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1 Preliminaries

1.1 Dimension and Euclidean Models for Space

We say the real line R = R1 has dimension one. This terminology extends to certain
continuous images of R or intervals in R. Thus, the curve

Γ = {(cos t, sin t, t) : t ∈ R}

is a one dimensional object. This one dimensional object is realized as a subset of
the three dimensional Euclidean space built from three copies of the line R:

R3 = R× R×R = {(x, y, z) : x, y, z ∈ R1}.

Three dimensional Euclidean space R3 provides the most common, and most intu-
itively natural, model for the physical space apparently observed and encountered in
the world. Three dimensional subsets of R3, moreover, like the ball

Br(p) = {x ∈ R3 : |x− p| < r}

are often used to model physical objects composed of “matter” apparently observed
and encountered in the space of the world.

From the time of the famous Greek philosophers some people have felt the phys-
ical matter encountered in the world was composed of indivisible parts or “atoms.”
Whether the indivisibility was based upon composition or size was not known due
primarily to observational limitations. Our current modeling of matter suggests size
is the defining characteristic and the structure (or at least the most important charac-
teristics determining macroscopic properties) of matter at various scales (mollecular,
atomic, subatomic) is very different. This view of matter, in light of the mathe-
matical requirements on an “object” M suitable to consider for integration, strongly
suggests any very direct identification between material objects (consisting of matter
composed of atoms) and “objets” M on which one integrates should be viewed with
suspicion, and one should not be surprised if such an identification leads to assertions
or predictions at odds with observation.
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More broadly it is safer, I think, to put some distance between mathematics
and the physical world. Indeed mathematical modeling involves an identification
between mathematical concepts (or what I like to call “imaginary pictures”) and
observed physical phenomena. We have a function P satisfying a differential equation
P ′ = kP , and we have a population, but those (as students of Malthus may observe)
are not the same thing. The general philosophy then is that science is more about
the comparison (and contrast) of imaginary pictures to observations than about the
identification which is generally a rather loose one.

On the other hand, the identification between objects on which we integrate and
material objects is often made. In such cases, one still has recourse to the mathemat-
ical concept of space (an imaginary picture) in which the model of matter will be a
subset. Certainly we can say, in all cases where we consider

∫

M

f,

the objectM is a set. Some sets, generally those modeling space, are relatively simple,
and other sets, for example those modeling matter, may be more complicated. We
will begin with simpler sets.

1.2 Units, Particle Motion, Distrubution of Mass,
and Motion of Mass

1.2.1 Point Mass

As suggesteed above, the modeling of matter in space is a delicate and difficult en-
deavor. Perhaps the simplest approach is to associate with a position x in space, say
Euclidean three dimensional space R3, a certain positive number m. This may be
called a simple point mass. Using this idealization, the situation when the position
may change as a function of time and the mass remains constant is called simple
particle motion and is of particular interest. The position may be described by a
vector valued function of one variable x : [0, T ] → R3 on a time interval starting at
t = 0 or, more generally, by r : [a, b] → Σ where Σ is a general space, which may
for the moment be thought of as Rn. If it makes sense to differentiate the position
function with respect to time (twice), then one may posit Newton’s second law of
motion

f = mr′′. (1)

Generally, mass (in this case simply the number m) is considered to be measured
by a fundamental unit denoted M . The symbol M here is not a number, but a
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designation of the unit. We say that the mass m “has the units of mass,” and write

[m] = M.

The square brackets here indicate the specification of the units of a quantity.
This notation can be quite useful. Time is usually considered as another fundamental
unit, and for a specific time t, we write [t] = T . That is, a specific time t has,
naturally, the units of time. Each dimension, and one dimension in particular, in
Euclidean space is considered to have a the fundamental unit of length. As we will see
below, there is more to the notion of length than one might initially think, and some
aspects of this concept may be illuminated and extended through the consideration
of one-dimensional Euclidean measures. For now, however, let us simply note
that a position r is generally considered to have units of length: [r] = L. This may
seem somewhat strange if one considers, for example, the motion of a particle moving
along a path in R3 such as

r(t) = (cos t, sin t, t),

because the motion is described by three real valued functions of t. The designation
[r] = L arises from consideration of the motion. In simple particle motion, though
the motion itself can take place in several ambient dimensions, the actual path of
motion is, in some sense, inherently one dimensional. This is clear, of course, for
motions R : (a, b) → R1 along a line. More generally, the average velocity from
time t1 to time t2 with t1 < t2 is defined by

vavg =
r(t2)− r(t1)

t2 − t1
.

And the average speed

|vavg | =
1

t2 − t1
|r(t2)− r(t1)|

is naturally considered to have derived units [ |vavg| ] = L/T . Working backwards
the Euclidean norm should not change units, so [vavg ] = L/T . That is,

[r(t2)− r(t1)] = L.

Finally, the difference of quantities having the same units should have the same unit.
And conversely, if a difference of a certain quantity, e.g., r(t2)−r(t1) has units L, then
we should have [r] = L. The limit as t2 ց t1 = t is, of course, the instantaneous
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velocity at t given by v = r′ or sometimes (as Newton himself1 would write it) v = ṙ
with derived units [v] = L/T as mentioned above.

Similarly acceleration r′′ and force should have derived units given by

[r′′] =
L

T 2
and [f ] =

ML

T 2

according to, and in accord with, Newton’s second law.
It should be emphasized that this “law” of Newton is but one possibility for

creating a framework in which to consider the motion of a point mass. The concepts
of velocity and acceleration are, in a certain sense, more fundamental.2 Newton’s
law may be considered here as giving us some familiar structure to consider the
consequences of modeling with a point mass. There could be other possibilities, and
in some modeling with point masses there are. Under some circumstances, however,
Newton’s law gives us a tolerably good approximation of the motion of, say, a baseball
or a golf ball. Imagine a baseball sitting next to a point mass which pretends to
model the baseball. Let’s say they are sitting on the surface of a table as in Figure 1.
Compared to the model baseball (the point mass), the real baseball is infinitely tall.

Figure 1: Baseball and a point mass as neighbors on a table

In fact, I’ve enlarged the representation of the point mass using a black dot, so we
can even see it in the illustration. Notice that the enlarged graphic representation of
the point mass extends through the surface of the model table top because the point
mass itself is located on the surface of the table.

1The “prime” notation for derivatives r′ is that used by Lagrange, and dr/dt is from Leibziz.
The last one is especially important because it suggests the possibility of considering, for example,
d/dt : C1 → C0 as an operator independent of a specific function.

2And perhaps the contemplation of a timeless point mass is more fundamental yet.
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Figure 2: Baseball and a point mass with a set of occumpation as neighbors on a
table

We may improve our model by assigning a subset of R3 to the point mass. For
example, we can assign a ball Br(p) = {x ∈ R3 : |x− p| < r} of exclusion or a set
of occupation to the point mass at p. The model properties of this set may vary
and the exclusion need not be absolute, but the simplest condition might be that
nothing else (other than the point mass at the center) is allowed inside this sphere.
Figure 2 illustrates the manner in which our model is improved with the inclusion of
a set of occupation. This is an instance in which it is natural to consider the ratio

ρ =
m

4πr3/3
(2)

of mass to the volume of occupation. This ratio is, of course, a density ρ with units

[ρ] =
M

L3
.

We will come back to the notion of density in more detail below.
More generally, a particle, or point mass, may be considered to have time de-

pendent mass m = m(t). Even in this case, the quantity p = mr′ = mv is called
momentum and [p] = ML/T , though Newton’s law (1) will no longer be valid as
stated.

Exercise 1. Give some alternative laws of motion (alternative to Newton’s second
law) giving interesting dynamics with application to video games.

The kinetic energy of a point mass m is defined to be

K.E. =
1

2
m|v|2 =

1

2
m|ṙ|2.

7



1.2.2 Compound Point Mass

As we may see below, in some applications involving time dependent mass it can
be useful to distinguish two components within a single time dependent point mass.
Thus, we partition the positive number m = m(t) as

m(t) = ν(t) + α(t)

where ν(t) is a positive (or at least non-negative) function considered to be the native
mass at the position r of the mass and α is the generated or derived mass. These
two functions have essentially identical properties and both are naturally considered
as time dependent singular measures on the ambient space Σ. We will discuss
general properties of measure later, but for now one can think of a measure as a
function

ν : P(Σ)→ [0,∞)

defined on the collection of all subsets P(Σ) of the space Σ having the property that
for E ∈ P(Σ), i.e., for all E ⊂ Σ,

ν(E) =

{

ν{r}, if r ∈ E
0, if r /∈ E.

The distinction between natural mass ν and generated mass α is basically useful
for modeling mass added (or created) by a specific process. In general, the distinction
between the native mass ν and the created mass α is not so important, but rather
the rate of change of a specific portion α of m with respect to time is the quantity of
interest:

γ(t) =
dα

dt
with [γ] =

M

T
.

This rate of change γ , according to which

m(t) = ν(t) + α(0) +

∫ t

0

γ(τ) dτ

is called the imposition or external forcing on the mass.

1.2.3 Two Particle Interaction

If two point masses are restricted to R1 (or other ambient spaces as well), then one
can model their interaction in a variety of ways. One possibility is that they have
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no interaction. In this case, one simply gets the dynamics of two (or more) isolated
particles taking place at the same time. While the interaction is not interesting in
this case, consideration of the superimposed dynamics can still be interesting.

At the other extreme is completely elastic collision: If m1 moving with con-
stant velocity v1 meets a mass m2 with velocity v2 at x = 0 and a certain time, say
time t = 0, then we postulate that each mass mj exits the collision with a velocity
wj satisfying conservation of momentum

m1w1 +m2w2 = m1v1 +m2v2

and conservation of kinetic energy

1

2
m1w

2
1 +

1

2
m2w

2
2 =

1

2
m1v

2
1 +

1

2
m2v

2
2.

Rearranging these equations and canceling common factors we have

m1(w1 − v1) +m2(w2 − v2) = 0

and
m1(w1 − v1)(w1 + v1) +m2(w2 − v2)(w2 + v2) = 0.

Thus, as long as w2 − v2 6= 0,

w1 + v1 = w2 + v2.

Thus, we have a linear system of two equations for w2 and w1:
{

m1w1 +m2w2 = m1v1 +m2v2

w1 − w2 = −(v1 − v2).

Therefore,

w1 =
m1v1 +m2v2 −m2(v1 − v2)

m1 +m2
=

(m1 −m2)v1 + 2m2v2

m1 +m2

and

w2 =
m1(v1 − v2) +m1v1 +m2v2

m1 +m2
=

2m1v1 + (m2 −m1)v2

m1 +m2
.

A third possibility is that the two point masses maintain some field relation
with each other as one finds in the modeling of gravitational interaction or the
modeling of charged particles. Finally, an interesting possibility is that the point
masses maintain a fixed rigid distance from one another. Such particles are naturally
considered as a single “rigid body.”
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Exercise 2. Given two point masses m1 and m2 at positions r and q respectively and
with |q− r| = d > 0 fixed, determine the center of mass and total linear momentum

p = m1r
′ +m2q

′

of the associated rigid body. What can you say about restriction on the position
q = q(t) in terms of r = r(t) and the total momentum p? Hint: Square the relation
|q− r| = d and differentiate with respect to t

1.2.4 Many Particles

Extending our suggestion of a rigid or lattice structure between two particles to
many more particles, we find some interesting possibilities. The example of a model
baseball of mass m with an occupying sphere Br(p) mentioned above can be modified,
and perhaps improved in some sense, if we imagine the single mass m at the center
replaced by a large number n of point masses each of size m/n, more or less evenly
dispersed inside Br(p) and having fixed and rigid geometric relation to one another
and to p. Consideration of this kind of mass dispersion in a ball and in occupying
volumes V of other shapes leads naturally to the notion of a density function

ρ(x) ≡ ρχV(x) =

{

ρ, x ∈ V
0, x ∈ R3\V

considered as a candidate for integration on V. Since we have not yet considered
carefully such integration on volumes in R3 and the process we have suggested is
complicated, let us briefly consider in detail the one dimensional analogue which is
relatively simple.

We begin with a point mass m (perhaps m = m(t)) located at a point p in some
set of occupation which we take to be an interval I = (a, b) of length ℓ. Note that
the interval I is a natural analogue of the ball mentioned above in connection with
modeling a baseball. The analogue of the density (2) associated with this point mass
m in the interval of occupation is

ρ =
m

ℓ
with [ρ] =

M

L
.

Let us disperse this point mass into k point masses of equal size m/k located at points
x1, x2, . . . , xk ∈ I satisfying

a = x0 < x1 < x2 < · · · < xk < xk+1 = b
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with

xj+1 − xj =
ℓ

k + 1
, j = 0, 1, . . . , k.

Each such distrubution of point masses determines a singular measure

Figure 3: Distribution of point masses. At the k-th stage we may consider k point
masses each with individual mass m/k. Note: This is a slightly different partitioning
scheme and mass placement scheme for the interval than the one described. There
are many different possibilities.

νk : P → [0, m] by νk(E) =
m

k
#({x1, x2, . . . , xk} ∩ E) (3)

where as usual P denotes the collection of all subsets of I, that is P = {E : E ⊂ I}
and # : P → [0,∞] is counting measure which assigns to any set the number
of points in the set, i.e., the cardinality of the set. We will discuss measures and
integration in more detail below, but what is being accomplished here should at least
be intuitively clear. In particular, one recognizes here the well-known one dimensional
Dirac measure

δx : P → [0, 1] given by δx(E) =

{

1, x ∈ E
0, x /∈ E.

Thus we can also write

νk =

k
∑

j=1

m

k
δxj
.
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Each of these (singular) measures νk has associated with it an integration according
to which a smooth function φ : I → R with compact support in I, i.e., φ ∈ C∞

c (I)
has an integral

∫

φ =

k
∑

j=1

m

k
φ(xj) (4)

with respect to the measure νk. To emphasize the dependence on the measure, which
should definitely be noted, it is customary to denote the integral appearing in (4) by

∫

I

φ dνk.

Exercise 3. Observe that the integral

∫

I

f dνk,

with respect to the measure νk of any pointwise well-defined function f : I → R makes
sense. Write down a formula for how to compute this integral, and show

Nk : F → R by Nk[f ] =

∫

I

f dνk

defines a linear functional3 on the vector space F of real valued functions f : I → R.

Exercise 4. Restricting the functional Nk of the previous exercise to the the subspace
C∞
c (I), show that given any φ ∈ C∞

c (I), we have

lim
k→∞

Nk[φ] =

∫

I

φ
m

ℓ

where the integral on the right may be taken as a Riemann integral:

∫

I

φ
m

k
=

∫ b

a

φ(x)
m

ℓ
dx where I has endpoints a and b,

or as an integral of φ times the constant density function ρ ≡ m/ℓ with respect
to Lebesgue measure, which is the “usual” measure on an interval of the real line
discussed in more detail below.

3This just means a linear function with codomain the real numbers
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The last exercise shows

lim
k→∞

νk =
m

ℓ
µ where µ is Lebesgue measure.

Notice how the convergence works: Associated with each measure νk is a functional
Nk : C∞

c (I) → R and, associated to the scaling ρµ = mµ/ℓ of Lebesgue meausure,
there is a functional ρM : C∞

c (I) → R. Thus, we are “naturally” led to the consid-
eration of limits of measures, and the content of what it means for a sequence of
measures to converge (at least weakly) to a given measure is that the values of the
associated functionals converge for every φ ∈ C∞

c (I).

Exercise 5. Show that given a non-negative continuous4 function ρ ∈ C0(I) with

∫

ρ = m

it is possible to define a sequence of distributed Dirac measures:

νk =
k
∑

j=1

gj δxj

with νk(I) =
∑

gj = m such that

lim
k→∞

νk = ρ dµ where ρ dµ is the measure associated with φ 7→

∫

φ ρ dµ.

Hint: Use the partitioning scheme indicated in Figure 3.

Exercise 6. Try to show that given a functional N : C∞
c (I) → R which is given by

integration against a measure ν:

N [φ] =

∫

φ dν

the measure ν(J) of every interval J ⊂ I can be extracted from the values of the
functional N . If this is not true, what goes wrong?

4One might attempt to consider a less regular function here. Perhaps a natural choice would be
a non-negative function ρ ∈ L1(I) the space of Lebesgue integrable functions considered below. In
this case, it is much more difficult to extract the appropriate values gj from the function ρ.
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1.3 Extensive Quantities and Flux

Any quantity, like mass, which can be obtained by integrating a density function is
called an extensive quantity.

A one dimensional spatial flux function along an interval of the real line is a
function φ1 = φ1(x, t) giving the quantity per time flowing in a certain direction
at the point x and at time t. To better understand this idealization/model, it may
be helpful to imagine the real line as the x-axis in Euclidean three dimensional space
R3 enlarged to a solid cylinder. We do not mean a “pipe” per se, but rather a thin
column composed of whatever quantity is flowing. If the quantity is a volume of fluid,
for example, then we can imagine the cylinder as composed of a fluid whose cross-
sections are homogeneous but may vary in density with position x along the cylinder
and may also move along the length of the cylinder. A certain cross-section, imagined
as either moving or stationary, may also be imagined to change in density with time,
but the crucial assumption here is that every cross-section remains homogeneous.
Such changes may create a change in the spatial flux φ1 whose dimensions in the

Figure 4: Fluid cylinder composed of homogeneous cross-sections of distinct densities
and possibly moving

example of a fluid are typically mass per time:

[φ1] =
M

T
.

In our enlarged cylinder, the flux φ1 may be further decomposed in terms of an areal
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mass density flux φ = φ1/A where A is the cross-sectional area of the cylinder with

[φ] =
M

L2T
.

If the corresponding volumetric mass density ρ = ρ(x, t) with units [ρ] = M/L3 is
given similarly in terms of a lineal mass density ρ1 = ρA, then the total mass between
x = a and x = b at time t is

∫ b

a

ρ1(x, t) dx. (5)

If φ > 0 gives a rate of mass transfer, i.e., flux, in the direction of increasing x, and
φ < 0 indicates mass transfer in the opposite direction, then conservation of mass
with respect to the region between the planes x = a and x = b is expressed by

d

dt

∫ b

a

ρ1(x, t) dx = −φ1(b, t) + φ1(a, t). (6)

More generally, we may assume a certain quantity of mass is internally generated or
eliminated. This mass creation/depletion may be modeled by a volumetric mass
density per time Q = Q(x, t) with

[Q] =
M

L3T
.

Again, the assumption of homogeneity of generation/elimination with respect to the
cross-sections leads to a lineal density Q1 = QA. If Q > 0 quantifies the genera-
tion/addition of mass at position x and time t while Q < 0 quantifies the elimination
of mass, then the rate of change of the mass between the planes x = a and x = b
with respect to time becomes

d

dt

∫ b

a

ρ1(x, t) dx = −φ1(b, t) + φ1(a, t) +

∫ b

a

Q1(x, t) dx. (7)

The flow of many other extensive quantities may be described by a density/flux
relation. Perhaps the simplest possibility to consider is the flux of volume itself.
This corresponds to the motion of an incompressible fluid with constant density,
and the relation (7) simplifies to

φ1(b, t) = φ1(a, t) +

∫ b

a

Q1(x, t) dx

15



which says that the volume per time exiting across the plane x = b is equal to the vol-
ume per time entering the region between the planes plus the volume injected/created.

Positive flux φ1 on R1 generally models motion to the right, but that is merely a
matter of convention.

On the line, we can think of the flux as a vector field tangent to the line so that
e1 = (1, 0) ∈ R2 or e1 = (1, 0, 0) and the vector flux is given in terms of the scalar
flux φ1 by

φ1e1.

This interpretation lends itself to the consideration of a flux along a curve or path in
a higher dimensional ambient space.

Before we leave this section, we mention in regard to the expression for the total
mass in (5) that we will consider integrals over higher dimensional sets below. In
that context, the mass associated with a volume V modeling a mass distributed with
density ρ is given by

∫

V

ρ.

And if V is portion of the cylinder shown in Figure 4 between x = a and x = b, then
this volume integral may be expressed as an iterated integral

∫

V

ρ =

∫ b

a

(
∫

Br(0)

ρ

)

dx =

∫ b

a

ρA dx =

∫ b

a

ρ1 dx

where Br(0) = {(y, z) : y2+z2 < r2} is a disk of radius r representing the cross-section
of the cylinder and having area A. Notice that ρ comes out of the inner integral in
the second expression owing to the assumed homogeneity in each cross-section, and

∫

Br(0)

ρ = ρ

∫

Br(0)

1 = ρA = ρ1.
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2 Riemann Integration in One Dimension

2.1 Riemann Sums

2.2 Riemann Integrals

2.3 Intepretations

2.3.1 Accumulated Displacement

2.3.2 Density

2.3.3 Time Dependent Integrals

3 Riemann Integration on Objects

In the second semester of calculus (Calc II) one learns about the Riemann integral
on intervals:

∫ b

a

f(x) dx.

The construction used to define the Riemann integral on intervals may be generalized
to apply to integration on a variety of sets, which we are calling “objects.” It is useful
to have an idea of the general abstract construction of such integrals so that one can
apply it to objects such as

1. regions (areas) in R2,

2. volumes in R3,

3. regions in Rn for n > 3 (i.e., “hypervolumes” or n-dimensional manifolds),

4. curves in Rn,

5. surfaces in Rn.

Integration on all these “objects” is possible, and we describe such integration here
in abstract terms.
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4 Abstract Integration

Several ingredients are required. Most are very easy to understand. We need an
object, which we will call, generally, V and a real valued function defined on the
object:

f : V → R.

The function f assigns a real number to each point in V. The basic concept we want
to define/discuss is called

Integrating a real valued function f on an object V.

Partition

Next we need a way to cut the object V up into small pieces. The set of pieces
together is called a partition and is sometimes denoted by

P or {Vj}.

There should be finitely many pieces in the partition, and they are indexed by j.
Thus, {Vj} means {V1,V2,V3, . . . ,Vk} where k is some finite number. An important
thing to remember about a partition is that the union of the partition pieces gives
the entire object. In mathematical notation this is expressed by writing

V = ∪jVj .

As a technical point, it’s often okay for the partition pieces to overlap a little bit, but
you don’t want them to overlap too much. We will mention this technical point again
below.

Measure

We also need a way to measure the size of the partition pieces. Technically, we often
need two ways to measure partition pieces, but we’ll get to that in a moment. The
first way, we’ll call a measure and denote the size of a piece by

meas(Vj).

If V = [a, b] is an interval, then we can partition into subintervals Vj = [xj−1, xj ]
where P : a = x0 < x1 < x2 < · · · < xk = b, and we can use length for the measure:
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meas(Vj) = xj − xj−1. If V is an area in R2, then we will want meas(Vj) = area(Vj).
You’ll note that area and length are very different kinds of measures. We need to
choose the measure suitable to the object on which we want to integrate. The measure
tells us how much the partiation pieces may overlap: We always want meas(Vi∩Vj) =
0 when i 6= j. You can check that this happens with our partition of the interval.

Riemann Sum

Once we have a partition and a measure, we can form a Riemann sum:

∑

j

f(x∗
j) meas(Vj).

Actually, we also needed to choose the evaluation points x∗
j , but that almost goes

without saying. These points are chosen so that x∗
j ∈ Vj. There are k of them,

and the superscript “∗” indicates that there might be many alternative choices, i.e.,
there are probably many points in Vj from which to choose. Eventually, we want to
consider all possible choices, but for now we can just imagine having made one such
choice.

It will be recalled that the Riemann sum associated with a function defined on an
interval [a, b] can be interpreted as an approximation of the (signed) area under the
graph of the function. There are various similar interpretations which are, more or
less, possible for other Riemann sums.

The Riemann Integral

We are essentially ready to define the integral of f over V. Let us write down the
definition and explain it.

∫

V

f = lim
‖P‖→0

∑

j

f(x∗
j) meas(Vj). (8)

This says that we get the integral by taking a limit of the Riemann sum(s). How many
Riemann sums are there? There are usually a lot of them, because there are, first of
all, many choices for the partition. Also, there can be many choices for the evaluation
points. Having noted and understood all these possible choices, it’s relatively easy to
explain what is going on in this limit—though this is probably the trickiest part.
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Norm of a Partition

Before we give that explanation, we need one more thing. We need to explain ‖P‖
which is the norm of the partition. The condition ‖P‖ → 0 is a (second) way of
saying we want all the partiation pieces to get “small.” For intervals, we can use the
measure to accomplish this:

‖P‖ = max
j

(xj − xj−1).

That is, the norm of a partition consisting of intervals is the length of the longest
interval in the partition. If we try to use area, on the other hand, for the norm of
a partition consisting of areas in the plane, then we run into trouble. Can you see
why? The problem is that a very small area in the plane (arbitrarily small actually)
can be spread out all over the place.

Exercise 7. Find a subset V1 of the unit square V = [0, 1]× [0, 1] with the following
properties:

1. area(V1) = 1/1000, and

2. Given any point p ∈ V, there is a point q ∈ V1 such that |p− q| < 1/1000.

To elaborate on this problem a little more, we’d like (at least when the function
f is continuous) to have the individual terms f(x∗

j) meas(Vj) in the Riemann sum
to have about the same value no matter which evaluation point x∗

j ∈ Vj is chosen.
This amounts to having f(x∗

j) and f(x∗∗
j ) close together whenever x∗

j and x∗∗
j are any

two different evaluation points in Vj. This kind of situation is most easily realized
by requiring Vj does not “spread out” too much. And the measure area does not
accomplish this.

In short, we often need another way to measure the size of pieces. Without
specifying this measure exactly, let us denote it by diam. Then we can take (at least
symbolically)

‖P‖ = max
j

diam(Vj).

Thus, ‖P‖ is the “diameter” of the partition piece with the largest “diameter.” For
many kinds of sets,

diam(Vj) = sup{|x− y| : x,y ∈ Vj} (9)

provides a reasonable notion of diameter. In this expression, the sup (supremum) of a
set of real numbers is the smallest number that is greater than every number in the set.
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That’s kind of a mouthful. The supremum is also sometimes called the least upper
bound, and it’s an axiom of the real numbers that any bounded set always has a well-
defined supremum or least upper bound. This is basically the way mathematicians try
to avoid having gaps in the real number line. For this reason, the axiom requiring the
existence of least upper bounds for bounded sets of real numbers is called the axiom
of completeness as well as the least upper bound axiom. But this is taking us
on a bit of a tangent. The points are that (1) the existence of the supremum in the
definiton of diameter (9) relies on a mathematical axiom about the real numbers—
it’s not something you can prove and it’s something rather complicated—and (2) it
is generally possible to make a definition of diameter that makes sense.

The Limit

The existence of the limit in (8) means the following thing:
There is a number L such that for any (small) positive real number ǫ > 0, there

is another positive real number δ > 0 having the property that whenever ‖P‖ < δ,
then

∣

∣

∣

∣

∣

L−
∑

j

f(x∗
j ) meas(Vj)

∣

∣

∣

∣

∣

< ǫ.

That is, if the largest partition piece has size/diameter smaller than δ, then (no matter
how you pick the partition subject to the size requirement and no matter how you
pick the evaluation points) then the Riemann sum will be “ǫ close” to the limit L.

If there is such a number L, then we call that number the integral:

L =

∫

V

f.

Naturally, this integral on a general object may have various interpretations as the
area, volume, or hyper-volume “under” the graph of the function f or some other
geometric quantity.

If we were to desire more technical precision, it would be useful to give conditions
on the sets V, the partitions {Vj} and the functions f : V → R for which the limit
(i.e., the limit of the Riemann sums) actually exists, so that the integral exists and is
well-defined. One condition is well-known to imply the existence of Riemann integrals
in many cases, so we mention it as a vaguely stated theorem.

Theorem 1. If V is a (closed) set on which it makes sense for a real valued function
f : V → R to be continuous, and the function f is indeed continuous, then the
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Riemann integral
∫

V

f

is well-defined.

A somewhat more precise statement is given on page 896 of the Thomas Calculus
text; see also Theorem 1 in section 5.3, page 319.

5 A Difference

The integration we have introduced, even in the case where V = [a, b] is an interval,
is not exactly the same as the integration on intervals from Calc II. Also, there
are various notions of integration on curves and surfaces in calculus that are usually
introduced with an analogous difference. To emphasize this difference, the integration
on objects we have introduced is sometimes called integration on sets as opposed
to integration on oriented sets. To see how orientation plays a role, let’s restrict to
intervals. Given an interval [a, b] it’s true that

∫ b

a

f(x) dx =

∫

[a,b]

f.

These two kinds of integrals are exactly the same. However, using the notion of
integration from Calc II, it also makes perfectly good sense to write

∫ a

b

f(x) dx (10)

and integrate “backwards” on the interval [a, b]. You will recall that there is a host of
manipulations associated with this kind of backwards integration. For example, we
know

∫ a

b

f(x) dx = −

∫ b

a

f(x) dx.

Not only is the backwards integral in (10) difficult to express as an integral on a
set, but these two kinds of integrals have different change of variables formulas. Let’s
start with a change of variables in Calc II, or what was called “u-substitution.” Quite
generally, if we have a change of variables u = ψ(x), then in Calc II we would write

∫ b

a

f(x) dx =

∫ ψ(b)

ψ(a)

f ◦ ψ−1(u)

ψ′ ◦ ψ−1(u)
du. (11)
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You may not remember the formula looking this complicated. What you may re-
member is more along the following lines: From u = ψ(x), you have du = ψ′(x) dx,
so

∫ b

a

g(x)ψ′(x) dx =

∫ ψ(b)

ψ(a)

g ◦ ψ−1(u) du. (12)

If you compare, you will see that these are saying the same thing, but there is a
preconditioning of the integrand f(x) obtained by writing

g(x) =
f(x)

ψ′(x)
.

Our point here, however, is that this formula works even when ψ(a) < ψ(b) so that
the integral you get when you change variables is a backwards integral.

The corresponding computation for integration on sets is usually expressed in
terms of a scaling factor σ, and when integrating on (unoriented) sets, the scaling
factor is always the absolute value of something. In the simple case of a change of
variables ψ : [a, b]→ R, the scaling factor is

σ = |(ψ−1)′(u)| =
1

|ψ′ ◦ ψ−1(u)|
. (13)

Exercise 8. Differentiate the relation

ψ ◦ ψ−1(u) = u

to obtain the equivalent expressions for the scaling factor σ in (13). Hint: Be careful
with your differentiation and the use of the chain rule.

When ψ(a) < ψ(b), then we can use set integration to express either of the u-
substitution rules (11) or (12). For example,

∫

[a,b]

f =

∫

[ψ(a),ψ(b)]

f ◦ ψ−1(u) σ(u).

When ψ reverses the direction of the interval and ψ(b) < ψ(a), then the change of
variables formula is, superficially, a little different:

∫

[a,b]

f =

∫

[ψ(b),ψ(a)]

f ◦ ψ−1(u) σ(u).
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This is where the absolute value comes in with regard to the scaling factor, since in
this case σ = −1/ψ′ ◦ ψ−1(u).
Warning: You may be used to using the “scaling factor”

1

ψ′ ◦ ψ−1(u)
du

in formula (11) when changing variables in the integral on the oriented interval [a, b],
but for integration on an interval as a set, the correct scaling factor is

σ =

∣

∣

∣

∣

1

ψ′ ◦ ψ−1(u)

∣

∣

∣

∣

.

6 Calculation/Concrete Integration in one special

case

You may leave the discussion above with a feeling of dissatisfaction. In fact, it can
be very useful to understand the abstract notion of “integration on objects” we have
described above. There are problems that are important for engineers and other
people who use mathematics which are very difficult to work without it. On the
other hand, if one wants to compute a concrete answer, then the definition

∫

V

f = lim
‖P‖→0

∑

j

f(x∗
j) meas(Vj)

is of limited use. The same was true in Calc II, and that’s why the preponderance
of the course was spent on various “techniques” of integration. First you may have
used the Riemann sum definition to derive some simple examples like

∫

[a,b]

xn =
1

n + 1
(bn+1 − an+1),

or you may have just memorized the “power rule.” At any rate, you eventually
memorized some elementary integration formulas for powers, trigonometric functions,
and exponential functions. Then you learned other techniques, like u-substitution,
various algebraic tricks and partial fractions for rational functions, integration by
parts, and others. The definition using Riemann sums was probably lost in the
shuffle, but that definition is really what gives meaning to the rest.
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The good news is that, for the most part, there is no correspondent torrent of
complicated techniques needed to integrate on sets that are more complicated than
intervals. Usually, one reduces the calculation of an integral on any set to some
equivalent calcuation involving 1-D integrals on intervals—which are then attacked
with the techniques from Calc II. As one example of this, let us consider integration
on a three-dimensional volume in a couple simple cases.

Integration on a Rectangular Parallelopiped, i.e., A Box

If

V = [a1, b1]× [a2, b2]× [a3, b3] = {(x1, x2, x3) ∈ R3 : aj ≤ xj ≤ bj , j = 1, 2, 3}

is a Cartesian product of three intervals and f : V → R is a continuous function
defined on V, then

∫

V

f =

∫ b1

a1

∫ b2

a2

∫ b3

a3

f(x1, x2, x3) dx3dx2dx1.

The expression on the right is what’s called an iterated integral. It just means

First evaluate
∫ b3

a3

f(x1, x2, x3) dx3

as a 1-D integral, thinking of x1 and x2 as constants. Then take the result,
which will be a function g = g(x1, x2), and evalute the 1-D integral

∫ b2

a2

g(x1, x2) dx2 =

∫ b2

a2

(
∫ b3

a3

f(x1, x2, x3) dx3

)

dx2

thinking of x1 as a constant. Finally take the result, which will be a
function h = h(x1), and evalute the 1-D integral

∫ b1

a1

h(x1) dx1 =

∫ b1

a1

(
∫ b2

a2

(
∫ b3

a3

f(x1, x2, x3) dx3

)

dx2

)

dx1.

The fact that this technique of “iterated integrals” works is called Fubini’s Theo-
rem.
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A Generalization

A version of Fubini’s theorem works for a somewhat more general region V ⊂ R3

having the form

V = {(x, y, z) : ψ1(x, y) < z < ψ2(x, y), (x, y) ∈ U}

where U ⊂ R2 is a region in the plane and ψ1 and ψ2 are real valued functions with
domain U satisfying ψ1 < ψ2. In this case, it is possible to express the integral of a
function f over V as the iterated integral

∫

V

f =

∫

U

(

∫ ψ2(x,y)

ψ1(x,y)

f(x, y, z) dz

)

.

This reduction of triple/volume integrals to iterated integrals is discussed in the
Thomas text on pages 922-924. Integration on various regions U ⊂ R2 is found
in sections 15.2-15.4.

In any case, for our purposes, the main points are:

1. It’s useful to know the theory of Riemann sums for integrals on many kinds of
objects.

2. There are ways to reduce many integrals on various objects to iterated 1-D
integrals.

7 More Concrete Integration

7.1 The Divergence

We have discussed flux in one dimension.
Say we want to integrate on a region U ⊂ Rn some product expression

∫

U

∆u φ

8 Better Integration through measures

The Riemann integral is constructed using a measure, but it is not an integral based
on a measure, and this makes it limited in certain respects. To understand this
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accusation, let’s return briefly to one dimension and specifically to the set R or an
interval, say [a, b] ⊂ R. If we want to integrate discontinuous functions, then we can
sometimes use the Riemann integral. In fact, step functions were very central to
the construction of the Riemann integral, and those are, typically, discontinuous. A
step function is a function of the form

f(x) =

k−1
∑

j=0

fjχIj (x)

where a = x0 < x1 < x2 < · · · < xk = b is a partition of [a, b] and Ij is one of the
four intervals (xj , xj+1), [xj , xj+1), (xj , xj+1], or [xj , xj+1] and χIj : R → R is the
characteristic function given by

χIj(x) =

{

1, x ∈ Ij
0, x /∈ Ij .

The integral of a characteristic function is simply5

k−1
∑

j=0

fj(xj+1 − xj)

which you should recognize as essentially the same as a Riemann sum. The only
difference is that for a Riemann sum, we are looking at step functions associated with
a specific given function u : [a, b]→ R, so that we take fj = u(x∗j).

The number xj+1 − xj will be recognized as the length of the interval Ij. It may
come as a surprise, but length itself is not a measure for various technical reasons
we will discuss soon, but length is the restriction of various measures to the inter-
vals. Thus, we can say that the Riemann integral is based on the integration of step
functions, and the integration of step functions is defined using a measure, though
step functions themselves and hence Riemann integration are based on intervals and
length, so Riemann integration is not based on a measure.

We now ask a question:

What is a measure?

And, more precisely, we ask another question: What is an ideal measure? Before
we give the answer, let’s settle some generalities: A measure µ should be a function

5You may imagine, as you read this, that we have not yet defined the Riemann integral.
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whose argument is a set. The domain is a set of sets. And, for our purposes, we
should look for values in [0,∞) the set of non-negative real numbers, or possibly in
the non-negative extended real numbers [0,∞]. Thus, we are going to talk a bit
about functions

µ : Σ→ [0,∞) (14)

where Σ is some appropriate collection of subsets of, say, the real line R or the interval
[a, b]. If we want a measure on R, then we probably want values in [0,∞], since there
are many sets whose measure we expect to be infinite. For example, the real line
is infinitely long. On the other hand, perhaps things will be simpler if we restrict
attention to an interval [a, b] of finite length. Then (14) should be adequate.

8.1 Ideal Measure

With some experience, the following list was compiled: Ideally, a measure should have
the following properties:

1. Σ should be the set of all subsets (of [a, b]).

2. µ(φ) = 0. The measure of the empty set should be zero.

3. µ(I) = β − α where I ⊂ [a, b] is any one of the four types of intervals: (α, β),
[α, β), (α, β], or [α, β]. We say, the measure of an interval is its length.

4. µ{x + t : x ∈ A} = µA for every A ∈ Σ and t ∈ R. This is called translation
invariance.6

5. The following property is called countable additivity:

µ

(

∞
⋃

j=1

Ej

)

=

∞
∑

j=1

µEj

whevever E1, E2, E3, . . . is a sequence of mutually disjoint subsets of [a, b].

Thus, an ideal measure on an interval [a, b] of real numbers having finite length is
a countably additive, non-negative, translation invariant, set function for which the
measure of an interval is its length.

6You will note, there is an apparent problem with this formulation of translation invariance
because generally, the translation {x + t : x ∈ A} cannot be assumed to be a subset of [a, b]. The
formulation given works for a measure on R. It turns out that it’s adequate to assume the desired
property whenever A ⊂ [a, b] and {x + t : x ∈ A} ⊂ [a, b].
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Theorem 2. (Lebesgue) There is no ideal measure on an interval of positive length.
Such a thing does not exist.

In view of this nominally tragic result, mathematicians have scrambled and scat-
tered in all directions of compromise. Before I attempt to describe some of those, let
me give some brief comments concerning the list of properties of the (nonexistent)
ideal measure.

The set of all subsets of a given set, say [a, b] is called the power set of the given
set and is denoted by P(A) or 2A. The latter notation is sort of a curious one, and
you may be amused to know how it arises: In set theory, numbers and arithmetic
are defined solely in terms of sets. In particular, the number 0 is the empty set, the
number 1 is the set containing the empty set

1 = {φ} = {0}

and 2 = {0, 1}. This is how the “2” in 2A should be interpreted. Exponentiation
of sets (which is where exponentiation of numbers finds its origin in set theory) is
defined in terms of sets of functions (which are also sets). To make a long story short,
2A is the set of all functions φ : A→ 2. That is, each function assigns to each element
of A an element of 2 = {0, 1}. So think of it this way: If E ⊂ A, then there is a
function φ : A → {0, 1} which assigns to x ∈ A the value 1 if x ∈ E and the value
0 if x /∈ E. That is φ is the characteristic function χE on E. Conversely, given a
function φ : A → {0, 1}, it’s obvious that such a function is designating a specific
subset E = φ−1({1}) = {x ∈ A : φ(x) = 1}. This identification is clearly a one-to-one
correspondence between the subsets of A and the functions from A to {0, 1}. That
is, P(A) = 2A.

In the special case of an interval [a, b] of zero length, i.e., [a, a] = {a}, we can
write down P([a, a]) = {φ, {a}}. And we note that the zero measure is an ideal
measure. The function µ : P([a, b]) → {0} by µA ≡ 0 satisfies all the properties of
an ideal measure listed above. Whenever the length of an interval [a, b] is positive,
however, there are obviously many more subsets, and it took the genius (or audacity)
of Lebesgue to suggest throwing some of them out for the sake of having a respectable
measure. Thus, Lebesgue questioned the necessity of requiring Σ = P([a, b]). This
meant that he needed to designate which subsets should be in the set of sets Σ and
which should not. Then he needed to reformulate the remaining properties and see if
they survived in tact. His formulation of the requirements on Σ are what are called
the defining properties of a sigma algebra. We will discuss some possibilities for
choices of the sigma algebra Σ below.
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The next property almost requires no mention. For one thing, as one might guess
(and as one can show using countable additivity for example) if you have a measure,
then the measure should be monotone in the sense that

µA ≤ µB whenever A ⊂ B.

In particular, if the measure of an interval is its length, then

0 ≤ µ(φ) ≤ µ([a, a]) = lim
ǫց0

µ([a− ǫ, a+ ǫ]) = 0.

So you can prove this “null property” from the others...if you have them. The real
reason the property µ(φ) = 0 is included is because when one starts monkeying
around with the other properties, this is one property that can be kept. It’s a sort
of silly property, but all measures satisfy µ(φ) = 0, and it’s the only one of these
properties with that property. Everybody agrees on this.

The next two properties, translation invariance and the requirement that the
measure of an interval is its length, may be called the Euclidean properties, and
measures that preserve these two properties are called Euclidean measures. Per-
haps a short note on translation invariance for finite intervals is in order. First of all,
if one is worried about translating a set A ⊂ [a, b] out of [a, b], then one possibility
is modular arithmetic or modular translation. This works roughly like this:
Consider the disjoint translated intervals

In = (a + n(b− a), b+ n(b− a)) for n ∈ Z.

We say µ is translation invariant mod (b− a) if
∑

n∈Z

µ{p− n(b− a) : p ∈ T ∩ In} = µA for every translate T = {x+ t : x ∈ A}.

(15)
Note that given t ∈ R determining a translate T = {x + t : x ∈ A}, the translate T
can intersect at most two of the open intervals In, and if there are two, then those
two must be consecutive. Therefore, at most two of the terms in the sum on the left
in (15) are nonzero. Furthermore, if we assume those (at most) two intervals are In
and In+1, then

φ : (T ∩ In) ∪ (T ∩ In+1)→ T by φ(p) = p

is an injection onto all but (possibly) three points of T , and the sets

{p− n(b− a) : p ∈ T ∩ In} and {p− n(b− a) : p ∈ T ∩ In+1}
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whose measures appear on the left in (15) are translates of these sets. Finally, adding
in one, two, or three endpoints would not change the measure in view of additivity
and the fact that the measure of an interval (of length zero) is it’s length. We end
these considerations with the following lemma (claimed above in a footnote):

Lemma 1. Let µ be a (nonexistent) ideal measure. If µ{x + t : x ∈ A} = µ(A)
whenever A ⊂ [a, b] and t ∈ R with T = {x+ t : x ∈ A} ⊂ [a, b], then µ is translation
invariant, say mod (b− a).

Proof: As mentioned above, given A ⊂ [a, b] and t ∈ R, there is some n for which
the condition (15) becomes

µ{p− n(b− a) : p ∈ T ∩ In}+ µ{p− n(b− a) : p ∈ T ∩ In+1} = µA.

The construction we now carry out is partially illustrated in Figure 5.

Figure 5: Translating sets and translation invariance for a measure. The red and blue
points are initially in a set A ⊂ [a, b]. These are translated to T = {x+ t : x ∈ A} ⊂
In ∪ In+1 and finally translated back into [a, b] for comparison.

Notice that the endpoint between In and In+1 is m = b+ n(b− a).
Let Tn = {x+ t : x ∈ A} ∩ In = T ∩ In and Tn+1 = T ∩ In+1. Furthermore, let

An = {p− t : p ∈ Tn} and An+1 = {p− t : p ∈ Tn+1}.

We claim that
Qn = {p− n(b− a) : p ∈ Tn} ⊂ [a, b].

is a translate of An, namely,

Qn = {x+ t− n(b− a) : x ∈ An}. (16)
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The inclusion is clear since

a + n(b− a) < p < b+ n(b− a) =⇒ a < p− n(b− a) < b.

To show (16) take x+ t− n(b+ a) with x ∈ An. Because x ∈ An, we have x = p− t
for some p ∈ T ∩ In. Thus we can write

x+ t− n(b− a) = p− n(b− a) ∈ Qn.

We have shown {x+ t− n(b− a) : x ∈ An} ⊂ Qn. Now take p− n(b− a) ∈ Qn with
p ∈ Tn = T ∩ In. Then we know p = x+ t for some x ∈ A. Therefore,

p− n(b− a) = x+ t− n(b− a).

It remains to show x ∈ An. But this is clear since x = p − t and p ∈ Tn. Thus, we
have established (16).

Similarly, it can be shown that

Qn+1 = {p− n(b− a) : p ∈ Tn+1} ⊂ [a, b].

is a translate of An+1, namely,

Qn+1 = {x+ t− n(b− a) : x ∈ An+1}.

Finally, A\(An ∪An+1) ⊂ {a, b,m}. Therefore,

µQn + µQn+1 = µAn + µAn+1 = µ(An ∪An+1 ∪ {a, b,m}) ≥ µA

because µ is Euclidean and µ{a, b,m} = 0. On the other hand,

µQn + µQn+1 = µAn + µAn+1 ≤ µA

by monotonicity. �

The last property of an ideal measure is countable additivity. I don’t have too
much to say, particularly, about countable additivity, except that this condition is
often motivated by the weaker property of finite additivity:

µ(E1 ∪ E2) = µE1 + µE2 when E1 ∩E2 = φ

which naturally extends by induction to finite collections of mutually disjoint sets.
Countable additivity is also important as a property that is relaxed to countable
subadditivity:

µ

(

∞
⋃

j=1

Ej

)

≤
∞
∑

j=1

µ(Ej). (17)
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Naturally, the condition of subadditivity does not require the sets in the union to
be disjoint. Consequently, it turns out to be natural to consider set functions µ∗ :
P([a, b])→ [0,∞) which are (countably) subadditive and are called outer measures.
The two most famous outer measures Lebesgue outer measure and Hausdorff (outer)
measure will be discussed below. Before we get to that, however, let us return to our
main course of discussion.

8.2 Euclidean Measures

We have discussed what it would be like to have an ideal measure, and we have con-
fessed up front that there is no such thing. As mentioned above, the suggestion of
Lebesgue was to give up the hope of being able to measure all sets and restrict atten-
tion to a subcollection Σ ⊂ P([a, b]) which is a sigma algebra or more commonly
a σ-algebra. A σ-algebra on a set X, for example X = [a, b] has some pretty simple
properties:

1. φ ∈ Σ and X ∈ Σ.

2. If E ∈ Σ, then the complement of E given by X\E ∈ Σ.

3. If E1, E2, E3, . . . ∈ Σ, then ∪Ej ∈ Σ.

We say Σ is closed under taking complements and countable unions. In view
of countable additivity, the closure under countable unions is quite natural. With the
crucial definition of a σ-algebra, we can easily recast our five desired properties to
obtain what is called a Euclidean measure on an interval:

Definition 1. Given a σ-algebra Σ of subsets of the real interval [a, b] ⊂ R, a function
µ : Σ→ [0,∞) is said to be a Euclidean measure on [a, b] if

1. µ(φ) = 0.

2. For every subinterval I ⊂ [a, b] we have I ∈ Σ,

µ(I) = length(I),

i.e., the measure of an interval is its length.

3. For every A ∈ Σ and every t ∈ R such that T = {x+ t : x ∈ A} ∈ Σ, we have

µ{x+ t : x ∈ A} = µA.

This is the property of translation invariance.
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4. If E1, E2, E3, . . . is a (countable) sequence of sets in Σ which are mutually, i.e.,
pairwise, disjoint, then

µ

(

∞
⋃

j=1

Ej

)

=
∞
∑

j=1

µEj.

This is, of course, countable additivity.

With this definition, the nonexistence result Theorem 2 can (and usually is) re-
stated as an existence theorem:

Theorem 3. (existence of a non-measurable set) If µ : Σ → [0,∞) is a Euclidean
measure on an interval [a, b] with b−a > 0, then there exists a subset N of [a, b] with
N /∈ Σ.

Thanks to Lebesgue, we have reduced the requirements on the desired measure
from five to four, but we still have not identified such a measure. It is perhaps natural
to try to obtain a σ-albebra of subsets which is as large as possible. It seems the credit
for identifying this collection, or at least giving the most user friendly characterization
of this collection, goes to Constantin Carathéodory. Still, it’s not so user friendly,
but let me try to describe what happens briefly. For any set A ⊂ [a, b] one sets

µ∗(A) = inf
A⊂∪Ij

∑

j

µ(Ij)

where I1, I2, I3, . . . is a countable collection of intervals with A ⊂ ∪Ij . This is called
Lebesgue outer measure. It satisfies most of our properties for an ideal measure.
In fact, it satisfies all of them except countable additivity, and (as you might guess)
µ∗ is countably subadditive. So this is a good start. Now here is Carathéodory’s
trick: Σ = M is the set of all sets E for which

µ∗A = µ∗(A ∩ E) + µ∗(A\E) for every A ⊂ [a, b], (18)

that is for every A ∈ P([a, b]). Note that A is not the measureable set we get out
of this, but rather E. The condition is called the Carathéodory measurability
criterion, and the set of all sets E satisfying (18) is a σ-algebra called either the
Carathéodory measurable sets or the Lebesgue measurable sets. This σ-algebra is
often denoted by something like M. According to the Carathéodory criterion, the
measurable sets are those which “cut well” an arbitrary set A. It can be shown that
if you have any more, then you’ve included non-measurable sets.
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It’s a good bit of work, but you can show that taking µ : M → [0,∞) as the
restriction of Lebesgue outer measure to M, i.e., µA = µ∗A for all A ∈ M, defines
a Euclidean measure on [a, b]: Of course, the intervals are in M. The measure is
translation invariant and the measure of an interval is its length, i.e., the measure
is Euclidean. Moreover, you get countable additivity. Finally one can show the
following:

Theorem 4. Any Euclidean measure µ : Σ→ [0,∞) satisfies Σ ⊂M and

µA = µ∗A for every A ∈ Σ.

So you have a rather good measure, and now you can have rather good integration
to go along with it. That takes at least a bit more work, so let’s pause to set up a
framework for what is required and describe some perspective for other matters as
well.

8.3 Directions of Generalization

One obvious generalization we need is a Euclidean measure on all of R. This will be an
extended real valued function µ : M → [0,∞], and you can almost guess the nature
of both µ and the σ-algebra M. They should be some straightforward generalizations
of µ∗ and the Lebesgue measurable sets on finite intervals [a, b]. I won’t go through
the details. It can be done.

Here is a kind of “to do” list of other directions which are important:

1. Extend Lebesgue measure to all of R. (mentioned above)

2. Find an analogous measure for n-dimensional volume on Rn. That is, generalize
to higher dimensions.

3. Consider non-Euclidean measures for which we relax, i.e., throw out, the
Euclidean requirements of translation invariance and that the measure of an
interval is given by length.

4. Consider some outer measures for which we relax countable additivity to
countable subadditivity.
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8.4 Lebesgue Integration

Lebesgue integration is based on the Lebesgue measure as follows: A simple func-
tion is a function of the form

f(x) =

k
∑

j=0

fjχEj
(x)

where E1, E2, E3, . . . , Ek are Lebesgue measurable sets. To integrate a non-negative
function u : [a, b]→ [0,∞), you can take

∫

[a,b]

u = sup
f≤u

k
∑

j=0

fjµ(Ej). (19)

It turns out that you won’t have a very nice integral here unless u is a decent function
that respects measurability. Such a function is called a measurable function. There
are various ways to define what it means for a function to be measurable. Here is a
general definition:

Definition 2. Given (X,Σ, µ) and (Y, T, ν) two measure spaces, we say u : X → Y
is a measurable function if

{x : u(x) ∈ E} ∈ Σ whenever E ∈ T. (20)

The set {x : u(x) ∈ E} appearing in (20) is called the inverse image of E and
is denoted by

u−1(E) = {x : u(x) ∈ E}.

Notice that this set is always well-defined. In particular, the use of the notation
u−1(E) with the set E as an “argument” is not intended to suggest that the function
u has an inverse as a function u : X → Y . In particular, one does not mean by this
notation that the function u is one-to-one (injective) or onto (surjective).

Applying this general definition to our proposed definition of integration (19) given
above, we have u : R→ R, and we need to choose σ-algebras and measures for R as
the domain and codomain of u. Now, it might be expected that we would take the
extension of Lebesgue measure to R in both cases. That is, it turns out, not what
is usually done. Why does everything have to be so complicated! Well, the answer in
this case is the following:
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If you think about the measurability of functions given generally by (20),
and you want to have as many measurable functions as possible, then you
want as many measurable sets Σ as possible and as few measurable
sets T as possible.

Consequently, for u : [a, b]→ R we take M on the domain [a, b] but the smallest σ-
algebra containing the open sets on R. This latter σ-algebra is called the Borel
σ-algebra or more often the Borel sets and is denoted by B. Thus, for integrability,
a function u is said to be Lebesgue measurable if

{x ∈ [a, b] : u(x) ∈ A} ∈M whenever A ∈ B.

This condition turns out to be fairly easy to check:

Lemma 2. u : [a, b]→ R is Lebesgue measurable if and only if

{x ∈ [a, b] : u(x) > c} ∈M for every c ∈ R.

For these functions the integral (19) has all the properties one would like to see
in an integral. Furthermore, you can also break any measurable function up as

u = u+ + u−

where u+ is a non-negative function and u− is a non-positive function. Then, since
−u− is a non-positive function (and we know how to integrate those by (19)) we can
set

∫

u =

∫

u+ −

∫

(−u−).

There you have it. Oh, incidentally, this integral agrees with the Riemann integral
whenever the Riemann integral is defined. This is the integration used for the Lp

spaces at least as far as Lp(a, b).

Exercise 9. Consider the function u : [0, 1]→ R given by

u(x) =

{

0, 1 ∈ Q ∩ [0, 1]
0, x ∈ [0, 1]\Q

where Q = {p/q : p ∈ Z, q ∈ N} is the rational numbers.
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1. Show that u is not Riemann integrable. Hint: Every upper sum based on a
step function f (based on intervals) with f ≥ u has

∫

f =
∑

u(x∗j)(xj+1 − xj) =
∑

(xj+1 − xj) = 1

because there are rational numbers in every interval of positive length. But
Every lower sum for u is zero because there are irrationals in every interval of
positive length too.

2. Show that Q has outer measure µ∗Q = 0. Hint(s): Q is countable which
means you can find a sequence q1, q2, q3, . . . containing every rational number:

Q = {q1, q2, q3, . . .}.

Now, given any ǫ > 0 take an open interval (qj − ǫ/2
j+1, qj + ǫ/2j+1) containing

qj. Conclude that
µQ ≤ ǫ. (21)

What non-negative numbers µQ satisfy (21) for every ǫ > 0?

3. Show that every subset A ⊂ [0, 1] with µ∗A = 0 is measurable, i.e., the Carathéodory
condition holds, so A ∈ M. This is a fairly difficult task for most people, but
it is representative of all the hard work that goes into constructing Lebesgue
measure.

4. Compute the Lebesgue integral of u. Hint(s): Remember how the Lebesgue in-
tegral of a non-negative function like u is defined as the supremum of integrals
of simple functions f with f ≤ u (based on measurable sets). Note that the
integral of a simple function

f(x) =
∑

fjχEj
is given by

∫

f =
∑

fjµEj.

u itself is a simple function.

Higher Dimensional Lebesgue Measure

There is also Lebesgue measure on Rn (and other sets—curves, surfaces, etc.). The
resulting integration generalizes Riemann integration on subsets of Rn (and other
sets). This is also the integration used for and the source of the functions in the Lp

space defined on, for example, an open set U ⊂ Rn.
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Borel Measure

In some instances, rather than the absolutely largest σ-algebra M obtained by only
throwing the non-measurable sets out of P([a, b]), one wants a small (or smaller)
σ-algebra. The smallest σ-algebra containing all the open sets is called the Borel
σ-algebra or more often the Borel sets often denoted by B. Restricting Lebesgue
measure (or Lebesgue outer measure) to the Borel sets, one obtains Borel measure.
Again, this is a Euclidean measure. All the intervals are in B and µ is translation
invariant and countably additive.

8.5 Other Measures

It turns out that one can relax the other two major categories of what we have
called an ideal measure, namely the Euclidean properties and the countable additivity.
Relaxing the Euclidean properties, we get the general definition of a measure:

Definition 3. A finite measure on a set X with respect to the σ-algebra Σ of subsets
of X is a function µ : Σ→ [0,∞) satisfying

1. µ(φ) = 0.

2. µ(∪Ej) =
∑

µ(Ej) when {Ej} is a countable collection of disjoint sets in Σ.

Obviously, we would like to extend Lebesgue measure to all of R or all of Rn,
and this would not be a finite measure. There are also infinite measures and even
signed measures, but let’s set those aside for the moment.

Perhaps the simplest way to view non-Euclidean finite measures is in two groups:
The absolutely continuous measures and the singular measures. The abso-
lutely continuous measures preserve the Euclidean aspect of Lebesgue measure to
the extent that sets consisting of single points {p} have measure zero. In fact, the
definition is that a measure ν is absolutely continuous if

µE = 0 =⇒ νE = 0.

In this case, one writes ν ≪ µ. Singular measures by contrast have single point sets
(singletons) with positive measure. This is especially useful in discrete probability.
Say you have a measure space X = {0, 1} which corresponds to flipping a coin with
0 for heads and 1 for tails. Then you can have a measure with µ{0} = 1/2 and
µ{1} = 1/2.
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You can integrate with respect to any measure in much the same way we did with
Lebesgue measure. Notice that if you have a singular measure with

µE =

{

1, if p ∈ E,
0, if p /∈ E,

then
∫

f dµ = f(p).

You can’t have this kind of thing happen with Lebesgue measure (or with any abso-
lutely continuous measure). On the other hand, whenever you can integrate you can
define a functional

f 7→

∫

E

f dµ,

and assuming f is taken in an appropriate vector space, this will be a linear functional.
On the third hand, when you have a fixed (measurable) function f , then

νE =

∫

E

f dµ

will define a new measure. Technically, we would want f to be non-negative here,
but if not, we get one of those signed measures mentioned above.

8.6 Hausdorff Measure

As a final comment on relaxing the properties of an ideal measure, aside from the
Lebesgue outer measure, there is another very interesting geometric outer measure
called Hausdorff measure. The idea for it came from Felix Hausdorff who was inspired
by thinking about how bricks fit together on the surface of a wall.

Consider Hd : P(Rn) → [0,∞] which is given for any subset A of Rn and any
d > 0 by

Hd(A) = sup
r>0

inf

{

αd

∞
∑

j=1

rd : A ⊂
∞
⋃

j=1

Br(xj)

}

where αd is a suitable positive constant. In fact, we take

αd =
πd/2

Γ(d/2 + 1)
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where Γ is the Gamma function. The constant αd is the volume of a unit ball in Rd

when d is an integer, i.e., the d-dimensional Lebesgue measure of the ball.
It turns out that for a given set A there is a uniqe d0 for which Hd(A) = ∞

when d < d0 and Hd(A) = 0 when d > d0. This number d0 is called the Hausdorff
dimension of A. If the Hausdorff dimension of a set A ⊂ Rn is d0 = n, then

Hn(A) = µ(A) where µ is n-dimensional Lebesgue measure on Rn.

For a surface S in R3, furthermore, one can show that the Hausdorff dimension is
d0 = 2 and H2(S) is the area of the surface.

This would be considered a Euclidean measure in the sense of being translation
invariant and the measure of simple sets (intervals, boxes, balls, etc.) always agrees
with Lebesgue measure. On the other hand, it is not a measure technically but
rather an outer measure. But most mathematicians call it Hausdorff measure instead
of Hausdorff outer measure. In fact, mathematicians who work in geometric mea-
sure theory advocate for calling all countably subadditive measures, like Hausdorff
measure, simply “measures.” They still use the Carathéodory criterion to determine
measurable sets (and hence measurable functions) however.

8.7 Radon Measures

9 Fundamental Theorem of Calculus

for Measurable Functions

I’m going to outline a couple basic results concerning measurable functions to give you
some idea of how one works with such functions. Then I will discuss the fundamental
theorem of calculus in this context.

9.1 Integration

When one has a measure, say Lebesgue measure µ on the line, then one defines the
integral of a measurable function in terms of the measure. There are various ways to
do this, but one of the simplest is to start with non-negative functions and define the
integral of a non-negative function f : [a, b]→ [0,∞) to be

∫

f = sup
ψ≤f

∫

ψ
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where the supremum is taken over simple functions. Simple functions are functions
ψ : [a, b]→ R which can be written in the form

ψ(x) =
k
∑

j=1

vjχEj
(x)

where v1, v2, . . . , vk are finitely many values and E1, E2, . . . , Ek are finitely many
measurable base sets. Generally, the sets E1, E2, . . . , Ek may overlap, and there
is some work required to show things like (1) there is a canonical expression for a
simple function where the base sets are pairwise disjoint and (2) the expression for
the integral of a simple function:

∫

ψ =
k
∑

j=1

vjµEj

does not depend on the particular values v1, v2, . . . , vk or the base sets E1, E2, . . . , Ek
used to write down a formula for the function. In any case, this gives one a def-
inition for the integral of a simple function and for the integral of a non-negative
function. Then any (measurable) function can be written uniquely as a difference of
non-negative measurable functions f = f+ − f− where f+(x) = max{f(x), 0}. Then
one defines

∫

f =

∫

f+ −

∫

f−.

A remark on notation: Generally, if a function f : [a, b]→ R, then sets of measure zero
will not effect the value of an integral. This is also true for Reimann integrals. When
we have written

∫

f above, this meant/means the integral over the entire domain of
f . Keeping in mind that sets of measure zero, like single points for Lebesgue measure,
make no difference, if we restrict the discussion to Lebesgue measure, then

∫

f for
f : [a, b]→ R may be written as

∫

f =

∫

[a,b]

f =

∫

(a,b)

f.

More generally, if E ⊂ [a, b] is a measureable subset of R (having finite measure)
and f : E → R is a measurable function, we can write (thinking of E as the entire
domain of f)

∫

f =

∫

E

f =

∫

fχE =

∫

(a,b)

fχE
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where in the last two integrals we consider fχE : [a, b]→ R by

fχE(x) =

{

f(x), x ∈ E
0, x ∈ [a, b]\E.

Even more generally, these considerations allow an extremely convenient notion and
notation which is essentially unavailable for the Riemann integral: If f : E → R is a
measurable function and A is a measurable set with A ⊂ E, then

∫

A

f =

∫

fχA.

Another remark involving the relation of functions to sets of measure zero: If f : E →
R is a measurable function and f̃ : E → R satisfies

µ{x ∈ E : f̃(x) 6= f(x)} = 0,

then we say f̃ is a version of f . Note that in this case,

∫

A

f̃ =

∫

A

f for every measurable set A ⊂ E.

Here, and in the discussion below, we are primarily restricting attention to measura-
bility and integration of functions with respect to Lebesgue measure µ, but most of
these constructions and comments have some analogue for any measure. In particu-
lar, we will discuss below in the context of Lebesgue measure a precise version of
a function f ∈ L1(a, b) which, as far as I know, is a notion introduced in the book
Measure Theory and Fine Properties of Functions by Evans and Geriepy.

In some sense, the next step is to consider functions for which
∫

|f | <∞. These
are sometimes called integrable or summable. Sometimes the term integrable
applies also to measurable functions even if

∫

|f | = +∞. In this case, integrable
and measurable mean the same thing. The set of summable functions is sometimes
referred to as L1(a, b). Technically, it is more common to think of L1(a, b) as a set
consisting of equivalence classes of functions

[f ] =

{

g :

∫

|g − f | = 0

}

.
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9.2 Basic Techniques in L1(a, b)

Here is a basic result about summable functions:

Theorem 5. If g ∈ L1(a, b), then v : (a, b)→ R by

v(x) =

∫

(a,x)

g (22)

satisfies v ∈ C0(a, b).

If we had and extension g of g with g ∈ C0[a, b], then the Riemann integral
∫ x

a

g(t) dt

would be well-defined and we would have agreement with the Lebesgue integral:
∫

(a,x)

g =

∫ x

a

g(t) dt.

Furthermore, the fundamental theorem of calculus for Riemann integrable functions
would hold so that v would not only be continuous, but also satisfy v ∈ C1(a, b) with

v′(x) = g(x).

So our theorem is not really too surprising and, in fact, more is true. These functions,
however, are a good deal more complicated than continuous functions, and the result
we have stated will provide a good illustration of how one can (and needs to) deal
with them.

Recall the definition of continuity as applied to v: The function v : (a, b) → R is
continuous at x0 ∈ (a, b) if for each ǫ > 0, there is some δ > 0 such that

|x− x0| < δ =⇒ |v(x)− v(x0)| < ǫ. (23)

The condition on the right in (23) is
∣

∣

∣

∣

∫

(a,x)

g −

∫

(a,x0)

g

∣

∣

∣

∣

< ǫ. (24)

The quantity appearing on the left in (24) is either
∣

∣

∣

∣

∫

(x,x0)

g

∣

∣

∣

∣

or

∣

∣

∣

∣

∫

(x0,x)

g

∣

∣

∣

∣

(25)

44



depending on whether x < x0 or x > x0. If x = x0, then the difference of integrals
in (24) is zero and (23) is clearly satisfied. Assuming |x − x0| < δ and x ∈ (a, b) as
stipulated in (23), both quantities in (25) are bounded above by

∫

(x0−δ,x0+δ)∩(a,b)

|g|.

Therefore, continuity of v clearly follows from the following result:

Lemma 3 (Lebesge continuity lemma). If g : (a, b)→ R with g ∈ L1(a, b), then given
any ǫ > 0, there is some δ > 0 such that for every measurable set E ⊂ [a, b]

µE < δ =⇒

∫

E

|g| < ǫ.

As we motivated/introduced the Lebesgue continunity lemma as a means to prove
the continuity of the measurable version of an indefinite integral (22), we will use
another fundamental result to outline the proof of Lebesgue’s lemma, so we proceed
with that discussion.

Recall that g ∈ L1(a, b) means (g) is measurable and)
∫

|g| < ∞. Consider for
j = 1, 2, 3, . . . the function hj : (a, b)→ R by

hj(x) = max{|g(x)|, j}. (26)

The function hj is measurable for each j and
∫

|hj| ≤ j(b− a),

so hj ∈ L1(a, b). Furthermore, 0 ≤ hj(x) ≤ |g(x)| and the pointwise limit

lim
jր∞

hj(x) = |g(x)| for every x ∈ (a, b).

In fact, h1(x) ≤ h2(x) ≤ h3(x) ≤ · · ·hj(x)ր |g(x)|. We denote this condition simply
by hj ր |g|. It is precisely under these circumstances that a result which has been
called “among the most important assertions in all of analysis” applies.

Theorem 6 (Lebesgue monotone convergence theorem). If hj ∈ L1(a, b) for j =
1, 2, 3, . . . and h ∈ L1(a, b) satisfy

0 ≤ hj(x)ր h(x) for every fixed x ∈ (a, b),

then

lim
jր∞

∫

hj =

∫

h.
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The result can be nominally strengthened:

Theorem 7 (monotone convergence theorem II). If hj is measurable for j = 1, 2, 3, . . .
with

0 ≤ hj(x)ր h(x) for every fixed x ∈ (a, b),

then
∫

hj ր

∫

h.

The important part is that the second version allows the possibility
∫

h =∞, but
in our case we only need the first version.
Proof of the Lebesgue continuity lemma: There is some N ∈ N such that j > N
implies

∣

∣

∣

∣

∫

hj −

∫

|g|

∣

∣

∣

∣

=

∫

|g| − hj <
ǫ

2
.

Fix j > N . Then there is some δ such that µE < δ implies
∫

E

hj ≤ jµE <
ǫ

2
.

In fact, we can take δ = ǫ/(2j). Therefore, if E ⊂ (a, b) with µE < δ, then
∫

E

|g| =

∫

E

|g| − hj +

∫

E

hj <
ǫ

2
+
ǫ

2
= ǫ. �

Proof of Theorem 5: Let v(x) =
∫

(a,x)
g. Take δ according to Lebesgue’s lemma

for |g| ∈ L1(a, b). Then for x, x0 ∈ (a, b) with |x− x0| < δ we have

|v(x)− v(x0)| ≤

∫

(x0−δ,x0+δ)∩(a,b)

|g| < ǫ. �

It will be noted that we have actually shown v is uniformly continuous because δ
does not depend in any way on the particular points x, x0 ∈ (a, b) to which we apply
the lemma. In fact more is true.

9.3 Absolute Continuity and the Fundamental Theorem

Recall that the fundamental theorem of calculus, based on Riemann integration,
is basically about continuous functions. More precisely, the theorem gives rela-
tions between a continuous function and a special kind of continuous function, a C1

function. The theorem may be stated in two, essentially equivalent, ways:
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1. If f ∈ C0[a, b] and F ∈ C1[a, b] with F ′ = f , then

∫ b

a

f(x) dx = F (b)− F (a).

2. If f ∈ C0[a, b], then F : [a, b]→ R by

F (x) =

∫ x

a

f(t) dt

satisfies F ∈ C1[a, b], and F ′(x) = f(x).

We want to give here, to the extent reasonable and possible, a version of this theorem
for measurable functions. As one might expect, there will be two special kinds of
measurable functions, and we will seek analogues of 1 and 2. The two special kinds
of measurable functions are summable functions u ∈ L1(a, b), which we discussed
above, and absolutely continuous functions v ∈ AC[a, b], which we will discuss
below. The condition u ∈ L1(a, b) takes the place of continuity; these are the functions
we can integrate with the Lebesgue integral. The condition v ∈ AC[a, b] takes the
place of differentiability or F ∈ C1[a, b]. The analogues are the following:

1. If u ∈ L1(a, b) and v ∈ AC[a, b] with derivative7 v′ = u ∈ L1(a, b), then

∫

(a,b)

f(x) dx = v(b)− v(a).

2. If u ∈ L1(a, b), then v : [a, b]→ R by

v(x) =

∫

[a,x)

u

satisfies v ∈ AC[a, b], and v′ = u ∈ L1(a, b).

The condition for absolute continuity looks, more or less, like a straightforward
modification of continuity:

7This is, of course, not a classical derivative, but a measurable derivative defined almost every-
where. We will elaborate below.

47



Definition 4. A function v : [a, b]→ R is absolutely continuous if for any ǫ > 0,
there is some δ > 0 such that whenever

a ≤ a1 ≤ b1 ≤ a2 ≤ b2 ≤ · · · ≤ ak ≤ bk ≤ b with
k
∑

j=1

bj − aj < δ,

then
k
∑

j=1

|v(bj)− v(aj)| < ǫ.

It’s obvious that an absolutely continuous function is uniformly continuous. It’s
less obvious that an absolutely continuous function is differentiable at almost every
point and has a summable derivative. It’s even less obvious that having a derivative
almost everywhere which is summable implies absolute continuity, but all these things
are true, along with the fundamental theorem stated above. Thus, absolute continuity
is essentially the optimal condition to go along with summability in the fundamental
theorem.

Exercise 10. We can also say v : (a, b) → R is absolutely continuous if for any
ǫ > 0, there is some δ > 0 such that whenever

a < a1 ≤ b1 ≤ a2 ≤ b2 ≤ · · · ≤ ak ≤ bk < b with
k
∑

j=1

bj − aj < δ,

then
k
∑

j=1

|v(bj)− v(aj)| < ǫ.

Show that if v is absolutely continuous in this sense on an interval (a, b) with finite
endpoints, then there is a unique extension overlinev ∈ AC[a, b].

9.4 Lebesgue Points

Another useful thing to know about summable functions concerns averages of the
values. Let us consider here u : U → R where U is an open subset of Rn, the function
u is measurable, and we consider integration with respect to Lebesgue measure. The
average value of u over a measurable set E ⊂ U with 0 < µE <∞ is

1

µE

∫

E

u.
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If
∫

K
|u| <∞ whenever K ⊂ U is compact, we say u ∈ L1

loc(U).

Theorem 8 (Lebesgue’s differentiation theorem). If u ∈ L1
loc(U), then for almost

every x0 ∈ U

lim
rց0

1

µBr(x0)

∫

Br(x0)

u = u(x0). (27)

Definition 5. Given a function u ∈ L1
loc(U), a point x0 ∈ U is called a Lebesgue

point of u if

lim
rց0

1

µBr(x0)

∫

Br(x0)

|u− u(x0)| = 0.

Exercise 11. Show that (27) holds at every Lebesgue point x0, but that (27) can also
hold at a point x0 ∈ U which is not a Lebesgue point. And of course it is possible that

lim
rց0

1

µBr(x0)

∫

Br(x0)

u

exists but

lim
rց0

1

µBr(x0)

∫

Br(x0)

u 6= u(x0).

Nevertheless, the following is true:

Theorem 9. If u ∈ L1
loc(U), then almost every point of U is a Lebesgue point.

Definition 6. Given u ∈ L1
loc(U), we say the function

u1(x) =







lim
rց0

1

µBr(x0)

∫

Br(x0)

u, if this limit exists

0, otherwise.

is the precise pointwise version of u.

Exercise 12. We say ũ = u ∈ L1
loc(U) if

∫

K

|ũ− u| = 0 for every compact set K ⊂ U .

Show that if ũ = u ∈ L1
loc(U), then one cannot say ũ(x) = u(x) at any particular

single point x ∈ U . Show, however, that if ũ = u ∈ L1
loc(U), then the precise pointwise

versions are equal:
ũ1(x) ≡ u1(x) for every x ∈ U .
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Note: Theorem 1 of §4.9 of Evans and Gariepy states that8 if u ∈ W 1(R), then
the precise pointwise version of u satisfies u1 ∈ AC[a, b] for every a, b ∈ R with
a < b and u1 ∈ L1

loc(R). He shows (absolute) continuity of u1 using a mollification
argument I do not completely understand, but it should provide an alternative to
the argument we used above to show continuity in Theorem 5. This is also relevant
to Problem 1 on Assignment 9 (MATH 6702 Spring semester 2020) and Problems 1
and 2 on Assignment 11 (of the same course). In particular, one should be able to
use some version of the mollification approach of Evans and Gariepy to modify the
discussion of Problems 1 and 2 of Assignment 11 resulting in a proof of continuity.

10 Integration Spaces

10.1 The Lp spaces

Given an open set U ⊂ Rn, we consider the following sets of real valued measurable
functions:

Lp(U) =

{

u :

∫

|u|p <∞

}

for 0 < p <∞.

L∞(U) = {u : essup |u| <∞} .

It may be important to note that the “functions” in these classes are ususally consid-
ered as equivalence classes of functions rather than functions that are traditionally
pointwise defined. This means for example that as functions in L1(0, 1) the functions
f, g, h : (0, 1)→ R defined pointwise by

f(x) = 0, g(x) =

{

0, x 6= 0
1, x = 0,

and h(x) =

{

0, x /∈ Q
1, x ∈ Q

respectively, are considered essentially indistinguishable from one another. The
point can be expressed in many ways. One can observe, for example, that

∫

(0,1)

fφ =

∫

(0,1)

gφ =

∫

(0,1)

hφ for all φ ∈ C∞
c (0, 1).

Alternatively,
∫

(0,1)

|f − g| =

∫

(0,1)

|f − h| =

∫

(0,1)

|g − h| = 0.

8See the discussion of weak derivatives below.
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For any function u ∈ Lp(U), we set

‖u‖Lp =

(
∫

U

|f |p
)1/p

. (28)

This is called the Lp norm on Lp(U). When 1 ≤ p <∞, the expression (28) defines a
norm. The non-negative homogeneity and positive definiteness or essentially obvious.
The triangle inequality

‖u+ v‖Lp ≤ ‖u‖Lp + ‖v‖Lp (29)

is called the Minkowski inequality. This is used, for example, to show Lp is closed
under addition, and it follows that Lp(U) is a normed vector space.

Even for 0 < p < 1, the space Lp(U) is a vector space, but the Lp norm fails to
be a norm in these cases. It is still non-negative homogeneous and positive definite,
but the trangle inequality must be relaxed to

‖u+ v‖Lp ≤M(‖u‖Lp + ‖v‖Lp)

for some constant M . Such a function is called a quasinorm and so, while Lp(U)
for 0 < p < 1 is not a normed space, setting

dp(u, v) = ‖u− v‖pLp

still makes Lp(U) for 0 < p < 1 a metric space.9

The norm on L∞(U) is a little more complicated but rather instructive with regard
to the nature of these “functions.”

‖u‖L∞ = sup{m : µ{x : |u(x)| ≥ m} > 0}.

The expression on the right here is called the essential sup, i.e., essential supremum,
of |u|. In addition to the L∞ norm, ‖ · ‖L∞ is also called the essential sup norm.
If ‖f − g‖Lp = 0, then {x : f(x) 6= g(x)} has measure zero. Thus, f and g are in the
same equivalence class as Lp or measurable functions.

The L∞ norm is also a norm. The triangle inequality here is also considered a
form of the Minkowski inequality.

When U is a bounded open subset of Rn, then the Lp spaces are nested with

Lq(U) ⊂ Lp(U) for 1 ≤ p < q ≤ ∞. (30)

9Recall the definition of metric space from the notes on differentiation. See also further discus-
sion of metric spaces below.
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One approach to showing this relation is to use Hölder’s inequality: If 1 < p ≤
q <∞ and

1

p
+

1

q
= 1,

then p and q are called Hölder conjugate exponents, and

‖uv‖L1 ≤ ‖u‖Lp‖v‖Lq whenever u ∈ Lp(U) and v ∈ Lq(U).

It may be viewed as a consequence of this inequality that if u ∈ Lp(U) and v ∈ Lq(U),
then the product uv ∈ L1(U). The exponents p = 1 and q = ∞ are also considered
to be Hölder conjugates, and the inequality

‖uv‖L1 ≤ ‖u‖L1‖v‖L∞ whenever u ∈ L1(U) and v ∈ L∞(U)

also holds and is called a Hölder inequaility.

Exercise 13. Use the Hölder inequalities to show (30) holds for 1 ≤ p ≤ ∞.

Exercise 14. Prove the following generalized Hölder inequality by induction: If
1 ≤ p1 ≤ p2 ≤ · · · ≤ pk ≤ ∞ with

∑

pj 6=∞

1

pj
= 1

and uj ∈ Lpj(U) for j = 1, 2, . . . , k, then u1u2 · · ·uk ∈ L1(U) and

‖u1u2 · · ·uk‖L1(U) ≤ ‖u1‖Lp1 (U)‖u2‖Lp2(U) · · · ‖uk‖Lpk (U).

10.2 Metric Completeness

Recall the definition of a metric space from the notes on differentiation as a set X
with a notion of distance, or a distance function defined on X × X. A sequence
x1, x2, x3, . . . in a metric space is said to be Cauchy if for any ǫ > 0 there is some
N ∈ N with

j, k > N =⇒ d(xj, xk) < ǫ.

This condition says that the elements in the seauence “bunch up” at the “end” with
respect to the distance. You may recall that a sequence, like the one above, is said
to converge to an element x ∈ X if for any ǫ > 0, there is some N ∈ N such that

j > N =⇒ d(xj, x) < ǫ.
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In this case we say the sequence has limit x, and we write

lim
j→∞

xj = x.

Notice, first of all, that the definition of convergence has integral to it, the point x
which is the limit while the Cauchy condition does not even mention any specific
limit. This is no accident.

Exercise 15. Show that if a sequence {xj}
∞
j=1 in a metric space X converges to a

limit x ∈ X, then the sequence is Cauchy.

Exercise 16. Recall that any subset of a metric space is a metric space itself using
the restriction of the metric on the larger space. (This sort of thing will not work
at all for a normed space, since general subsets will fail to be vector subspaces.) In
particular, the interval X = (0, 1) is a perfectly good metric space. Show that {1/j}∞j=1

is Cauchy but does not converge in X. Hint: This sequence converges in the larger
metric space R1.

The previous two exercises are, in some sense, the key to understanding metric
completeness.

Definition 7. A metric space is said to be complete if every Cauchy sequence con-
verges to some limit (in the space).

Thus, X = (0, 1) is not complete as a metric space, but X = [0, 1] is complete.
The vector space C0[a, b] is not complete under the norm induced metric

‖f − g‖L1 =

∫ b

a

|f(x)− g(x)| dx,

but C0[a, b] is complete under the C0 norm. (Can you prove that?) Also, the space
Lp(U) is complete under (the distance induced by) the Lp norm. With this distinction
of metric completeness in mind, here are some common disignations you may be glad
to know about:

A normed vector space which is metrically complete with respect to the
distance induced by the norm is called a Banach space.

An inner product space which is metrically complete with respect to the
distance induced by the inner product is called a Hilbert space.

See below for the definition of an inner product space.
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10.3 L2(U) as an Inner Product Space

We have already seen that when we have a norm ‖ · ‖ : V → [0,∞) on a vector space,
then we can define a distance function or metric d : V × V → [0,∞). The metric
does not need the vector space structure of V , and in this way were were motivated
to consider a less structured kind of “space” called a metric space. We repeat: Every
normed space is a metric space with distance function d(v, w) = ‖v − w‖. There
are axioms for a metric space which can even be just a set X with no vector space
structure.

It is also possible to have a vector space with more structure than a normed
vector space.

Definition 8. An inner product space is a vector space V together with a bilinear
form 〈 · , · 〉 : V × V → R satisfying the following conditions:

(i symmetric) 〈v, w〉 = 〈w, v〉 for all v, w ∈ V .

(ii bilinear) 〈av + bw, z〉 = a〈v, z〉 + b〈w, z〉 for all a, b ∈ R and v, w, z ∈ V . By
symmetry one also has

〈z, av + bw〉 = a〈z, v〉+ b〈z, w〉 for all a, b ∈ R and v, w, z ∈ V .

(iii positive definite) 〈v, v〉 ≥ 0 with 〈v, v〉 = 0 if and only if v = 0.

Any time one has an inner product, one has that

‖v‖ =
√

〈v, v〉 is a norm. (31)

This is called the norm induced by the inner product. Thus, every inner product
space is a normed space. The usual approach to showing the norm given in (31)
satisfies the triangle inequality for norms is to use the following inequality which is
called the Cauchy-Schwarz inequality and holds in any inner product space:

|〈u, v〉| ≤ ‖u‖‖v‖ for all u, v ∈ V .

In the Cauchy-Schwarz inequality, the norm used is the one induced by the inner
product. (There could be other norms on the same space.)

In particular, L2(U) is an inner product space with

〈u, v〉 =

∫

U

uv.
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Note that one needs to know uv ∈ L1 when u, v ∈ L2(U). This follows from the
Hölder inequality since p = 2 is the Hölder conjugate exponent of itself. Thus, the
Cauchy-Schwarz inequality in L2(U) tells us

∫

U

|uv| ≤

(
∫

U

u2

)1/2(∫

U

v2

)1/2

.

Recall that a normed space which is metrically complete with respect to the dis-
tance induced by the norm is called a Banach space. Similarly, an inner product space
which is metrically complete as a metric space (i.e., a Banach space with respect to
the norm) is called a Hilbert space.

10.4 Weak Derivatives and Sobolev Spaces

Given a function u ∈ L1
loc(U) with U a bounded open subset of Rn, we say gj ∈ L1

loc(U)
is a weak j-th partial derivative of u if

∫

U

u
∂φ

∂xj
= −

∫

U

gjφ for every φ ∈ C∞
c (U).

The vector space of functions u ∈ L1
loc(U) having first weak partial derivatives gj ∈

L1
loc(U) for each index j = 1, 2, . . . , n is denoted by W 1

loc(U). If u and the weak partial
derivatives gj for j = 1, 2, . . . , n of a function u ∈W 1

loc(U) are actually in L1(U), then
we write u ∈ W 1(U). Either of the spaces W 1

loc(U) or W 1(U) may be called the
space of weakly differentiable functions. Both are vector spaces. The latter is
a normed space which, when equipped with the norm

‖u‖W 1 =

∫

U

|u|+
n
∑

j=1

∫

U

|gj| = ‖u‖L1(U) +

n
∑

j=1

‖gj‖L1(U),

is also denoted by W 1,1(U) and is called the space of weakly differentiable func-
tions with one derivative in L1. The terms in the norm involving the derivatives
comprise a natural seminorm onW 1,1(U) in a manner very similar to the Cα Hölder
seminorm. This natural seminorm is denoted by

[u]W 1 =

n
∑

j=1

∫

U

|gj|.

As usual, a seminorm is non-negative valued, non-negative homogeneous, and sat-
isfies the triangle inequality for norms, but may be only non-negative semi-definite
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(and fail to be positive definite). In particular, this seminorm vanishes on all con-
stant functions just like the Cα seminorm. We will see an example of an unnatural
seminorm below which has the positive definiteness fail in a different way.

Recall that L1
loc(U) consists of (equivalence classes of) measurable functions u :

U → R which have the property
∫

K

|u| <∞ for every K ⊂⊂U .

The space L1
loc(U), and consequently the space W 1

loc(U) is not a normed space; there
is no W 1

loc norm. There is, however, a notion of convergence of sequences (of
functions) in the space W 1

loc(U):

A sequence {uj}∞j=1 ⊂ W 1
loc(U) is said to converge to a function u ∈

W 1
loc(U) if

lim
j→∞
‖uj − u‖W 1,1(K) = 0

for every K ⊂⊂U .

There is no problem, in this context of considering the norm and the functions u and
gj for j = 1, 2, . . . , n on a potentially more complicated set K ⊂⊂U ; we are already
assuming the functions are defined on U . When this convergence is considered, the
space W 1

loc(U) is denoted by W 1,1
loc (U). Just to be clear, there is no fundamental dif-

ference between W 1(U) and W 1,1(U) (or W 1
loc(U) and W 1,1

loc (U)). The former notation
is used simply to signal the consideration (or presence or appearance in the discus-
sion) of weak derivatives. The latter notation suggests also the consideration of a
topology on the space.
Remark: The point of considering spaces like L1

loc(U) and W 1
loc(U) is to allow impor-

tant functions which might be otherwise non-integrable. For example, the function
u(x) = 1/x is a perfectly reasonable function to consider in C0(0, 1). Note, however,
that u /∈ L1(0, 1), but u ∈ L1

loc(0, 1). In fact, as has been observed in the notes
on continuity and differentiability, u is not in C0(a, b) when considered as a normed
space.10 Thus, we can say also u ∈ C∞

loc(0, 1).

10Here is an example, where the name of a function space is used to indicate two different spaces
and one, generally, needs to know from the context which one is being considered. Specifically, it
is commone to write u ∈ C0(a, b) to simply mean u is continuous on the open interval (a, b). But
when the (norm) topology is under consideration, u ∈ C0(a, b) means

u ∈ {u ∈ C0(a, b) : ‖u‖C0 = sup |u| <∞}
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Topology

As a partial aside, let me try to explain the use of the word topology here. You
may recall that we have considered various notions of what has loosely been called
structure on sets. More precisely, there is potentially algebraic structure and ana-
lytic structure on a set. If the set is a vector space, then that constitutes an algebraic
structure on the set. Most sets of functions we have considered are vector spaces. If
there is a norm (or inner product) on a vector space, then the norm constitutes an
analytic structure on the space. An inner product always gives a norm, so having an
inner product constitutes more (analytic) structure on a vector space. Any normed
(vector) space has a notion of distance and, consequently, is a metric space. And
we have seen that any set (not necessarily) a vector space may be endowed with a
distance function (or metric) with certain axiomatic properties. Thus, a metric space
can have less structure than a normed space both analytically and algebraically. A
metric space (and all the spaces with at least this structure) are said to have geomet-
ric structure. Note that “geometry” means literally measurement of the Earth
or more generally “the measurement of the world” or space, and note the presence
of “metric” in “geo-metric.”

It is possible to have a very natural structure on a set which is possessed by every
metric space and which can be isolated axiomatically but does not allow measurement
(it is not geometric) but it does allow some other notions like convergence, and thus
(in some abstract sense) a notion of closeness. This lower level of structure on a set
is called a topology. A set of subsets T of a set X is said to be a topology on X or
collection of open sets and X is said to be a topological space if the following
hold:

1. φ,X ∈ T . (The empty set and the entire space are open.)

2. Whenever {Uα}α∈Γ ⊂ T , one has
⋃

α∈Γ

Uα ∈ T .

(Any arbitrary union of open sets is open; the collection (the topology) T is
closed under arbitrary unions.)

3. Whenever U1, U2, . . . , Uk ∈ T , then

k
⋂

j=1

Uj ∈ T .
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(An intersection of finitely many open sets is open. The topology is closed under
finite intersections.)

Exercise 17. Let X be any metric space X with distance function d : X×X → [0,∞).
Consider the collection T of all sets U ⊂ X with the following property:

Whenever p ∈ X, then there exists some r > 0 for which

Br(p) = {x ∈ X : d(x, p) < r} ⊂ U.

Show that T is a topology.

A sequence {xj}
∞
j=1 in a topological space X is said to converge to an element x ∈ X

if for any open set U with x ∈ U , there exists some N ∈ N for which

j > N =⇒ xj ∈ U.

One must be a bit careful (at least sometimes) with this notion of “closeness.”

Exercise 18. Show that there exists a topological space containing a sequence which
converges to two different points. That is, limits of sequences in a topological space
are not always unique. Hint: Consider a “space” with only two points.

Most topological spaces considered in analysis have the following property:

A topological space X is said to be Hausdorff if given any two (distinct)
points x1 and x2 in X, there exist disjoint open sets U1 and U2 with
xj ∈ Uj for j = 1, 2.

Exercise 19. Show that the limit of a sequence in a Hausdorff space is unique and
every metric space is a Hausdorff space.

The topology defined in Exercise 17 is called the metric topology. And naturally,
since every normed (or inner product) space is a metric space, any such space has
a metric topology. It will be noted, however, that we did not define a norm on
W 1
loc(U) = W 1,1

loc (U). This space does not have a norm, and it doesn’t have a natural
metric either. Nevertheless, it is a (Hausdorff) topological space. The topology on
W 1,1
loc (U) (or L1

loc(U) for that matter) is called a topology of local convergence.
Certainly, the easiest way to think about such topologies is in terms of the convergence
of sequences described above. The formal definition of open sets in terms of this
convergence on compact subsets is a little delicate. Perhaps the easiest way to describe
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this topology is in terms of a metric. Though there is no natural metric, the resulting
topology is metrizable which means there does exist a metric so that the topology is
the metric topology with respect to that metric. Such a metric is given as follows:
Take a sequence of compactly nested open sets U1⊂⊂U2⊂⊂U3⊂⊂ · · · ⊂ U with
∪Uj = U . (This is called an exhaustion of U .) On each such subset Uj , we have the
W 1,1(Uj) norm. Using this norm (via restriction) we can define a seminorm

]u[j= ‖u‖W 1,1(Uj)

on W 1
loc(U). Then

d(u, v) =
∞
∑

j=1

]u− v[j
1+]u− v[j

(32)

is a metric inducing the correct topology.

Exercise 20. Show that d : W 1
loc(U) ×W 1

loc(U) → [0,∞) is a metric and that if a
sequence {uj}∞j=1 converges to u ∈ W 1,1

loc (U) in the induced metric topology, then the
sequence converges to the (restriction of the) same limit in W 1,1(V ) for every V ⊂⊂U .

Metric Completeness

It turns out that the spaces W 1,1(U) and W 1,1
loc (U) are metrically complete. In par-

ticular W 1,1(U) is a Banach space.

Other Sobolev Spaces

The spaces W 1,1(U) and W 1,1
loc (U) are called Sobolev spaces. More generally, for p ≥ 1,

the spaces of Lp functions with weak (partial) derivatives of order k in Lp are denoted
by W k,p(U). The locally integrable counterparts are W k,p

loc (U).
These spaces are also all metrically complete. In particular, W k,p(U) is a Banach

space for every k and every p, and very significantly W k,2(U) is a Hilbert space with
the natural inner product

〈u, v〉W k,2 =
∑

|α|≤k

∫

U

DαuDαv.

Here Dαu denotes the weak partial derivative of multi-index order α defined as a
function gα ∈ L1

loc(U) satisfying
∫

U

gα φ = (−1)|α|
∫

U

uDαφ for each φ ∈ C∞
c (U).
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Of course, on the right

Dαφ =
∂|α|φ

∂xα1

1 ∂x
α2

2 · · ·∂x
αn
n

is a classical derivative. The operator L∗ : Ck(U)→ C0(U) by

L∗v = (−1)|α|Dαv

is called the weak adjoint of Dα. The Hilbert space W k,2(U) is usually called
Hk(U). This is the central space under consideration in showing the existence of
weak solutions for elliptic PDE.

Additional Properties of Sobolev Spaces

If U is a bounded open set in Rn and ∂U is C1, then

W 1,∞(U) = Lip(U).

Also, if U is just an open subset of Rn, then

W 1,∞
loc (U) = Liploc(U).

Taking p = 2, the space H1(U) = W 1,2 is a Hilbert space with

〈u, v〉W 1,2 = 〈u, v〉H1 = 〈u, v〉L2 +
n
∑

j=1

〈Dju,Djv〉L2 =

∫

uv +

∫

Du ·Dv.

10.5 Poincaré Inequalities

Here we state two results concerning L2 bounds for a function in terms of its derivative.
These results can and will be used to show that the bilinear form B : H1

0 (U) ×
H1

0 (U)→ R by

B[u, v] =

∫

U

Du ·Dv

is an alternative inner product on H1
0 (U). We will prove the first Poincaré in-

equality in a nontrivial special case. Recall that in general, say on H1(U) or W 1,p(U),
the quantity

[u]W 1,p =

(

n
∑

j=1

‖Dju‖
p
Lp

)1/p

(33)
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is not a norm, though it is non-negative homogeneous and satisfies the triangle in-
equality for norms. The expression in (33) is even non-negative semi-definite, but it
defines only a seminorm because it fails to be positive definite. It vanishes on a
nonzero constant for example. This same defect keeps B[u, v] from being an inner
product: B is symmetric, bilinear, and non-negative semi-definite, but in general B
is not positive definite for exactly the same reason [ · ]W 1,2 is not positive definite.

Notice, however, that if we restrict to functions φ ∈ C∞
c (U), then by forcing the

boundary values to be zero, if we have

[φ]W 1,p = 0,

then we do have that the constant function φ is φ ≡ 0. Thus, we seem to have
gone some distance in making the defect in this seminorm go away. The Poincaré
inequalities establish that we can actually make B an inner product if we restrict to
p = 2 and H1

0 (U) = W 1,2
0 (U).

Theorem 10. (smooth Poincaré inequality) If U is a bounded open subset of Rn,
then there is a constant C depending only on the dimension n and the domain U such
that for any φ ∈ C∞

c (U) one has

‖φ‖L2(U) ≤ C‖Dφ‖L2(U)

where

‖Dφ‖L2(U) = ‖ |Dφ| ‖L2(U) =

(
∫

U

|Dφ|2
)1/2

and

|Dφ| =

√

√

√

√

n
∑

j=1

(

∂φ

∂xj

)2

. (34)

The constant we will obtain in the case n = 2 is C =
√

µ(U) where µ(U) is the n-
dimensional Lebesgue measure of U . Note that in (34) these are classical derivatives
of φ.

Proof in the case n = 2 when U ⊂ R2: Naturally, we may assume φ is defined on
all of R2 by setting φ(x) ≡ 0 for x ∈ R2\ supp(u). If x = (x1, x2) ∈ U , then by the
fundamental theorem of calculus

φ(x) =

∫ x1

−∞

D1φ(ξ1, x2) dξ1
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and

φ(x) =

∫ x2

−∞

D2φ(x1, ξ2) dξ2.

Consequently,

|φ(x)|2 ≤

(
∫

ξ1∈R

|Dφ(ξ1, x2)|

)(
∫

ξ2∈R

|Dφ(x1, ξ2)|

)

.

Therefore,
∫

x1∈R

|φ(x)|2 ≤

∫

x1∈R

(
∫

ξ1∈R

|Dφ(ξ1, x2)|

)(
∫

ξ2∈R

|Dφ(x1, ξ2)|

)

=

(
∫

ξ1∈R

|Dφ(ξ1, x2)|

)
∫

U

|Dφ|

and
∫

U

|φ|2 ≤

∫

x2∈R

(
∫

ξ1∈R

|Dφ(ξ1, x2)|

)
∫

U

|Dφ| =

(
∫

U

|Dφ|

)2

.

That is,
‖φ‖L2(U) ≤ ‖ |Dφ| ‖L1(U) = ‖Dφ‖L1(U).

Finally, because U is a bounded domain, we know the constant χU ≡ 1 ∈ L2(U), so
by the Cauchy-Schwarz inequality

‖Dφ‖L1(U) = 〈|Dφ|, χU〉L2(U) ≤ ‖χU‖L2(U)‖Dφ‖L2(U) =
√

µ(U)‖Dφ‖L2(U).

Therefore,
‖φ‖L2(U) ≤

√

µ(U)‖Dφ‖L2(U)

as was to be shown in the special case. �

A stronger form of the Poincaré inequality above can be obtained in the case n > 2
which is called the Gagliardo-Nirenberg-Sobolev inequality. The following exercise
outlines the first few steps in obtaining the Gagliardo-Nirenberg-Sobolev inequality
(which are a relatively straightforward generalization of the argument given above).
See Theorem 1 of section 5.6 in Craig Evans’ book Partial Differential Equations for
details.

Exercise 21. Given p and p∗ with 1 ≤ p < n and

1

p
−

1

p∗
=

1

n
,

we say p and p∗ are Sobolev conjugate exponents.
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1. Show/observe that p∗ > p.

2. Show that
p∗ =

np

n− p
.

In particular, if p = 2 (and n ≥ 3), then p∗ = 2n/(n− 2) > 2.

3. Let φ ∈ C∞
c (Rn) and consider the case p = 1 and p∗ = n/(n − 1). Let x =

(x1, x2, . . . , xn) ∈ Rn. Use the fundamental thoerem of calculus to write

φ(x) =

∫ xj

−∞

Djφ(x1, . . . , ξj, . . . , xn) dξj.

Notice that this can be done for j = 1, 2, . . . , n, and it follows that

|φ(x)| ≤

∫

ξj∈R

|Dφ(x1, . . . , ξj, . . . , xn)|

and

|φ(x)|1/(n−1) ≤

(

∫

ξj∈R

|Dφ(x1, . . . , ξj, . . . , xn)|

)1/(n−1)

.

Conclude that

|φ(x)|n/(n−1) ≤
n
∏

j=1

(

∫

ξj∈R

|Dφ(x1, . . . , ξj, . . . , xn)|

)1/(n−1)

.

Now, integrate interatively with respect to x1, x2, . . . , xn, simplifying after each
integration to conclude

∫

U

|φ|n/(n−1) ≤

(
∫

U

|Du|

)n/(n−1)

. (35)

Hint: Note that one of the factors at each stage is a constant with respect to the
integration on the right. Then use the general Hölder inequality on the other
integral.

4. The inequality (35) is the Gagliardo-Nirenberg-Sobolev inequality when p = 1.
(Note that when p = 1 we have C = 1.) The general Gagliardo-Nirenberg-
Sobolev inequality is

‖φ‖Lp∗(Rn) ≤ C‖Dφ‖Lp(Rn) for φ ∈ C∞
c (Rn).
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Use this inequality with p = 2 and the Hölder inequality to show the smooth
Poincaré inequality stated above.

Using the fact that H1
0 (U) is the closure of C∞

c (U), we can get the following result:

Theorem 11. (Poincaré Sobolev inequality) If U is a bounded open subset of Rn,
then there is a constant C depending only on the dimension n and the domain U such
that for any v ∈ H1

0 (U) one has

‖v‖L2(U) ≤ C‖Dv‖L2(U)

where

‖Dv‖L2(U) = ‖ |Dv| ‖L2(U) =

(
∫

U

|Dv|2
)1/2

and

|Dv| =

√

√

√

√

n
∑

j=1

(Djv)
2. (36)

In (36) these are weak derivatives of v.

11 Continuous/Bounded Linear Operators

The introduction of a number of spaces of integrable functions, namely the Lp spaces
and the Sobolev spaces W k,p, provides a natural collection of normed spaces on
which to apply the following concepts which are properly part of the subject of func-
tional analysis. The Ck and Ck,α Hölder spaces are also normed spaces and certain
aspects of this discussion apply. Of special interest here, however, are the inner
product spaces the main examples of which are the space L2 and Hk = W k,2. In
these spaces we have the Riesz representation theorem which will be covered
here.

11.1 Examples and Some Basics

Let V and W be normed vector spaces. A function f : V → W is called an operator.
Examples are the differential operators like

∂

∂xj
: C1(U)→ C0(U) and ∆ : C2(U)→ C0(U).
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Other examples are given by integral operators like

F : C∞
c (U)→ R by F [φ] =

∫

U

fφ.

This is the distributational representation of a real valued function f ∈ L1
loc(U).

In the special case of an operator F : V → W where W is the field R, we call F a
functional. Thus, F here is an integral functional.

Another integral operator is the convolution or mollification operator

G : L1
loc(R

n)→ C∞
c (Rn) by G[u] =

∫

ξ∈U

u(ξ)φ(x− ξ).

Here φ is a fixed function in C∞
c (Rn) and u∗ = G[u] may be shown to approximate

u in various ways. Notice that the integral expression is a function of x. For this
functional, the domain L1

loc(R
n) appears as a stand in for a space of functions with

minimal regularity. In applications, this space is often replaced with a space having
a specific useful norm in which to measure the approximation.

As a third example of an integral operator, we can take the weak Laplacian
adjoint operator or the Dirchlet form:

B : H1
0 (U)×H1

0 (U)→ R by B[u, v] =

∫

U

Du ·Dv.

The functional D : H1
0 (U) → R by D[u] = B[u, u] =

∫

U
|Du|2 is called the Dirichlet

energy. If u measures the temperature in a region, this is a measure of the potential
energy of heat diffusion.

An operator which is neither a differential operator nor an integral operator is the
evaluation functional or delta distribution:

Ep : C0(U)→ R by Ep[u] = u(p).

All of the operators above are linear (or in the case of the Dirichlet form bilinear).

Exercise 22. Show the evaluation functional is linear.

There are also nonlinear operators. For example, the area functional from the
calculus of variations given by

area : C1(U)→ R by area[u] =

∫

U

√

1 + |Du|2
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is not linear. The weak mean curvature adjoint form

M : H1
0(U)×H1

0 (U)→ R by M[u, v] =

∫

U

Du ·Dv
√

1 + |Du|2

is another example.
We are primarily interested here in linear operators and linear functionals, and

particularly continuous linear operators. We denote11 the space of continuous linear
operators by

i0(V →W ) ⊂ C1(V →W ).

Recall that continuity at a point v0 ∈ V for L : V →W in this context means the
following:

For any ǫ > 0, there is some δ > 0 such that

‖v − v0‖ < δ =⇒ ‖L(v)− L(v0)‖ < ǫ.

First of all, with the addition of linearity, pointwise continuity has a remarkable
property.

Lemma 4. If L : V → W is linear and continuous at one point v0 ∈ V , then
L ∈ i0(V →W ). That is, L is continuous at all points.

Proof: Say L is continuous at v0 ∈ V and we take another point w0 ∈ V . If ǫ > 0,
then we know there is some δ > 0 for which

‖Lv − Lv0‖ < ǫ whenever ‖v − v0‖ < δ. (37)

Note that one often omits the parentheses L(w) or L[w] for linear operators and simply
writes Lw. Therefore, for any w ∈ V with ‖w−w0‖ < δ, we can take v = v0 +w−w0

and conclude

‖Lw − Lw0‖ = ‖Lv0 + Lw − Lw0 − Lv0‖ = ‖L(v0 + w − w0)− Lv0‖ < ǫ.

This means L is continuous at w0. �

Corollary 5. If L : V → W is linear and L is continuous at 0 ∈ V , then

L ∈ i0(V →W ).

11This notation using the Hebrew letter “beth” is (highly) nonstandard. I’m quite confident you
will not find it in any book. Some further discussion is given in the endnotes to this section.
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The following result is of central importance:

Theorem 12. (bounded linear functionals) If L ∈ i0(V → W ), then there exists
some Λ > 0 such that

‖Lv‖ ≤ Λ‖v‖ for all v ∈ V . (38)

Proof: L is continuous at v0 = 0 ∈ V . Therefore, there exists some δ > 0 such
that

‖v‖ < δ =⇒ ‖Lv‖ < 1.

Now, take any w ∈ V \{0}. Notice that
∥

∥

∥

∥

δ

2

w

‖w‖

∥

∥

∥

∥

=
δ

2
< δ.

Therefore,
∥

∥

∥

∥

L

(

δ

2

w

‖w‖

)
∥

∥

∥

∥

< 1.

That is,
δ

2‖w‖
‖Lw‖ < 1 or ‖Lw‖ <

2

δ
‖w‖. (39)

This essentially proves the theorem. In fact, setting Λ = δ/2, if v 6= 0, then we may
take v = w and apply (39). If v = 0, then we clearly have

‖Lv‖ ≤ Λ‖v‖

as the theorem asserts. �

Remarks: Notice that the theorem says that every continuous linear operator be-
tween normed linear spaces is Lipschitz. That is,

‖Lv − Lw‖ ≤ Λ‖v − w‖ for all v, w ∈ V .

The converse, that every Lipschitz operator between normed linear spaces is contin-
uous, is of course true as well, so

i0(V →W ) = Lip(V →W ).

In this case, however, we usually do not refer to the continuity condition as Lipschitz
continuity. Notice that (38) is even simpler than the Lipschitz condition (though
pretty obviously equivalent in this context). An operator in this context, i.e., a linear
operator satisfying (38), is said to be bounded. Thus,

i0(V →W ) is called the space of bounded linear operators.
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Definition 9. A linear operator L : V → W of normed spaces V and W is said to
be bounded (or Lipschitz bounded) if there is some Λ for which

‖Lv‖ ≤ Λ‖v‖ for all v ∈ V .

Exercise 23. Show that if L : V →W is bounded, then L : V →W is continuous.

In summary, a linear operator L : V →W of normed spaces V andW is continuous
if and only if it is bounded.

We are about to use these remarkable properties of linear continuous functions
(between normed spaces) to turn i0(V → W ) into a normed vector space itself.
This opens an entirely new arena for investigation which, at some level, is the real
starting point for functional analysis. Before me make this construction, let’s pause
and look back at the ingredients which have brought us to this point and note that
what we are doing constitutes a fundamentally new level of structure. We started with
functions, say real valued functions with domains U which were open sets in Rn. We
classified these functions according to their properties relating to differentation and
integration (which we studied) into various normed function spaces. These were,
for example, Ck(U), Ck,α(U), Lp(U) and W k,p(U). Then we considered operators
from between normed function and functionals from normed function spaces to their
fields. Finally, we have identified the continuous linear operators

i0(V → W )

where we are especially interested in cases where V and W are among our normed
function spaces. For a bounded linear operator L ∈ i0(V → W ), we set

‖L‖ = sup
v 6=0

‖Lv‖

‖v‖
.

This is called the operator norm and it makes i0(V →W ) a normed vector space.
The norm in the numerator of the quotient

‖Lv‖

‖v‖
=
‖Lv‖W
‖v‖V

is the norm from W , and the norm in the denominator is the norm from V . That
the supremum of such numbers is finite follows immediately from the fact that L is
bounded:

‖Lv‖

‖v‖
≤

Λ‖v‖

‖v‖
= Λ.

The properties of a norm may then be verified. The operator norm is non-negative
homogeneous, positive definite, and satisfies the triangle inequality for norms.
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11.2 Dual Spaces and Adjoints

11.3 Riesz Representation in Rn

We will prove the Riesz representation theorem for bounded linear functionals on a
Hilbert space below. It may be helpful to consider the special case of this result in the
familiar setting of finite dimensional linear mappings. Say we have a linear function

ℓ : Rn → R,

that is, a linear functional. Such a function is always continuous and has a number
of other properties with which are (or should be) quite familiar from linear algebra.
One of these is that there exists a particular vector u ∈ Rn such that

ℓ(v) = u · v for all v ∈ Rn.

This observation, and the fact that the vector u is uniquely determined by the func-
tional ℓ, constitute the essential assertion of the Riesz representation theorem. The
linear functional ℓ is said to be “represented” by the vector u. The right side of this
relation uses the usual Euclidean dot product, and the Riesz representation theorem
essentially replaces this with an arbitrary inner product (and applies to bounded
linear functionals on a (potentially) infinite dimensional Hilbert space).

Let’s attempt to think a little bit about the vector u and why this kind of repre-
sentation occurs. The usual way to do this is to note (or observe) that

u = (ℓ(e1), ℓ(e2), . . . , ℓ(en))

where ej is the j-th standard unit basis vector (with 1 in the j-th entry and zeros
in all other entries). This choice clearly gives

ℓ(ej) = ej · u for j = 1, 2, . . . , n.

The identity
ℓ(v) = u · v for every v ∈ Rn

follows by linearity since we can write v =
∑

(v · ej) ej .
In an infinite dimensional inner product space, like L2(0, L), if you consider an

orthonormal basis like {sin jπx/L}∞j=1, then you will have to consider series represen-
tation, which can be done, but then you will have questions of convergence and other
inconveniences to deal with. In some sense, it is the point of functional analysis to
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avoid such messy details and give a fundamentally different argument avoiding refer-
ence to a basis, or limits, or estimates—but sticking to ideas of linear algebra. Let’s
see if we can suggest how this might be done in the finite dimensional case where we
understand everything.

First of all, if we have a representation ℓ(v) = u · v, then while the connection
between ℓ and u may not be at all obvious, there is one connection which is easy to
make: The subspace

ker(ℓ) = {x : ℓ(x) = 0}

which is the kernel or null space of ℓ will consist of the vectors which are perpen-
dicular to u. That is, on the one hand ker(ℓ) is a vector subspace of Rn and, on the
other hand, the orthogonal complement of any vector u

u⊥ = {x ∈ Rn : x · u = 0}

is also a subspace. If our representation construction is going to work, these sub-
spaces must match. Note that this gives us a place to start without ever mentioning
a basis.

If ker(ℓ) = Rn, then we can get a representation using u = 0 (the zero vector). In
fact, in this case, u = 0 is the unique choice since

u · v = ũ · v for all v =⇒ (u− ũ) · v = 0.

And taking v = u− ũ, we get |u− ũ| = 0.
Otherwise, there is some nonzero vector u0 ∈ ker(ℓ)⊥. The basic observation of

the Riesz theorem is then that some scaling u = αu0 of u0 will work. If that is
correct, then we need

ℓ(αu0) = αu0 · (αu0) = α2|u0|
2,

so α = ℓ(u0)/|u0|2. Then the question is: Will

u =
ℓ(u0)

|u0|2
u0 =

ℓ(u0)

|u0|

u0

|u0|
(40)

work?
In fact, we will show that this does work, even in the general infinite dimensional

case. Before we do that, however, it may be instructive to consider a very specific
example. Let ℓ : R3 → R1 by determined by







e1 7→ 0
e2 7→ 1
e3 7→ 2.

(41)
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The linearity argument above tells us u = (0, 1, 2) should be the unique vector such
that ℓ(v) = u · v, and clearly this works.

Figure 6: An example of a linear functional ℓ : R3 → R.

We are supposed, however, to see/find this vector u = (0, 1, 2) without using the
basis {e1, e2, e3}. To do so, we look at

ker(ℓ) = {z ∈ R3 : ℓ(z) = 0}.

We might be inclined, looking at the definition of ℓ in (41), to think

ker(ℓ) = span{e1}. (42)

Let’s go with that assumption for a moment. Then our argument says to choose an
arbitrary vector u0 ∈ ker(ℓ)⊥. We could take u0 = e2 for example. Then a scaling
u = αu0 is supposed to work. At this point, clearly something has gone wrong
because we will never get u = (0, 1, 2) as a scaling of u0 = (0, 1, 0). What has gone
wrong?

What has gone wrong is that our identification of the null space in (42) is incorrect.
The null space ker(ℓ) is larger than span{e1}. In fact, if we had thought about it a
little bit (and maybe you did) the dimension theorem says

dim Dom(ℓ) = dim Im(ℓ) + dim ker(ℓ). (43)

In this case, dim ker(ℓ) = dim Dom(ℓ) − dim Im(ℓ) = 3 − 1 = 2. And in general, for
ℓ : Rn → R1, we must have dim ker(ℓ) = n− 1. Thus, in the finite dimensional case,
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we must have a rather large kernel. In particular, the orthogonal complement of
ker(ℓ) must always satisfy

dim ker(ℓ)⊥ = 1.

Thus, it is no surprise to find the representing vector there. This is the underlying
idea also in the case of an infinite dimensional Hilbert space:

Riesz representation follows because ker(L) is large to the extent that
ker(L)⊥ is one dimensional.

We will return to this point. For the moment, let us give a more careful account of
our example.

We should be able to find another vector in ker(ℓ) for the linear map ℓ : R3 → R
determined by (41). A moment’s thought tells us ℓ : (0,−2, 1) 7→ 0 ·0−2 ·1+1 ·2 = 0.
Thus, ker(ℓ) is a (two dimensional) plane and u = (0, 1, 2) is clearly a normal to that

Figure 7: An example of a linear functional ℓ : R3 → R; correctly identified null
space.

plane.
In the infinite dimensional case we do not have recourse to the dimension theo-

rem/relation (43) telling us ker(ℓ) is large, say of dimension n − 1, so that ker(ℓ)⊥

is small, having dimension 1. These statements, however, do translate into infinite
dimensions (for a continuous functional L ∈ H∗ on a Hilbert space H) in the following
form
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ker(L) is large to the extent that

dim ker(L)⊥ = 1 and H = ker(L)⊕ ker(L)⊥.

The crucial smallness of ker(L)⊥ holds in particular, so that representation is to be
expected. I mention these things now, in part, because these facts do not come out in
the proof. In the proof, we do something that uses much weaker hypotheses but is, in
some sense, much trickier. Nevertheless, it is worth noting that this (true) description
is what underlies and drives the result.

As just mentioned, we more or less need to do something rather tricky to show

u · v =
ℓ(u0)

|u0|2
u0 · v = ℓ(v) for all v ∈ Rn

as required by the choice (40). Frigyes Riesz seems to have been particularly good
at this kind of trickery. Given our previous discussion based on misidentification of
ker(ℓ), it is clear that we must use rather strongly that u0 ∈ ker(ℓ)⊥. The intuition
is that we must use this fact in some way that takes account of the fact that u0

is orthogonal to every vector in ker(ℓ), and not just some of them. In the finite
dimensional case, every vector v decomposes uniqely as a sum

v = z + w for some z ∈ ker(ℓ) and some w ∈ ker(ℓ)⊥.

In fact, taking ker(ℓ)⊥ = span{u0}, we can write

v =

(

v −
v · u0

|u0|2
u0

)

+
v · u0

|u0|2
u0 (44)

where w = (v · u0)u0/|u0|2 is the projection of v onto ker(ℓ)⊥. You may recognize
this construction as a part of the Gram-Schmidt orthonormalization procedure, and
it is clear that the residual vector

z = v − (v · u0)u0/|u0|
2 (45)

is in [ker(ℓ)⊥]⊥ = ker(ℓ). What is immediately clear from the Gram-Schmidt con-
struction is that z ∈ span{u0}⊥ = [ker(ℓ)⊥]⊥. The fact that [ker(ℓ)⊥]⊥ = ker(ℓ) or
more generally that the double orthogonal complement V ⊥⊥ = (V ⊥)⊥ satisfies

V ⊥⊥ = V for any subspace V

requires proof.
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Lemma 6. If V is a subspace of Rn, then V ⊥⊥ = V .

Proof: One inclusion is easy. Specifically, if v ∈ V , then clearly v · w = 0 for all
w ∈ V ⊥. This follows from the definition of

V ⊥ = {w ∈ Rn : w · v = 0 for all v ∈ V }.

But this is also the definition of what it means to have v ∈ (V ⊥)⊥ = V ⊥⊥.
The reverse inclusion is trickier: If v ∈ V ⊥⊥, then there are unique vetors z ∈ V

and w ∈ V ⊥ with
v = z + w. (46)

Recalling from the first inclusion that V ⊂ V ⊥⊥, we know z ∈ V ⊥⊥ and, of course,
V ⊥⊥ is a subspace. Therefore,

w = v − z ∈ V ⊥⊥ ∩ V ⊥.

This implies |w|2 = w ·w = 0. Hence w = 0 and v = z ∈ V . �

It will be noted that we have used the following result to obtain (46).

Lemma 7. If V is a subspace of Rn, then Rn = V ⊕ V ⊥. That is, each v ∈ Rn is
expressed uniquely as v = z + w with z ∈ V and w ∈ V ⊥. The vector z is called the
projection of v onto V .

Proof: If we want to get out of this easily, then we must allow recourse to the fact
that Rn and V are finite dimensional, i.e., these spaces admit bases with finitely many
elements. Say {u1, . . . ,uk} is a basis for V which we can assume (by Gram-Schmidt
orthonormalization) is an orthonormal basis. Then

z = projV (v) =
∑k

j=1(v · uj)uj.

As a direct extension of our assertion concerning (44) we see that v− z ∈ V ⊥. Thus,
we have v = z + w with z ∈ V and w ∈ V ⊥.

For uniqueness, note that if v = z̃ + w̃ = z + w with z̃ ∈ V and w̃ ∈ V ⊥, then
z− z̃ = w̃ −w ∈ V ∩ V ⊥. That is,

|w̃−w|2 = (w̃ −w) · (w̃−w) = 0 and |z− z̃|2 = 0. �

Returning to our discussion of (44) and (45), if we know the vector z from (45)
satisfies z ∈ ker(ℓ), then it is immediate that

ℓ(v) = ℓ

(

v · u0

|u0|2
u0

)

=
ℓ(u0)

|u0|2
v · u0 = v ·

ℓ(u0)

|u0|2
u0,
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and we have the Riesz representation proposed in connection with (40).
The argument just given using the finite orthonormal basis for V does not work

when V is infinite dimensional. Nevertheless, the assertions of Lemmas 6 and 7 do
both hold for any closed subspace V of a Hilbert space. In fact, once Lemma 7
is established for a closed subspace V of a Hilbert space, then the argument given for
Lemma 6 is valid in the same context.

Summary: Riesz’ Trick

Returning to our specific application to the mapping ℓ : R3 → R determined by (41),
the argument above should give us that the vector

z = v −
v · u0

|u0|

u0

|u0|
(47)

from the Gram-Schmidt procedure given in (45) satisfies z ∈ ker(ℓ). It will be ob-
served, however, that this is hardly the case. In fact, I see no clear and obvious way
to see

ℓ(z) = ℓ(v)−
v · u0

|u0|

ℓ(u0)

|u0|
= 0.

Of course, you can write z as z = z0 + w0 with z0 ∈ ker(ℓ) and w0 ∈ ker(ℓ)⊥ and
then follow through the argument of Lemma 6. Even if you do that to conclude
z = z0 ∈ ker(ℓ), the relation between the decomposition in (47) involving v and u0

and the decomposition z = z0 + w0 remains (as far as I can see) still rather obscure.
In particular, the relationship depends on the use of some basis for V = ker(ℓ) which
you don’t even have (at least easily) in the infinite dimensional case.

Riesz had the very clever (and elegant) idea of decomposing v as in (44) and hence
z as in (45) using a different multiple of u0. That is, consider

v = (v − βu0) + βu0 (48)

where β is some constant to be determined. This gives the residual vector

z = v − βu0 with ℓ(z) = ℓ(v)− βℓ(u0). (49)

Now, all we need to know is that u0 /∈ ker(ℓ) and we can take β = ℓ(v)/ℓ(u0). Then
we get ℓ(z) = 0, i.e., z ∈ ker(ℓ), automatically. In this way we have ℓ(v) = βℓ(u0).
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But, do we get Riesz representation from this and the choice suggested in (40)? In
fact,

v ·
ℓ(u0)

|u0|2
u0 = (v − βu0) ·

ℓ(u0)

|u0|2
u0 + βu0 ·

ℓ(u0)

|u0|2
u0 = β ℓ(u0) = ℓ(v)

since v − βu0 ∈ ker(ℓ) and u0 ∈ ker(ℓ)⊥.

11.4 Riesz Representation

Theorem 13. (Riesz representation theorem) If 〈 · , · 〉 : H×H → R is any inner
product on a Hilbert space H and L : H → R is a bounded linear functional, i.e.,
L ∈ i0(H) = H∗, then there exists a unique u ∈ H such that

Lv = 〈u, v〉 for all v ∈ H.

Proof: Consider
N = {z ∈ H : Lz = 0}

the null space of L. This is a closed vector subspace of H.
If N = H, then we have representation using the zero vector:

Lv = 〈0, v〉,

and the representation is unique since

〈u, v〉 = 0 for all v ∈ V =⇒ ‖u‖2 = 〈u, u〉 = 0.

So, obviously the more interesting case is when N ( H. In this case, we can take a
vector u0 ∈ N⊥\{0}. Now, normally one would think there are many such vectors
u0, so it’s not so obvious that you can count on anything special from this one.
Apparently, however, the fact that the image of the functional L is R (which is
conspicuously one dimensional) somehow narrows the possibilities.

Thus, the crucial ansatz is to look for a scaling of u0 as the choice of u. That is,
we look for some α ∈ R for which

Lv = 〈αu0, v〉 for all v ∈ H.

Once this ansatz is written down, then you know the identity of the scalar α because
you must have

Lu0 = α‖u0‖
2.
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That is,

α =
Lu0

‖u0‖2
.

Once that determination is made, one simply needs to see if (or show that)

u =
Lu0

‖u0‖2
u0 works.

The idea for accomplishing this is somewhat reminiscent of the decomposition of a
vector in a direct sum. That is, we take an arbitrary vector v and decompose it in
terms of a component along N⊥ or more precisely along span(u0):

v = (v − βu0) + βu0.

In order to have v − βu0 ∈ N , we take β = Lv/Lu0. This is a well-defined vector
since u0 /∈ N and so Lu0 6= 0. Note then, that

L(v − βu0) = 0, so v − βu0 ∈ N , and 〈u0, v − βu0〉 = 0.

Then we can compute

〈αu0, v〉 = 〈αu0, v − βu0〉+ 〈αu0, βu0〉

= 〈αu0, βu0〉

= αβ‖u0‖
2

= Lv

since

αβ =
Lu0

‖u0‖2
Lv

Lu0

=
Lv

‖u0‖2
.

Thus, we have existence of a vector u = αu0 for which

〈u, v〉 = Lv for all v ∈ V .

Uniqneness is, again rather easy: If 〈u, v〉 = 〈ũ, v〉, then taking v = u− ũ, we get

‖u− ũ‖2 = 〈u− ũ, u− ũ〉 = 0. �

One thing to note about our discussion of the Riesz representation theorem: Es-
sentially no inequalities, estimates, questions of convergence, or limits were used. Ba-
sically no (hard) analysis was mentioned. There was a good deal of (perhaps tricky)
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algebra and especially linear algebra. To be fair, the usual proofs that a closest
vector in a subspace to a given vector outside that subspace exists involve showing
some sequence is Cauchy, and that involves some elementary estimation, but that is
about it. Incidentally, this is the point where the completeness of a Hilbert space
comes in.

Exercise 24. Let V be a closed subspace of a Hilbert space H and let p ∈ H\V .
Consider a sequence of points xj ∈ V for j = 1, 2, 3, . . . with

lim
j→∞
‖xj = h‖H = dist(p, V ) = inf

x∈V
‖x− p‖H. (50)

(i) Show the sequence {xj}∞j=1 is Cauchy.

(ii) Use the completeness of H (and the fact that V is closed) to conclude the limit
limj→∞ xj = x achieves the minimum value in the infemum of (50).

(iii) Show the difference x− p ∈ V ⊥.

Exercise 25. Show that a closed subset of a Hilbert space is metrically complete. In
particular a closed subspace of a Hilbert space is a Hilbert space. Give an example of
a subspace of a Hilbert space which is neither closed nor complete.

Exercise 26. Show the null space ker(L) of a bounded linear functional L ∈ H∗ is
closed.

Summary: Final Remarks

Once we have proved the Riesz representation theorem in Hilbert space, we can look
back and see

ker(L) = {z ∈ H : Lz = 0} = {z ∈ H : 〈u, z〉 = 0} = span{u}⊥.

Thus, since the span span{u} of the representing vector is one-dimensional, the space
ker(L) is the (very large) orthogonal complement. Our intuition was correct, even
though we didn’t use it directly in the proof.

It will noted that all estimates involved here (all analysis) has been swept under
the rug in Exercise 24. That analysis, moreover, is aimed at showing the existence of
a vector closest to the closed linear subspace which is the null space of the function ℓ.
In our application to existence and uniqueness of weak solutions of Poisson’s equation,
the actual operator from the PDE is actually further hidden away in the inner product,
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and we only really see the abstract properties of the inner product in the proof of the
Riesz theorem above. In this way, there is a kind of double sweeping of the analysis
under the rug. The only means to get back to what is actually happening with the
operator, in this case the Laplace operator, is in regard to the Poincaré inequality
which essentially renders the weak adjoint

B[u, v] =

∫

Du ·Dv with [u]W 1,1 = B[u, u]

an inner product.

Exercise 27 (challenge). Where is the positive definiteness of the inner product
used/required in the proof of existence in the Riesz representation theorem?

12 Existence and Uniqueness of Weak Solutions

for Laplace’s and Poisson’s PDE

Here we want to prove the following result:

Theorem 14. Given any bounded open set U ⊂ Rn and f ∈ L2(U), there is a unique
function u ∈ H1

0 (U) for which

−

∫

U

Du ·Dφ = 〈f, φ〉L2 for all φ ∈ C∞
c (U). (51)

The condition (51) formulates the weak version of the boundary value problem
{

−∆u = f on U
u∣
∣

∂U

≡ 0. (52)

If fact, if u ∈ C2(U)∩C0(U) is a classical solution of (52), then it can be checked that u
satisfies (51). The homogeneous boundary condition is captured weakly by assuming
u ∈ H1

0 (U) where H1
0 (U) = W 1,2

0 (U) is the closed subspace of H1(U) = W 1,2(U)
obtained as the closure of the subspace

C∞
c (U) ⊂W 1,2(U)

with respect to the W 1,2 norm. We recall that H1(U) = W 1,2(U) is a Hilbert space
with inner product given by

〈u, v〉W 1,2 =

n
∑

j=1

〈Dju,Djv〉L2 + 〈u, v〉L2. (53)
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Now, conversely, if u ∈ C2(U)∩C0(U) satisfies the condition (51) of the weak formu-
lation, then it can be shown that u is a classical solution of (52).

Our proof relies on the Riesz representation theorem, but we will not apply it
using the natural inner product (53) but rather an equivalent inner product adapted
to the formulation (51), namely

B : H1(U)×H1(U)→ R by B[u, v] =

∫

Du ·Dv.

It has already been discussed why this doesn’t look like an inner product (and is not
on H1(U) = W 1,2(U)) but is an inner product on H1

0 (U) where it is positive definite
by the Poincaré inequality. In terms of the bilinear form B, the weak formulation
reads

B[u, φ] = −〈f, φ〉L2 for all φ ∈ C∞
c (U).

Before we begin the proof, we may do well to review the situation with solvability
in some more general terms. Perhaps the first thing to remember is that the classical
problem

{

∆u = 0 on U
u∣
∣

∂U

≡ g (54)

for Laplace’s equation considered on a bounded open set U with smooth boundary
(say ∂U ∈ C∞) and with smooth boundary values g ∈ C∞ extending to U so that we
have an extension g ∈ C∞(U) is essentially equivalent to the homogeneous boundary
value problem (52) for Poisson’s equation. Schematically:

{

∆u = 0 on U
u∣
∣

∂U

≡ g ←→

{

−∆u = f on U
u∣
∣

∂U

≡ 0.

This leads to consideration of the solvability for Poisson’s equation with homogeneous
boundary values. Thinking in terms of operators classically, we have

−∆ : C2(U)→ C0(U),

and we are particularly interested in the image of this operator in relation to the
subspace

{f ∈ C0(U) : f∣
∣

∂U

≡ 0}.

Thus, this is starting to look rather like a linear algebra problem. From this point of
view, the existence problem can be posed by saying: Is it true that

{f ∈ C0(U) : f∣
∣

∂U

≡ 0} ⊂ −∆[C2(U)] = {−∆u : u ∈ C2(U)}?
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The answer turns out12 to be “yes,” but the proof is somewhat difficult. Also, some
proofs are better than others. Some proofs generalize to other PDE. Perhaps one of
the simplest “proofs” involves constructing the Green’s function for Poisson’s equa-
tion in terms of the fundamental solution for Laplace’s equation. This approach,
on the one hand, gives a formula for the solution. It is usually the treatment given
in engineering courses. On the other hand, it still requires the assumption of solv-
ability for the boundary value problem for Laplace’s equation, so without some other
existence theorem it is somewhat incomplete.

The existence (and uniqueness) theorem we will actually prove completely has the
advantage that it is relatively easy and it turns out that it can be generalized to other
equations, like general second order linear uniformly elliptic PDE

∑

aijDiju+
∑

bjDju+ cu = f,

without too much difficulty. (One needs a version of the Riesz representation theorem
called the Lax-Milgram theorem.) The disadvantage is that the unique solution one
gets is only a weak solution, and then one needs to prove that, under regularity
assumptions on ∂U and f that the weak solution u is actually regular and is a classical
solution. This turns out to be true as well, at least in the classical framework described
above:

Theorem 15. (regularity) If u is the weak solution of (52) obtained from Thereom 14
above, and ∂U ∈ C∞ and f ∈ C∞(U), then u ∈ C∞(U) and u is a classical solution.

Of course, it should also not be overlooked that our result Theorem 14 also gives
the uniqueness of a much broader class of classical solutions, say classical solutions
in u ∈ C2(U) ∩ C0(U), though that particular result (as we have seen) follows from
the weak maximum principle.

Proof of Thereom 14: Again, recall that we may start by considering

∆ : C2(U)→ C0(U)
∪

C2
0(U) = {u ∈ C2(U) : u∣

∣

∂U

≡ 0}

∪
C∞
c (U).

12And this is something you should take note of even if you can’t cross all the t’s and dot all the
i’s to give a complete proof.
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Since B : C∞
c (U)× C∞

c (U)→ R by

B[u, v] =

∫

U

Du ·Dv =

n
∑

j=1

∫

U

DjuDjv (55)

is a continuous bilinear form on the subspace C∞
c (U)×C∞

c (U) of H1(U)×H1(U) in
the W 1,2 norm, we have that B extends to a continuous bilinear form on the closure
H1

0 (U) × H1
0 (U) by the same formula (55) with the derivatives interpreted as weak

derivatives instead of classical derivatives.
This is the bilinear form appearing in the basic formulation of our problem:

Given f ∈ L2(U), find u ∈ H1
0 (U) with B[u, φ] =

∫

U

fφ for all φ ∈ C∞
c (U).

The integral functional associated with the function f ∈ L2 may be written and
extended as follows:

F : C∞
c (U)→ R by F [φ] =

∫

U
fφ

↓

F : H1
0 (U)→ R by F [v] =

∫

U
fv = 〈f, v〉L2.

We claim that F ∈ [H1
0 (U)]∗ = i(H1

0 (U)) is an element of the Hilbert dual of H1
0 (U),

i.e., is a bounded linear functional on H1
0 (U). To see this, observe

|F [v]| =

∣

∣

∣

∣

∫

U

fv

∣

∣

∣

∣

≤ ‖f‖L2‖v‖L2 ≤ ‖f‖L2‖v‖W 1,2.

Finally, we briefly recall that B is a general inner product on H1
0 (U) by virtue of the

fact that B is bilinear, symmetric, non-negative, and
∫

U

|u|2 ≤ C

∫

U

|Du|2 by the Poincaré inequality. (56)

Thus, if B[u, u] = 0, then u = 0. On this topic we note, finally, that the inequality
of (56) holds for u ∈ H1

0 (U) because for such a function, one can take a sequence of
functions φj ∈ C

∞
c (U) with ‖φj − u‖W 1,2 → 0 as j → ∞, and the smooth Poincaré

inequality gives
∫

U

|φj|
2 ≤ C

∫

U

|Dφj|
2.
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Therefore,

∣

∣

∣

∣

∫

U

|φj|
2 −

∫

U

|u|2
∣

∣

∣

∣

≤

∫

U

||φj|+ |u||||φj| − |u||

≤ ‖|φj|+ |u|‖L2‖|φj| − |u|‖L2

≤ (‖φj‖L2 + ‖u‖L2)‖φj − u‖L2

≤ (‖φj‖L2 + ‖u‖L2)‖φj − u‖W 1,2

→ 0

and
∣

∣

∣

∣

∫

U

|Dφj|
2 −

∫

U

|Du|2
∣

∣

∣

∣

≤

∫

U

||Dφj|+ |Du||||Dφj| − |Du||

≤ ‖|Dφj|+ |Du|‖L2‖|Dφj| − |Du|‖L2

≤ (‖Dφj‖L2 + ‖Du‖L2)‖Dφj −Du‖L2

≤M(‖Dφj‖L2 + ‖Du‖L2)‖Dφj −Du‖W 1,2

→ 0.

These limits establish (56):

∫

U
|φj|2 ≤ C

∫

U
|Dφj|2

↓ ↓

∫

U
|u|2 ≤ C

∫

U
|Du|2.

Once we know B is an inner product on H1
0 (U) and F ∈ [H1

0 (U)]∗, then we have
unique representation

B[u, v] = F [v] =

∫

fv

for some unique u ∈ H1
0 (U). That’s the theorem. �

12.1 Endnotes

In spite of its importance, as far as I know, there is no standard notation for the
set of bounded linear operators L : V → W where V and W are normed vector
spaces. Two notations which are sometimes used are B(V,W ) and L(V,W ). I don’t
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particularly care for these because I use (with many others) B in Br(p) to denote a
ball in Euclidean space. That is relatively standard. And some form of L(V,W ) is
used more generally (sometimes L(V,W )) to denote linear mappings from a vector
space V to a vector space W (without reference to continuity). I have used the
notation i0(V → W ) for this important space.13 This strikes me (at the moment) as
a pretty good option. Perhaps a comment or two about why I like it may be amusing.
Another nonstandard notation for i0(V → W ) I have considered is

⊏⊏⊏
0(V →W ).

The use of ⊏⊏⊏, interpreted as a “square letter C” has the advantage of maintaining a
connection with the standard notation C0 for continuity, and the straight lines of the
symbol may be thought suggestive of linearity. I already use this symbol, however,
for a different purpose, namely to denote the piecewise continuous functions ⊏⊏⊏0[a, b]
and the piecewise Ck functions ⊏⊏⊏k[a, b] on an interval, which are important and used
quite frequently in the calculus of variations but also seem to have associated with
them no standard notation. In that context one can think of a real valued function
on an interval whose graph consists of concatenated straight lines, which is perhaps
the same mental image associated with a Lipschitz function on an interval. Thus the
straight lines of “⊏⊏⊏” seem to serve a good purpose there too. It occured to me that
for the bounded linear operators, I could turn “⊏⊏⊏” backwards and write ⊐⊐⊐0(V →W )
or simply ⊐⊐⊐(V → W ) with the “b” of “backwards,” at least, sympathetic with the
“b” of “bounded.” Of course, that’s a bit of a strained connection.

Then, looking through all the available strange symbols, I ran across i. It looks
rather like “⊐⊐⊐” or like a backwards “C.” It also contains something that looks
vaguely like a backwards “L” for “linearity.” And finally, i is the second letter of
the Hebrew alphabet, is pronounced like “b,” and may be considered an equivalent
or version of “B” for “bounded.” Finally, I have retained the superscript zero to
emphasize the connection with C0 and that one has primarily continuity rather than
differentiability in mind in this context, though I am aware of the possibility of a
theory of differentiation for certain operators. I have never heard of “continuously

13I have also replaced (V, W ) in the argument of mapping classes with the more suggestive (V →
W ) which is also nonstandard, but that is a different eccentricity. Actually, I agree with the criticism
that sometimes this use of arrows can become irritating. For example, to denote a bounded linear
operator between C2 mappings of R2 to itself, one will have i0(C2(R2 → R2)→ C2(R2 → R2)). On
the other hand, one doesn’t encounter/write such a thing often, and I’m not sure this is much worse
than i0(C2(R2, R2), C2(R2, R2)). Also, I think for many students, who are still trying to assimulate
the idea of a function as a mapping, the more explicit arrows can be, as I have said, more suggestive.
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differentiable operators,” so I will leave that for later consideration—or more likely
the consideration of others. If someone has a need for it, however, I certainly give
them my blessing in using ik(V →W ).

13 Notes, Remarks, and Solutions

13.1 Exercise 3

Exercise. Observe that the integral

∫

I

f dνk,

with respect to the measure νk of any pointwise well-defined function f : I → R makes
sense. Write down a formula for how to compute this integral, and show

Nk : F → R by Nk[f ] =

∫

I

f dνk

defines a linear functional14 on the vector space F of real valued functions f : I →
R.

Exercise. Restricting the functional Nk of the previous exercise to the the subspace
C∞
c (I), show that given any φ ∈ C∞

c (I), we have

lim
k→∞

Nk[φ] =

∫

I

φ
m

ℓ

where the integral on the right may be taken as a Riemann integral:

∫

I

φ
m

k
=

∫ b

a

φ(x)
m

ℓ
dx where I has endpoints a and b,

or as an integral of φ times the constant density function ρ ≡ m/ℓ with respect
to Lebesgue measure, which is the “usual” measure on an interval of the real line
discussed in more detail below.

14This just means a linear function with codomain the real numbers

85



Solution:

Nk[φ] =

∫

I

φ dνk

=
k
∑

j=1

φ(xj)
m

k

=
k
∑

j=1

φ(xj)
m

ℓ

ℓ

k + 1

k + 1

k

=
k
∑

j=1

φ(xj)
m

ℓ

k + 1

k
(xj+1 − xj).

This looks rather like the Riemann sum

Rk = φ(x0)
m

ℓ
(x1 − x0) +

k
∑

j=1

φ(xj)
m

ℓ
(xj+1 − xj)

based on left endpoints except for a couple minor differences. We know since φ ∈
C0[a, b] that

lim
k→∞

Rk =

∫ b

a

m

ℓ
ρ(x) dx.

If we can show |Nk[φ]− Rk| tends to zero as k →∞, then we can say

∣

∣

∣

∣

Nk[φ]−

∫ b

a

m

ℓ
ρ(x) dx

∣

∣

∣

∣

≤ |Nk[φ]− Rk|+

∣

∣

∣

∣

Rk −

∫ b

a

m

ℓ
ρ(x) dx

∣

∣

∣

∣

by the triangle inequality, so

lim
k→∞

Nk[φ] =

∫ b

a

m

ℓ
ρ(x) dx
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as desired. Thus, we estimate

|Nk[φ]−Rk| ≤ |φ(x0)|
m

ℓ
(x1 − x0) +

∣

∣

∣

∣

∣

k
∑

j=1

φ(xj)
m

ℓ

(

k + 1

k
− 1

)

(xj+1 − xj)

∣

∣

∣

∣

∣

≤ ‖φ‖C0[a,b]

m

ℓ

{

ℓ

k + 1
+

k
∑

j=1

(

1

k

)

(xj+1 − xj)

}

≤ ‖φ‖C0[a,b]

m

ℓ

{

ℓ

k + 1
+

ℓ

k + 1

}

= ‖φ‖C0[a,b]

2m

k + 1

which clearly tends to zero as k →∞.

13.2 Exercise 5

For each k = 1, 2, 3, . . . partition the interval as indicated in Figure 3 with

a = ξ0 < x1 < ξ1 < x2 < ξ2 < · · · < xk < ξk = b

where

ξj+1 − ξj =
ℓ

k
for j = 0, 2, . . . , k − 1

and

xj+1 − xj =
ℓ

k
for j = 1, 2, . . . , k − 1.

One may also set x1 = a + ℓ/(2k), but this is not necessary. Now at each point xj ,
j = 1, 2, . . . , k assign the point mass

gj =

∫ ξj

ξj−1

ρ(x) dx =

∫

(ξj−1,ξj)

ρ =

∫

(ξj−1,ξj)

ρ dµ.

Then, setting

νk =

k
∑

j=1

gjδxj

we have

νk(I) =

k
∑

j=1

gj =

∫

I

ρ dµ.
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Given a continuous function φ ∈ C0[a, b], we have

Mk =

∫

φ dνk

=

k
∑

j=1

gjφ(xj)

=

k
∑

j=1

φ(xj)

∫ ξj

ξj−1

ρ(x) dx.

On the other hand, we may consider the Riemann sum

Rk =
k
∑

j=1

φ(xj)ρ(xj)(ξj − ξj−1)

=
k
∑

j=1

φ(xj)

∫ ξj

ξj−1

ρ(xj) dx

since
∫ ξj

ξj−1

ρ(xj) dx = ρ(xj)(ξj − ξj−1).

Since ρ ∈ C0[a, b], we know

lim
k→∞

Rk =

∫

φ ρ.

On the other hand,

|Mk −Rk| ≤
k
∑

j=1

∣

∣

∣

∣

∣

∫ ξj

ξj−1

[ρ(x)− ρ(xj)]φ(xj) dx

∣

∣

∣

∣

∣

≤ ‖φ‖C0(I)

k
∑

j=1

∫ ξj

ξj−1

|ρ(x)− ρ(xj)| dx.

Also, since ρ ∈ C0[a, b] given any ǫ > 0, there is some δ > 0 such that

|x− ξ| < δ
x ∈ I

}

=⇒ ρ(x)− ρ(ξ)| <
ǫ

‖φ‖C0(I) + 1
.
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It follows that for large enough k we have ξj − ξj−1 = ℓ/k < δ for all j = 1, . . . k and
|Mk −Rk| < ǫ. This shows

lim
k→∞
|Mk − Rk| = 0 and consequently lim

k→∞
Mk =

∫

φρ.
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