

Ba(p)

f ◦ ψ
(

b

a

)2

.

Exercise 2 Verify the scaling factor we have given for the mapping (4) in R2 and determine the scaling
factor for the mapping with the same formula mapping one ball to another in Rn.
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1.2 Balls and Spheres

An important and useful situation in which the scaling factor for a change of variables does not arise
immediately from the formulas above is when changing variables from one sphere to another. By sphere
here we mean the boundary of a ball which may occur in any dimension. The boundary of Br(p) ⊂ R2 is a
circle; the boundary of Br(p) ⊂ R3 is what we usually call a sphere, and the boundary of Br(p) ⊂ Rn when
n ≥ 4 is often called a hypersphere, but we are calling all of them spheres. In general, we say Br(p) ⊂ Rn

is an n-dimensional submanifold of Rn, or that it has full dimension. The boundary ∂Br(p) ⊂ Rn is an
(n− 1)-dimensional submanifold of Rn or a hypersurface.

Consider ψ : ∂Ba(p) → ∂Bb(q) given by formula (4) with Ba(p), Bb(q) ⊂ R2. The scaling factor for
this parameterization of one circle over another is

σ =
b

a
and

∫

∂Bb(q)

f =

∫

∂Ba(p)

f ◦ ψ b

a
.

To see this, we can parameterize each domain of integration on [0, 2π] and apply the principle of com-
position for scaling factors:

If ψ1 : [0, 2π] → ∂Ba(p) by ψ1(θ) = a(cos θ, sin θ) with scaling factor σ1 = a, and ψ2 : [0, 2π] → ∂Bb(q)
by ψ2(θ) = b(cos θ, sin θ) with scaling factor σ2 = b, then

σ1σ = σ2.

That is, aσ = b or σ = b/a.
If Ba(p), Bb(q) ⊂ Rn, then formula (4) still gives a parameterization ψ : ∂Ba(p) → ∂Bb(p) and

∫

∂Bb(q)

f =

∫

∂Ba(p)

f ◦ ψ
(

b

a

)n−1

. (5)

Exercise 3 Give a careful justification for (5) using the principle of composition in the case n = 3.

There is one more integration principle I want to discuss. A ball Ba(p), as a domain of integration,1

can be decomposed into a disjoint union of (hyper)spheres ∂Br(p) for 0 < r < a. In particular,

∫

Ba(p)

f =

∫ a

0

(
∫

∂Br(p)

f

)

dr. (6)

Again, this formula does not follow immediately from the principles above, but we can use Fubini’s theorem
together with the principles of scaling/change of variables to verify (6). First parameterize Ba(p) on the
product (0, a)× ∂B1(0) by

ψ1(r,x) = p+ rx.

Note that

Dψ1 =

(

1 0n−1

0T
n−1 rI(n−1)×(n−1)

)

.

Here, we have used block matrix notation and denoted the zero (row) vector in Rk by 0k and the k × k
identity matrix by Ik×k. It follows that the scaling factor for ψ1 is

σ1 = | detDψ1| = rn−1.

1Notice I’ve left out the values r = 0 and r = a giving the ball as a union of subsets. This is a valid decomposition as

a domain of integration because the (full dimension) measures of the center point {p} and the outer boundary ∂Ba(p) are
zero. We could omit any finite or countable number of such measure zero sets and not effect the integral. The same idea has
been used above in regard to the negligible intersection of pieces Aj in the definition of integration and in the appearance of
the closure of the intervals Ix in Fubini’s theorem.
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Therefore, by Fubini’s theorem

∫

Ba(p)

f =

∫ a

0

(
∫

∂B1(0)

f ◦ ψ1 r
n−1

)

dr =

∫ a

0

rn−1

(
∫

∂B1(0)

f ◦ ψ1

)

dr.

In the inner integral ψ2 : ∂Br(p) → ∂B1(0) by

ψ2(x) = (x− p)/r

is a valid change of variables, as discussed above, with scaling factor σ2 = 1/rn−1. Thus,

∫

∂B1(0)

f ◦ ψ1 =

∫

∂Br(p)

f ◦ ψ(r, ψ2)
1

rn−1
=

1

rn−1

∫

x∈∂Br(p)

f ◦ ψ(r, ψ2(x)).

Since ψ1(r, ψ2(x)) = p+ r(x− p)/r = x,

∫

∂B1(0)

f ◦ ψ1 =
1

rn−1

∫

∂Br(p)

f,

and we have established (6).

Measures and Averages

This is a convenient place to give some notation for the measures of balls and spheres. We write

ωn =

∫

B1(0)

1

for the n-dimensional measure of the unit ball B1(0) ⊂ Rn. That is, ω1 = 2, ω2 = π, ω3 = 4π/3, and so
on.

Exercise 4 Show the n− 1-dimensional measure of ∂B1(0) ⊂ Rn is nωn.

Scaling then shows that for Br(p) ⊂ Rn,

µ(Br(p)) = ωnr
n and ν(∂Br(p)) = nωnr

n−1.

Here µ denotes the n-dimensional measure on Rn denoted by either Ln (full dimension Lebesgue measure)
or Hn (n-dimensional Hausdorff measure in Rn). The measure ν is Hn−1, the (n − 1)-dimensional
Hausdorff measure on subsets of Rn. For n = 1, L1 = L = H1 is length measure and H0 is counting
measure. For n = 2, L2 = H2 = area is area measure and H1 is length measure in R2. For n = 3,
L3 = H3 = vol is volume measure and H2 is area measure in R3. This description continues for all
dimensions and, in short, there are a lot of different measures.

The average value of a function f : Br(p) → R is given by

1

ωnrn

∫

Br(p)

f,

and more generally the average of any function f over a domain of integration A with measure µ is

1

µA

∫

A
f.

One simple version of the intermediate value theorem for integrals of continuous functions is the
following:
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Theorem 1 If u ∈ C0(U) where U is a bounded open subset of Rn, then the numbers

m = min{u(x) : x ∈ U} and M = max{u(x) : x ∈ U}

are well-defined and there exists some x∗ ∈ U with

m ≤ u(x∗) =
1

µU

∫

U
u ≤ M

with strict inequality unless u ≡ m =M is constant.

We will prove a special case of this result below.

1.3 Convolution

If u, v ∈ C0
c (R

n), then u ∗ v : Rn → R by

(u ∗ v)(p) =
∫

x∈Rn

u(x) v(p− x)

is called the convolution of u and v.

Exercise 5 Show that u ∗ v ∈ C0
c (R

n).

Exercise 6 Convolution is commutative in the sense that u ∗ v = v ∗ u.

Exercise 7 A function u : U → R defined on an open subset of Rn is said to be locally integrable if

∫

K

|u| <∞

whenever K⊂⊂U . The collection of all locally integrable functions on U is denoted by L1
loc(U).

Show that if u ∈ C0
c (R

n) and v ∈ L1
loc(R

n), then u ∗ v and v ∗ u given by the formula above are both
well-defined and

1. u ∗ v = v ∗ u, but

2. it may not be the case that u ∗ v has compact support. (Show this by example.)

Exercise 8 If u ∈ C0(Rn) and φ ∈ C∞
c (Rn), then φ ∗ u ∈ C∞(Rn).

1.4 Mollification

We begin with some special functions in C∞
c (Rn). Let φ0 ∈ C∞

c (Rn) by

φ0(x) =

{

e−1/(1−|x|2), |x| < 1
0, |x| ≥ 1.

Next we define φ1 ∈ C∞
c (Rn) by

φ1(x) =
φ0(x)
∫

φ0

.

For each ǫ > 0 define µǫ ∈ C∞
c (Rn) by

µǫ(x) =
1

ǫn
φ1

(x

ǫ

)

.
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Exercise 9 Show the following:

(a) supp µǫ = Bǫ(0),

(b)
∫

µǫ = 1, and

(c) If we denote by ψ ∈ C∞
c (R) the even function φ1 when n = 1, then what is the relation between µǫ and

νǫ(x) =
1

ǫn
ψ

( |x|
ǫ

)

?

The functions {µǫ}ǫ>0 are called an approximate identity and each function µǫ is called a standard
mollifier.

Theorem 2 If v ∈ L1
loc(R

n), then µǫ ∗ v : Rn → R by

(µǫ ∗ v)(q) =
∫

x∈Bǫ(q)

µǫ(q− x) v(x) =

∫

x∈Bǫ(0)

µǫ(x) v(q− x)

satisfies µǫ ∗ v ∈ C∞(Rn).

Proof: For any multi-index β,

Dβ(µǫ ∗ v)(q) =
∫

Dβµǫ(q− x) v(x).

That is, Dβ(µǫ ∗ v) = Dβµǫ ∗ v. �

If one wanted to fill in the details of this proof (by integrating under the integral sign) one could use
induction and something like the dominated convergence theorem. Here is roughly how the first step
of that would go: We consider a difference quotient

(µǫ ∗ v)(q+ hej)− (µǫ ∗ v)(q)
h

=
1

h

∫

x∈Bǫ(q)

[µǫ(q− x+ hej)− µǫ(q− x)] v(x)

=

∫

x∈Bǫ(q)

[

µǫ(q− x + hej)− µǫ(q− x)

h

]

v(x).

Notice that the pointwise limits as h→ 0 of the inner difference quotients are

lim
h→0

µǫ(q− x+ hej)− µǫ(q− x)

h
=
∂µǫ

∂xj
(q− x).

It is not difficult to believe, or even prove, that the convergence in this limit is uniform in x ∈ Rn. In
particular, one can find a uniform bound C for which the functions w : Rn → R by

w(x) = w(x; h) =

[

µǫ(q− x+ hej)− µǫ(q− x)

h

]

v(x)

are uniformly integrable on the compact set K = Bǫ(q) with
∫

K

|w| ≤ C

∫

K

|v|.

This is essentially what is needed to apply the dominated convergence theorem to conclude

lim
h→0

∫

x∈K
w(x; h) =

∫

x∈K
lim
h→0

w(x; h).

It can be shown that the function µǫ ∗ v converges to the function v in various senses, depending on the
regularity/integrability of the function v, as ǫց 0. This is the origin of the term approximate identity:
µǫ ∗ v is a function which approximates v and converges to v as ǫց 0.
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Exercise 10 If v ∈ C0(Rn), then µǫ ∗ v converges to v uniformly on compact subsets, that is given any
K ⊂⊂Rn

limǫց0max{|(µǫ ∗ v(x)− v(x)| : x ∈ K} = 0.

1.5 Fundamental Lemma

This is a convenient place to state the fundamental lemma of the calculus of variations for functions of
several variables:

Lemma 1 If U ⊂ Rn is an open set, f ∈ C0(U), and
∫

U
fφ = 0 for every φ ∈ C∞

c (U),

then f(x) = 0 for every x ∈ U .
This should seem quite natural, and you should be able to prove it without too much trouble. What is
rather more difficult, but perhaps interesting for you to know, is the following version:

Lemma 2 If U ⊂ Rn is an open set, v ∈ L1
loc(U), and

∫

U
vφ = 0 for every φ ∈ C∞

c (U),

then {x ∈ v(x) 6= 0} has measure zero.

A set A ⊂ Rn has measure zero if for any ǫ > 0, there exists a sequence of open sets U1, U2, U3, . . . with

A ⊂
∞
⋃

j=1

Uj (7)

measures satisfying
∞
∑

j=1

µUj < ǫ.

Incidentally, any time you have a collection of open sets containing a set A in their union, as in (7), the
collection of open sets is called an open cover of A. You do not have to have countably many (a sequence)
to have an open cover. For example, the set of all balls

{Br(p) : r > 0 and p ∈ Rn}
is an open cover of Rn.

Also, a function v ∈ L1
loc(U) satisfying the conclusion of the fundamental lemma is considered to be

“the constant zero function” in L1
loc(U). In particular, if {x : v(x) 6= 0} has measure zero, then

∫

vw = 0

for every function w (assuming integrating the product vw makes sense). Thus, you can’t tell any difference
between v and the zero function in terms of integration. For example, v : R → R by

v(x) =

{

1, x ∈ Q

0, otherwise,

is2 the zero function in L1(R), even though it technicaly differs from the constant zero function at infinitely
many points.

Exercise 11 Show Q ⊂ R has measure zero.
2Note that Q = {p/q : p ∈ Z, q ∈ N} is the set of rational numbers; N = {1, 2, 3, . . .} is the set of natural numbers and

Z = {0,±1,±2,±3, . . .} is the set of integers.
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2 The Divergence

You may be familiar with the divergence operator div : C1(U → Rn) → C0(U) given by

divv =

n
∑

j=1

∂vj
∂xj

= ∇ · v

where U is an open subset of Rn and C1(U → Rn) denotes the collection of C1 vector fields on U . This
is the definition of the divergence with respect to standard rectangular coordinates; notice the appearance
of partial derivatives. It will be useful to understand the divergence in a coordinate free manner. For one
thing, this will allow us to consider the divergence on more general domains of integration like surfaces.

2.1 Definition

Let A be a domain of integration with measure µ. We consider a subdomain A0 of A having the properties
of a “piece” in the definition but let us also require A0 to be a particularly nice piece of A in the sense
that ∂A0 is also a domain of integration having a well-defined unit normal n = n(x) pointing out of A0

at x ∈ ∂A0. You can imagine this situation with a ball Ba(p) ⊂ Rn, but you could also imagine this with
a well-behaved piece of a surface. (On a surface, the outward pointing normal n would be tangent to the
surface.)

We also need the domain of integration A to have enough structure to make sense of the idea of a C1

vector field on A. If A happens to be a full dimension open subset of Rn, then this is easy, we just mean
C1(A → Rn) is the set of C1 vector fields. If A is a surface, or a k-dimensional submanifold of Rn, then
there is also such a collection. In all cases where it makes sense, let us denote the collection of C1 vector
fields on A by C1(A → V) where V is some appropriate co-domain to “catch” the collection of all vectors
tangent to A.

Taking a vector field v ∈ C1(A → V), we can form the flux integral

∫

∂A0

v · n.

This measures, in a certain sense, the total “flow” out of A0 determined by v. The divergence is an
infinitesimal measure of this flow:

divAv(x) = lim
A0→{x}

1

µ(A0)

∫

∂A0

v · n.

Notice the scaling of the integral here: µ(A0) is a full-dimension measure of the set A0, though the measure
used to compute the integral is a lower dimensional measure defined with respect to ∂A0.

Exercise 12 Let U be an open subset of R3 with p = (p1, p2, p3) ∈ U . Consider the “epsilon cube” with
center p given by

Uǫ = Uǫ(p) = {x = (x1, x2, x3) : |xj − pj | < ǫ for j = 1, 2, 3}.
Note that ∂Uǫ has a well-defined outward normal n except on a (negligible) set of surface measure zero (the
edges and corners). Thus, given a vector field v = (v1, v2, v3) ∈ C1(U → R3), the integral

∫

∂Uǫ

v · n

makes sense.

11



(a) Let F = {(p1 + ǫ, x2, x3) : |xj − pj | < ǫ for j = 2, 3} be the front face of ∂Uǫ. Define the back face B
directly opposite F on ∂Uǫ and use the mean value theorem to show

∫

F∪B
v · n = 2ǫ

∫ ǫ

−ǫ

∫ ǫ

−ǫ

∂v1
∂x1

(x∗, p2 + y, p3 + z) dy dz

where x∗ = x∗(y, z) is some real number (depending on y and z) with p1 − ǫ < x∗ < p1 + ǫ.

(b) Write down similar expressions for the other two pairs of faces (top and bottom, left and right).

(c) Compute the limit

lim
ǫց0

1

µ(Uǫ)

∫

∂Uǫ

v · n

to obtain the usual formula for div v in standard rectangular coordinates.

Theorem 3 (The Divergence Theorem) If A is a domain of integration with an outward normal on ∂A
and well-defined C1 vector fields C1(A → V), then

∫

A
divv =

∫

∂A
v · n

for every v ∈ C1(A → V).

(pseudo)Proof: We assume we can partitionA using well-behaved pieces Aj, j = 1, 2, . . . , k (each admitting
flux integrals around ∂Aj). We also assume the pieces can be made small so that we obtain a family of
these partitions with

‖P‖ = max{diam(Aj) : j = 1, 2, . . . , k} → 0.

Observing that when A = ∂Ai∩∂Aj with i 6= j, the outward normal to ∂Ai points in the opposite direction
to the outward normal to ∂Aj , so that

∫

A∩∂Ai

v · n+

∫

A∩∂Aj

v · n = 0

and
k
∑

j=1

∫

∂Aj

v · n =

∫

∂A
v · n.

Taking the pieces Aj small then we have by the definition of the divergence

∫

∂A
v · n =

k
∑

j=1

∫

∂Ai

v · n

≈
k
∑

j=1

µ(Aj) divv(x
∗
j )

where x∗j is some point in Aj. But note that this last expression is precisely a Riemann sum for
∫

A
div v.

Thus, taking the limit as ‖P‖ → 0, we should obtain the result. The only weak point in this argument,
with respect to making it rigorous, is that the number of terms in the approximation

k
∑

j=1

µ(Aj) div v(x
∗
j)

12



tends to infinity, so some uniformity is required to conclude

lim
‖P‖→0

∣

∣

∣

∣

∣

k
∑

j=1

(
∫

∂Ai

v · n− µ(Aj) divv(x
∗
j )

)

∣

∣

∣

∣

∣

= 0.

We can call a domain of integration A on which the divergence of C1 vector fields is well-defined on on
which the divergence theorem holds a domain of integration for the divergence theorem.

2.2 Product Rule for the Divergence

If φ ∈ C1(A) where A is a domain of integration for the divergence theorem, then φv ∈ C1(A → V) for
each v ∈ C1(A → V). Let us assume A also admits directional differentiation and an inner product, so
that a gradient operator grad : C1(A) → C0(A → V) is defined by

dfx(v) = 〈grad f(x),v〉 for all v ∈ V at x ∈ A.

In this situation and
div(φv) = 〈gradφ,v〉+ φ divv.

This is called the product rule for the divergence.
If A = U is a full-dimension open subset of Rn, then this product rule holds in the (coordinate) form

div(φv) = Dφ · v + φ divv. (8)

Unfortunately, I do not know a nice coordinate free proof of the product rule for the divergence. In the
special case of (8), the result can be obtained easily using the product rule for partial derivatives.

2.3 First Variation Formula

We now address our main objective. Let F : A → R be a Lagrangian integral functional of the form

F [u] =

∫

U
F (x, u,Du)

where U is a bounded open subset of Rn, the admissible class A ⊂ C1(U), and F ∈ C1(U ×R1 ×Rn is the
Lagrangian with F = F (x, z,p). Given u ∈ A and φ ∈ C∞

c (U), or more generally an admissible variation
φ ∈ V, we define the first variation as usual by

δFu[φ] =
d

dǫ
F [u+ ǫφ]∣

∣

ǫ=0

.

Using the chain rule, since F (x, u+ ǫφ,D(u+ ǫφ)) = F (x, u+ ǫφ,Du+ ǫDφ), we have

δFu[φ] =

∫

U

(

∂F

∂z
φ+

n
∑

j=1

∂F

∂pj

∂φ

∂xj

)

. (9)

Looking at the first variation formula (9) we recognize in the last term a Euclidean dot product of two
fields. One is the gradient of the test function φ. The other field is given by the partials of the Lagrangian
with respect to the “velocity” variables p1, p2, . . . , pn:

DpF =

(

∂F

∂p1
,
∂F

∂p2
, . . . ,

∂F

∂pn

)

.
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Let us call this field the Lagrangian gradient field or the kinetic gradient field. If we now apply the
product rule (8) to the scaled field φDpF we find

div(φDpF ) = DpF ·Dφ+ divDpF φ.

In particular, assuming u ∈ C2(U) so that the second derivatives in

divDpF (x, u,Du)

make sense, we can write the first variation formula for u ∈ A ∩ C2(U) as

δFu[φ] =

∫

U

(

− divDpF +
∂F

∂z

)

φ+

∫

U
div(φDpF ).

By the divergence theorem, the last term is
∫

U
div(φDpF ) =

∫

∂U
φDpF · n = 0 (10)

where n is the outward normal to U along ∂U . It may reasonably be objected at this point that U may be
an open set with extremely irregular boundary so that an outward unit normal n is not defined. In fact,
it does require some care to show the vanishing of the expression on the left in (10). Recall, however, that
supp(φ)⊂⊂U . Thus,

dist(supp(φ),U c) = inf{|x− y| : x supp(φ), y ∈ U} > 0.

From this observation, it is easy to believe a suitable open set V with smooth boundary and with
supp φ⊂⊂V ⊂⊂U can be constructed to replace U in the middle expression of (10). In any case, we
conclude that for u ∈ A ∩ C2(U) there holds

δFu[φ] =

∫

U

(

−
n
∑

j=1

∂

∂xj

∂F

∂pj
+
∂F

∂z

)

φ.

In particular, we can apply the fundamental lemma of the calculus of variations to conclude

gradF [u] = −
n
∑

j=1

∂

∂xj

(

∂F

∂pj
(x, u,Du)

)

+
∂F

∂z
(x, u,Du) = 0 (11)

whenever u ∈ A∩C2(U) is an extremal, i.e., satisfies δFu[φ] ≡ 0 for all φ ∈ C∞
c (U). The condition (11) is

called the Euler-Lagrange PDE for the function u of several variables.

Exercise 13 Find the Euler-Lagrange equation for the Dirichlet energy

D[u] =
1

2

∫

U
|Du|2.

The equation you find is called Laplace’s equation.

Exercise 14 Convince yourself that the area of the graph

G = {(x, y, u(x, y)) : (x, y) ∈ U}

of a function u ∈ C1(U) where U is an open subset of R2 is given by

area[u] =

∫

U

√

1 + |Du|2.
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Hint: Find a parameterization of G on U and then change variables in the area integral
∫

G
1.

The Euler-Lagrange equation associated with the area functional area : A → R is called the mean cur-
vature equation. Find the mean curvature equation and explain (1) why the Euler-Lagrange operator in
that case represents a curvature, (2) why all affine functions on U are solutions, and (3) why all solutions
are not given by affine functions.

3 Preliminary Results for Laplace’s Equation

We consider here functions u ∈ C2(U) defined on a bounded open subset U of R2. Such a function is said
to satisfy Laplace’s equation (classically) if

∆u =
n
∑

j=1

∂2u

∂x2j
=
∂2u

∂x21
+
∂2u

∂x22
+ · · ·+ ∂2u

∂x2n
= 0.

A solution of Laplace’s equation is also called a harmonic function.

3.1 Mean Value Property

If u satisfies Laplace’s equation and Ba(p)⊂⊂U , then

u(p) =
1

ωn
an
∫

Ba(p)

u

and

u(p) =
1

nωnrn−1

∫

∂Ba(p)

u.

Either of these expressions is called the mean value property of harmonic functions. The proof that
these expressions hold is given as Problem 3 of Assignment 4 (MATH 6702 Spring 2001).

3.2 Strong Maximum Principle

It is relatively easy to see, just using elementary calculus, that if u ∈ C2(U)∩C0(U) where U is a bounded
open subset of Rn and

∆u =
m
∑

j=1

∂2u

∂x2j
= 0 on U ,

then
u(p) ≤ max

x∈∂U
u(x) for p ∈ U .

This is called the maximum principle (or sometimes the weak maximum principle). The proof of the weak
maximum principle was given as Problem 9 of Assignment 3 (MATH 6702 Spring 2001). The classical
strong maximum principle is the following:

Theorem 4 If U ⊂ Rn is open, bounded, and connected and u ∈ C2(U) is harmonic on U , then either

u(p) < max
x∈∂U

u(x) for p ∈ U

or u(p) ≡ maxx∈∂U u(x) for all p ∈ U .
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Proof: If p ∈ U , there is some r > 0 with Br(p) ⊂ U . Let M = max∂U u. Then by the weak maximum
principle and the mean value property

u(p) =
1

ωnrn

∫

Br(p)

u ≤M.

If u(p) = M , then we claim u(x) ≡ M for every x ∈ Br(p). To see this, assume there is some ǫ > 0 for
which

A = {x ∈ Br(p) : u(x) ≤M − ǫ} 6= φ

By continuity A will have positive measure. Then we can write Br(p) = A ∪ B where

B = {x ∈ Br(p) :M − ǫ ≤ u(x) ≤M}.

Since A has positive measure, then
∫

A
u ≤ (M − ǫ)µ(A), and

M = u(p) =
1

ωnrn

∫

Br(p)

u

=
1

ωnrn

(
∫

A

u+

∫

B

u

)

≤ 1

ωnrn
((M − ǫ)µ(A) +Mµ(B))

=
1

ωnrn
(M(µ(A) + µ(B))− ǫµ(A))

=M − ǫµ(A)

ωnrn

< M.

This contradiction tells us u ≡ M on Br(p). Since this applies to any point p with u(p) = M , we have
shown

U1 = {x ∈ U : u(x) =M}
is open. It is quite easy to see from continuity that

U2 = U\U1 = {x ∈ U : u(x) < M}

is also open. This essentially completes the proof if we know the definition of connected, which is the
following: A set C is connected if C cannot be written as a disjoint union of nonempty open sets. That is,
if C = U1 ∪ U2 where U1 and U2 are open sets and C is connected, then one of the following must hold

1. U1 ∩ U2 6= φ,

2. U1 = φ, or

3. U2 = φ.

In our case, U = U1 ∪ U2 and U1 and U2 are clearly disjoint. We have also assume U1 6= φ. Therefore, it
must be that U2 = φ and u ≡M . �
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3.3 Higher Regularity

We will prove a converse of the mean value property and a rather amazing higher regularity result. Note
that if ∆u = 0, then this says some particular linear combination of the homogeneous second partial
derivatives vanishes. On the face of it, there is really no reason to think even the second mixed partial
derivatives of u exist much less that third and higher order partials are well-defined.

Theorem 5 If U is an open subset of Rn and

1. u ∈ C0(U), and

2. For each p ∈ U , we have

u(p) =
1

nωnrn−1

∫

∂Br(p)

u whenever Br(p)⊂⊂U ,

then

(a) u ∈ C∞(U), and

(b) ∆u ≡ 0.

Proof: Let p ∈ U . Then there is some a > 0 with Ba(p)⊂⊂U . Let µǫ be the standard mollifier with
ǫ < a/2. Finally, define the extension v : Rn → R of u by

v(x) =

{

u(x), if x ∈ Ba(p)

0, if x ∈ Rn\Ba(p).

Observe that µǫ ∗v : Rn → R defines a function µǫ ∗v ∈ C∞(Ba/2(p)). On the other hand, for x ∈ Ba/2(p),
we have Bǫ(x) ⊂ Ba(p) and

µǫ ∗ v(x) =
∫

q∈Bǫ(x)

µǫ(x− q) v(q)

=

∫

q∈Bǫ(x)

µǫ(x− q) u(q)

=

∫ ǫ

0

(∫

q∈∂Br(x)

µǫ(x− q)u(q)

)

dr.

However, recall that by part (c) of Exercise 9

µǫ(x− q) =
1

ǫn
ψ

( |x− q|
ǫ

)

=
1

ǫn
ψ
(r

ǫ

)

is constant for q ∈ Br(x). Therefore,

µǫ ∗ v(x) =
∫ ǫ

0

(

1

ǫn
ψ
(r

ǫ

)

)(
∫

q∈∂Br(x)

u(q)

)

dr.

=

∫ ǫ

0

(

1

ǫn
ψ
(r

ǫ

)

)

(

nωnr
n−1u(x)

)

dr.

= u(x)

∫ ǫ

0

(

1

ǫn
ψ
(r

ǫ

)

)(∫

∂Br(x)

1

)

dr.

= u(x)

∫ ǫ

0

(
∫

q∈∂Br(x)

µǫ(x− q)

)

dr.

= u(x)

∫

µǫ

= u(x).
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We have shown u agrees with a smooth function µǫ ∗ v on Ba/2(p). Since p was arbitrary, this means
u ∈ C∞(U).

Having established the remarkable fact that u is smooth, merely by virtue of the fact that its values
are given by the avarages of its values on spheres, we begin again with a ball Bǫ(p)⊂⊂U and compute
using the divergence theorem first based on the observation that divDu = ∆u:

∫

Bǫ(p)

∆u =

∫

x∈∂Bǫ(p)

Du(x) · n

=

∫

x∈∂Bǫ(0)

Du(p+ x) · x
ǫ

= ǫn−1

∫

x∈∂B1(0)

Du(p+ ǫx) · x

= ǫn−1 d

dǫ

∫

x∈∂B1(0)

u(p+ ǫx)

= ǫn−1 d

dǫ

(

1

ǫn−1

∫

x∈∂Bǫ(p)

u(x)

)

= nωnǫ
n−1 d

dǫ

(

1

nωnǫn−1

∫

x∈∂Bǫ(p)

u(x)

)

= nωnǫ
n−1 d

dǫ
[u(p]]

= 0.

In view of this calculation, we obtain by a minor variation of the argument to prove the fundamental
lemma of the calculus of variations that

∆u ≡ 0 on U . �

Corollary 3 If U is open in Rn and u ∈ C2(U) is harmonic, then u ∈ C∞(U).

Given a bounded open set U ⊂ Rn, a function u ∈ C1(U) is said to be a weak extremal for the
Dirichlet energy if

∫

U
Du ·Dφ = 0 for all φ ∈ C∞

c (U).

Such a function is also called C1 weakly harmonic, and there are even weaker versions of weakly harmonic
functions. They all turn out to be in C∞(U).
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