Mollifiction
 (rough draft)

John McCuan

April 14, 2020

The mollifiction we will discuss ${ }^{1}$ is based on the non-negative symmetric mollifier (also sometimes called the standard bump function) $\beta: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\beta(x)= \begin{cases}e^{-\frac{1}{1-x^{2}}}, & |x|<1 \\ 0, & |x| \geq 1\end{cases}
$$

Using β, we define $\mu_{1}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\mu_{1}(x)=\frac{\beta(x)}{\int_{\mathbb{R}} \beta}
$$

More generally, for $\delta>0$, we define $\mu_{\delta}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\mu_{\delta}(x)=\frac{1}{\delta} \mu_{1}\left(\frac{x}{\delta}\right)
$$

Given $u \in L_{l o c}^{1}(\mathbb{R})$, the mollification of u is given by $\mu_{\delta} * u: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\mu_{\delta} * u(x)=\int_{\xi \in \mathbb{R}} \mu_{\delta}(\xi) u(x-\xi)
$$

The function $\mu_{\delta} * u$ is called a convolution of μ_{δ} and u.
The construction above may be generalized to higher dimensions as follows: We start with $\beta: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
\beta(\mathbf{x})= \begin{cases}e^{-\frac{1}{1-|\mathbf{x}|^{2}}}, & |\mathbf{x}|<1 \\ 0, & |\mathbf{x}| \geq 1\end{cases}
$$

[^0]$\mu_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by
$$
\mu_{1}(\mathbf{x})=\frac{\beta(\mathbf{x})}{\int_{\mathbb{R}^{n}} \beta}
$$

For $\delta>0$, we define $\mu_{\delta}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
\mu_{\delta}(\mathbf{x})=\frac{1}{\delta^{n}} \mu_{1}\left(\frac{\mathbf{x}}{\delta}\right)
$$

Given $u \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$, the mollification of u is given by $\mu_{\delta} * u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
\mu_{\delta} * u(\mathbf{x})=\int_{\xi \in \mathbb{R}} \mu_{\delta}(\xi) u(\mathbf{x}-\xi)
$$

1 Important Preliminary Observations

I will state these observations for $n=1$ and leave the generalizations to \mathbb{R}^{n} as exercises.

1.1 Regularity and Support

The standard bump function satisfies

$$
\beta \in C_{c}^{\infty}(\mathbb{R}) \quad \text { with } \quad \operatorname{supp} \beta=[-1,1] .
$$

The standard mollifier μ_{1} satisfies

$$
\mu_{1} \in C_{c}^{\infty}(\mathbb{R}) \quad \text { with } \quad \operatorname{supp} \mu_{1}=[-1,1]
$$

More generally

$$
\mu_{\delta} \in C_{c}^{\infty}(\mathbb{R}) \quad \text { with } \quad \operatorname{supp} \mu_{\delta}=[-\delta, \delta] .
$$

All of these functions are non-negative and even. Furthermore,

$$
\int_{\mathbb{R}} \mu_{1}=1
$$

In fact,

$$
\int_{\mathbb{R}} \mu_{\delta}=\frac{1}{\delta} \int_{x \in \mathbb{R}} \mu_{1}\left(\frac{x}{\delta}\right)=\int_{\xi \in \mathbb{R}} \mu_{1}(\xi)=1 .
$$

We have used the change of variables $\xi=x / \delta$.
The mollification $\mu_{\delta} * u$ satisfies $\mu_{\delta} * u \in C^{\infty}(\mathbb{R})$. Also, if u has compact support (or essential compact support), then $\mu_{\delta} * u \in C_{c}^{\infty}(\mathbb{R})$.

Exercise 1 Determine the support of $\mu_{\delta} * u$ when u is non-negative. Consider also the case $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Note that

$$
\mu_{\delta} * u(x)=\int_{\xi \in B_{\delta}(0)} \mu_{\delta}(\xi) u(x-\xi) .
$$

Also, the commutativity of the convolution is key to seeing the regularity of the mollification:

$$
\mu_{\delta} * u(x)=u * \mu_{\delta}(x)=\int_{\xi \in \mathbb{R}} u(\xi) \mu_{\delta}(x-\xi)=\int_{\xi \in B_{\delta}(x)} u(\xi) \mu_{\delta}(x-\xi)
$$

Exercise 2 Verify the commutativity of the convolution using the change of variables $\eta=x-\xi$. Consider also the case when $\mu_{\delta}, u: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
The commutativity allows one to differentiate under the integral sign:

$$
\frac{d}{d x} \mu_{\delta} * u=\frac{d}{d x} \int_{\xi \in \mathbb{R}} u(\xi) \mu_{\delta}(x-\xi)=\int_{\xi \in \mathbb{R}} u(\xi) \mu_{\delta}^{\prime}(x-\xi)=\mu_{\delta}^{\prime} * u
$$

1.2 Approximation and Convergence

The integral functional associated with μ_{δ} is $M_{\delta}: C_{c}^{\infty}(\mathbb{R}) \rightarrow \mathbb{R}$ by

$$
M_{\delta}[\phi]=\int \mu_{\delta} \phi
$$

As distributions

$$
\lim _{\delta \backslash 0} M_{\delta}=\delta_{0}
$$

where δ_{0} is the Dirac delta distribution (or evaluation functional) given by $\delta_{0}[\phi]=$ $\phi(0)$.

If $u \in C^{0}(\mathbb{R})$, then

$$
\lim _{\delta \searrow 0} \mu_{\delta} * u(x)=\lim _{\delta \searrow 0} \int_{\xi \in \mathbb{R}} \mu_{\delta}(\xi) u(x-\xi)=u(x)=\delta_{x}[u] .
$$

More generally, if $u \in C^{k}(\mathbb{R})$, then for any compact set $K \subset \mathbb{R}$

$$
\lim _{\delta \backslash 0}\left\|\mu_{\delta} * u-u\right\|_{C^{k}(K)}=0
$$

That is, $\mu_{\delta} * u$ converges to (and approximates) u in $C^{k}(K)$.
For any $u \in L_{l o c}^{1}(\mathbb{R})$,

$$
\lim _{\delta \searrow 0} \mu_{\delta} * u(x)=u(x) \quad \text { at every Lebesgue point } x \text { of } u \text {. }
$$

2 Some Elementary Computations

2.1 Mollification of a constant

If $u \equiv c$ is constant, then $\mu_{\delta} * u \equiv c$.

2.2 Mollification of an affine function

If $u(x)=x$, then

$$
\mu_{\delta} * u(x)=\int_{\xi \in \mathbb{R}}(x-\xi) \mu_{\delta}(\xi)=x \int \mu_{\delta}-\int \xi \mu_{\delta}(\xi)=x .
$$

Notice that the symmetry of the mollifier μ_{δ} is required here to conclude

$$
\int \xi \mu_{\delta}(\xi)=0
$$

Explicitly, using the change of variables $\eta=-\xi$, we have

$$
\int \xi \mu_{\delta}(\xi)=\int_{-\delta}^{0} \xi \mu_{\delta}(\xi) d \xi+\int_{0}^{\delta} \xi \mu_{\delta}(\xi) d \xi=\int_{\delta}^{0} \eta \mu_{\delta}(-\eta) d \eta+\int_{0}^{\delta} \xi \mu_{\delta}(\xi) d \xi=0
$$

The symmetry leading to the generalization of this result to higher dimensions is rather interesting.

2.3 Mollification of a quadratic function

If $u(x)=x^{2}$, then

$$
\mu_{\delta} * u(x)=\int_{\xi \in \mathbb{R}}(x-\xi)^{2} \mu_{\delta}(\xi)=x^{2}-2 x \int \xi \mu_{\delta}(\xi)+\int \xi^{2} \mu_{\delta}(\xi)=x^{2}+c
$$

where

$$
c=\int \xi^{2} \mu_{\delta}(\xi)>0
$$

Exercise 3 Show that if $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $u(x, y)=x^{2}-y^{2}$, then $\mu_{\delta} * u(x, y)=x^{2}-y^{2}$.

Note that we have shown the mollification of every (classically) harmonic function $u: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $\mu_{\delta} * u=u$. Notice also that $u(x, y)=x^{2}-y^{2}$ is harmonic on \mathbb{R}^{2}. Furthermore, if $u \in C^{2}(\mathbb{R})$ is harmonic, then we an differentiation under the integral sign directly to see

$$
\Delta \mu_{\delta} * u=\mu_{\delta} * \Delta u=0
$$

so the mollification $\mu_{\delta} * u$ is also harmonic.
Exercise 4 Is it true that $\mu_{\delta} * u=u$ for every harmonic function $u \in C^{2}\left(\mathbb{R}^{2}\right)$?

3 Less elementary computations

We begin with the solution of the exercise just stated above.

3.1 Mollification of a harmonic function

Recall that a harmonic function u satisfies $\Delta u=0$ and also the mean value property:

$$
u(x)=\frac{1}{2 \pi r} \int_{\xi \in \partial B_{r}(x)} u(\xi) \quad \text { for every } r>0
$$

With this in mind, we compute using a poloar version of Fubini's theorem

$$
\begin{aligned}
\mu_{\delta} * u(x) & =\int_{\xi \in \mathbb{R}^{2}} \mu_{\delta}(x-\xi) u(\xi) \\
& =\int_{\xi \in B_{\delta}(x)} \mu_{\delta}(x-\xi) u(\xi) \\
& =\int_{0}^{\delta}\left(\int_{\xi \in \partial B_{r}(x)} \mu_{\delta}(x-\xi) u(\xi)\right) d r .
\end{aligned}
$$

It appears that the factor $\mu_{\delta}(x-\xi)$ in the integrand, because it depends on $\xi \in \partial B_{r}(x)$, cannot be taken out of the inside integral (as a constant independent of ξ). However, recall the symmetry of μ_{δ} according to which if $|x-\xi|=r$, then

$$
\mu_{\delta}(x-\xi)=\mu_{\delta}\left(|x-\xi| \mathbf{e}_{1}\right)=\mu_{\delta}\left(r \mathbf{e}_{1}\right)
$$

is, in fact, independent of ξ for $\xi \in \partial B_{r}(x)$. Thus, we may continue:

$$
\begin{aligned}
\mu_{\delta} * u(x) & =\int_{0}^{\delta}\left(\int_{\xi \in \partial B_{r}(x)} \mu_{\delta}\left(r \mathbf{e}_{1}\right) u(\xi)\right) d r \\
& =\int_{0}^{\delta} \mu_{\delta}\left(r \mathbf{e}_{1}\right)\left(\int_{\xi \in \partial B_{r}(x)} u(\xi)\right) d r \\
& =\int_{0}^{\delta} \mu_{\delta}\left(r \mathbf{e}_{1}\right)(2 \pi r u(x)) d r \\
& =u(x) \int_{0}^{\delta} \mu_{\delta}\left(r \mathbf{e}_{1}\right)\left(\int_{\xi \in \partial B_{r}(x)} 1\right) d r \\
& =u(x) \int_{0}^{\delta}\left(\int_{\xi \in \partial B_{r}(x)} \mu_{\delta}\left(r \mathbf{e}_{1}\right)\right) d r \\
& =u(x) \int_{0}^{\delta}\left(\int_{\xi \in \partial B_{r}(x)} \mu_{\delta}(x-\xi)\right) d r \\
& =u(x) \int_{\xi \in B_{\delta}(x)} \mu_{\delta}(x-\xi) \\
& =u(x) \int_{\xi \in \mathbb{R}^{2}} \mu_{\delta}(x-\xi) \\
& =u(x) . \quad \square
\end{aligned}
$$

I guess that last computation has taken us out of the realm of "elementary." It gives us, however, a proof of a result called Weyl's lemma which states that any classical solution $u \in C^{2}\left(\mathbb{R}^{2}\right)$ of Laplaces equation satisfies $u \in C^{\infty}\left(\mathbb{R}^{2}\right)$. I prefer to think of the assertion of the exercise above as the fact that a harmonic function is left invariant by mollification.

Exercise 5 Generalize the exercise above (and Weyl's lemma) to higher dimensions and to the case $u \in C^{2}(U)$ for U an open subset of \mathbb{R}^{n}.

3.2 Mollification of weak derivatives

The following computation gives what is often called the fact that mollification commutes with taking weak derivatives. ${ }^{2}$ I have always found this description a bit opaque. I prefer to say the following:

[^1]The mollification of a weak derivative is the classical deriviative of the mollification:

$$
D^{\alpha}\left(\mu_{\delta} * u\right)=\mu_{\delta} * D^{\alpha} u
$$

Here we are taking a multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ or order k and assuming $u \in$ $W^{k, p}\left(\mathbb{R}^{n}\right)$ so that the derivative $D^{\alpha} u$ appearing on the right is a weak derivative of order α. Of course, this one works in lower dimensions, but I'll give the proof in \mathbb{R}^{n}. We recall the defining condition for weak derivatives:

$$
\begin{equation*}
\int u D^{\alpha} \phi=(-1)^{|\alpha|} \int D^{\alpha} \phi u \quad \text { for all } \phi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right) \tag{1}
\end{equation*}
$$

Recall also that the order of the derivative is $k=|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$.
In the following computation, I will use the notation D_{x}^{α} to distinguish the α derivative with respect to x as opposed to D_{ξ}^{α} denoting the same derivative but with respect to the variable ξ.

$$
\begin{aligned}
D^{\alpha}\left(\mu_{\delta} * u\right)(x) & =D^{\alpha} \int_{\xi \in \mathbb{R}^{n}} \mu_{\delta}(x-\xi) u(\xi) \\
& =\int_{\xi \in \mathbb{R}^{n}} D_{x}^{\alpha} \mu_{\delta}(x-\xi) u(\xi) \\
& =\int_{\xi \in \mathbb{R}^{n}}(-1)^{|\alpha|} D_{\xi}^{\alpha} \mu_{\delta}(x-\xi) u(\xi) \\
& =(-1)^{|\alpha|} \int_{\xi \in \mathbb{R}^{n}} D_{\xi}^{\alpha} \mu_{\delta}(x-\xi) u(\xi) .
\end{aligned}
$$

Note that $\phi(\xi)=\mu_{\delta}(x-\xi)$ satisfies $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ so that the integrand now has the form associated with the weak adjoint derivative operator in (1). Thus, we continue the computation:

$$
\begin{aligned}
D^{\alpha}\left(\mu_{\delta} * u\right)(x) & =(-1)^{|\alpha|} \int_{\xi \in \mathbb{R}^{n}} D^{\alpha} \phi(\xi) u(\xi) \\
& =(-1)^{|\alpha|}(-1)^{|\alpha|} \int_{\xi \in \mathbb{R}^{n}} \phi(\xi) D^{\alpha} u(\xi) \\
& =\int_{\xi \in \mathbb{R}^{n}} \mu_{\delta}(x-\xi) D^{\alpha} u(\xi) \\
& =\mu_{\delta} * D^{\alpha} u(x) .
\end{aligned}
$$

and Trudinger, but both certainly use it implicitly. I first learned the explicit statement from Leon Simon.

[^0]: ${ }^{1}$ In other contexts this may be called symmetric (or standard) mollification. The basic idea can be extended to a general mollifier $\mu \in C_{c}^{\infty}(\mathbb{R})$ with $\int \mu=1$.

[^1]: ${ }^{2}$ Incidentally, I don't think this clever observation is explicitly in the standard texts Partial Differential Equations by Evans or Second Order Elliptic Partial Differential Equations by Gilbarg

