Laplace's Equation
 The Fundamental Solution and Green's Function

John McCuan

March 24, 2021

We have covered some elementary initial properties ${ }^{1}$ of harmonic functions, that is, functions satisfying Laplace's PDE $\Delta u=0$. These mostly followed from the mean value properties and included the (strong) maximum principle and higher (interior) regularity. Now we complement this discussion with some observations about the natural boundary value problem, or Dirichlet problem, for Laplace's equation:

$$
\left\{\begin{array}{l}
\Delta u=0 \quad \text { on } \mathcal{U} \tag{1}\\
\left.{ }^{u}\right|_{\partial u}=g .
\end{array}\right.
$$

Here the set \mathcal{U} is an open (often bounded) subset of \mathbb{R}^{n}, the operator is, of course, the Laplace operator

$$
\Delta u=\sum_{j=1}^{n} \frac{\partial^{2} u}{\partial x_{j}^{2}},
$$

and $\partial \mathcal{U}$ is the boundary of the domain \mathcal{U} defined by

$$
\partial \mathcal{U}=\overline{\mathcal{U}} \cap \overline{\mathcal{U}^{c}}
$$

as usual. We are looking, at least initially, for a classical solution $u: \overline{\mathcal{U}} \rightarrow \mathbb{R}$ with

$$
u \in C^{2}(\mathcal{U}) \cap C^{0}(\overline{\mathcal{U}}) .
$$

1 Boundary Values

We have no trouble making sense of continuous boundary values $g: \partial \mathcal{U} \rightarrow \mathbb{R}$ since $\partial \mathcal{U}$ is a metric space with the inherited distance from the Euclidean space \mathbb{R}^{n} containing \mathcal{U} and $\partial \mathcal{U}$. If we want higher regularity, however, then generally we may want to impose additional regularity on the set $\partial \mathcal{U}$ requiring $\partial \mathcal{U}$ to be a differentiable or C^{1} curve of $\mathcal{U} \subset \mathbb{R}^{2}$, a smooth surface if $\mathcal{U} \subset \mathbb{R}^{3}$ and some kind of smooth hypersurface if $\mathcal{U} \subset \mathbb{R}^{n}$ for $n>3$. One way to avoid all the technicalities of such a discussion (at least in part) is to simply require the boundary values g to be defined with certain regularity on a larger (full dimension) set containing $\partial \mathcal{U}$. For example, we could consider $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $g \in C^{1}\left(\mathbb{R}^{n}\right)$ or $g \in C^{\infty}\left(\mathbb{R}^{n}\right)$ and then it is understood that the function g appearing in (1) is a restriction of such a boundary value function g to $\partial \mathcal{U}$. Thus, to make (1) properly stated we should write

$$
u_{\partial u}=\left.g\right|_{\partial u} .
$$

This is what we should do if we want to be careful and proper. In practice, this is almost never done, though it is often understood that g is defined in a full dimension set containing $\partial \mathcal{U}$.

In particular, one very important special instance of this is going to be considered below, so at least we will have mentioned it, and you will know what's going on.

[^0]
2 Fundamental Solution

The function $\Phi: \mathbb{R}^{2} \backslash\{\mathbf{0}\} \rightarrow \mathbb{R}$ given by

$$
\Phi(\mathbf{x})=-\frac{1}{2 \pi} \ln |\mathbf{x}|
$$

is called the fundamental solution of Laplace's equation for \mathbb{R}^{2}. Notice this function is not defined on all of \mathbb{R}^{2}, but it has a singularity at the origin $\mathbf{x}=\mathbf{0}$. In the punctured plane, however, it is easy to see that

$$
\Delta \Phi(\mathbf{x}) \equiv 0 \quad \text { for } \mathbf{x} \neq \mathbf{0}
$$

The function $u(\mathbf{x})=\Phi(\mathbf{x}-\mathbf{w})$ is also harmonic in $\mathbb{R} \backslash\{\mathbf{w}\}$ with singularity (translated to) \mathbf{w}.
Similarly, the function $\Phi: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R}$ by

$$
\Phi(\mathbf{x})=\frac{1}{n(n-2) \omega_{n}} \frac{1}{|\mathbf{x}|^{n-2}}
$$

is the fundamental solution for Laplace's equation for $n \geq 3$.
In all cases, $\Phi \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$, so given a function $f \in C_{c}^{0}\left(\mathbb{R}^{n}\right)$ the convolution integral

$$
v(\mathbf{x})=\int_{\mathbf{w} \in \mathbb{R}^{n}} f(\mathbf{w}) \Phi(\mathbf{x}-\mathbf{w})
$$

defines a function $v \in C^{2}\left(\mathbb{R}^{n}\right)$. Of course, you have to prove the regularity of v, but it's not so difficult, and then you will find

$$
-\Delta(f * \Phi)=f
$$

This is pretty nice: The fundamental solution of Laplace's equation gives us a bunch ${ }^{2}$ of solutions of Poisson's equation. These solutions are not immediately connected to any particular boundary values in any way, but we'll make a connection in the next section.

3 The Boundary Value Problem for Laplace's Equation

Now, say we have $g \in C^{2}\left(\mathbb{R}^{n}\right)$, and we want to solve (1). A first observation is that if we could solve the boundary value problem

$$
\left\{\begin{array}{l}
-\Delta v=f \quad \text { on } \mathcal{U} \tag{2}\\
\left.v\right|_{\partial u} \equiv 0
\end{array}\right.
$$

for Poisson's equation for all $f \in C^{0}(\overline{\mathcal{U}})$, then we can solve (1). To see this, set

$$
f=\Delta g
$$

Since $g \in C^{2}\left(\mathbb{R}^{n}\right)$, we know $f \in C^{0}\left(\mathbb{R}^{n}\right) \subset C^{0}(\overline{\mathcal{U}})$. Thus if v is the solution of (2), for this choice of f, then $u=v+g$ satisfies

$$
\Delta u=\Delta v+\Delta g=-f+f=0
$$

and

$$
\left.{ }^{u}\right|_{\partial u}=\left.v\right|_{\partial u}+\left.g\right|_{\partial u}=g .
$$

The key observation associated with the Green's function is that one does not need to be able to solve (2) for every $f \in C^{0}(\overline{\mathcal{U}})$, or equivalently, one does not need to be able to solve (1) for every $g \in C^{2}\left(\mathbb{R}^{n}\right)$.

[^1]
4 Green's Function

The Green's function is a function associated with a particular domain \mathcal{U} and depending on $2 n$ variables. More precisely, the Green's function is a function $G: \mathcal{U} \times \mathcal{U} \rightarrow \mathbb{R} \cup\{\infty\}$ given by

$$
G(\mathbf{x}, \mathbf{w})=\Phi(\mathbf{x}-\mathbf{w})-\phi(\mathbf{x}, \mathbf{w})=\Phi(\mathbf{x}-\mathbf{w})-h(\mathbf{x})
$$

where $h(\mathbf{x})=\phi(\mathbf{x}, \mathbf{w})$ is a harmonic corrector function satisfying the boundary value problem

$$
\left\{\begin{array}{l}
\Delta h=0 \text { on } \mathcal{U} \tag{3}\\
h(\mathbf{x})=\Phi(\mathbf{x}-\mathbf{w}) \quad \text { for } \mathbf{x} \in \partial \mathcal{U} .
\end{array}\right.
$$

The claim is: If you can solve the boundary values problems (3), then you can solve (1) for every $g \in C^{0}\left(\mathbb{R}^{n}\right)$. In fact, the formula for the solution is

$$
\begin{equation*}
u(\mathbf{x})=-\int_{\mathbf{w} \in \partial \mathcal{U}} g(\mathbf{w}) D G(\mathbf{x}, \mathbf{w}) \cdot \mathbf{n} \tag{4}
\end{equation*}
$$

where

$$
D G=\left(\frac{\partial G}{\partial x_{1}}, \frac{\partial G}{\partial x_{2}}, \ldots, \frac{\partial G}{\partial x_{n}}\right)
$$

and \mathbf{n} is the outward unit normal to \mathcal{U} along $\partial \mathcal{U}$. Of course, this requires that $\partial \mathcal{U}$ be regular enough to have a well-defined outward unit normal at least as a domain of integration (i.e., a set of measure zero consisting of edges and corners and such is okay).

Notice the main point: If you can solve (1) for

$$
g \in\{\Phi(\mathbf{x}-\mathbf{w}): \mathbf{w} \in \mathcal{U}\}
$$

then you can solve (1) for all $g \in C^{0}(\partial \mathcal{U})$.
Exercise 1 For what class of inhomogeneities f does one need to be able to solve (2) in order to construct the Green's function for a domain \mathcal{U} ?

Of course, it requires a (careful) computation to show the function u given in (4) performs the feat we have ascribed to it, namely that by this formula we obtain a solution $u \in C^{2}(\mathcal{U}) \cap C^{0}(\overline{\mathcal{U}})$ of (1). Without too much more work one can also prove the following generalization:

Theorem 1 (solution of the Dirichlet problem for Poisson's equation) If \mathcal{U} is an open bounded subset of \mathbb{R}^{n} with C^{2} boundary and

1. $f \in C^{0}(\mathcal{U})$, and
2. $g \in C^{0}(\partial \mathcal{U})$,
then

$$
v(\mathbf{x})=-\int_{\mathbf{w} \in \partial \mathcal{U}} g(\mathbf{w}) D G(\mathbf{x}, \mathbf{w}) \cdot \mathbf{n}-\int_{\mathbf{w} \in \mathcal{U}} f(\mathbf{w}) G(\mathbf{x}, \mathbf{w})
$$

satisfies $v \in C^{2}(\mathcal{U}) \cap C^{0}(\overline{\mathcal{U}})$ and

$$
\left\{\begin{array}{l}
-\Delta v=f \quad \text { on } \mathcal{U} \tag{5}\\
\left.v\right|_{\partial u}=g
\end{array}\right.
$$

[^0]: ${ }^{1}$ These may be found in the notes on "Integration and the Divergence."

[^1]: ${ }^{2}$ Important technical term.

