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The mollifiction we will discuss1 is based on the non-negative symmetric mollifier
(also sometimes called the standard bump function) β : R → R by

β(x) =

{

e
− 1

1−x2 , |x| < 1
0, |x| ≥ 1.

Using β, we define µ1 : R → R by

µ1(x) =
β(x)
∫

R
β

.

More generally, for δ > 0, we define µδ : R → R by

µδ(x) =
1

δ
µ1

(x

δ

)

.

Given u ∈ L1
loc(R), the mollification of u is given by µδ ∗ u : R → R by

µδ ∗ u(x) =

∫

ξ∈R

µδ(ξ)u(x− ξ).

The function µδ ∗ u is called a convolution of µδ and u.
The construction above may be generalized to higher dimensions as follows: We

start with β : R
n → R by

β(x) =

{

e
− 1

1−|x|2 , |x| < 1
0, |x| ≥ 1.

1In other contexts this may be called symmetric (or standard) mollification. The basic idea can
be extended to a general mollifier µ ∈ C∞

c
(R) with

∫

µ = 1.
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µ1 : R
n → R by

µ1(x) =
β(x)
∫

Rn β
.

For δ > 0, we define µδ : R
n → R by

µδ(x) =
1

δn
µ1

(x

δ

)

.

Given u ∈ L1
loc(R

n), the mollification of u is given by µδ ∗ u : R
n → R by

µδ ∗ u(x) =

∫

ξ∈R

µδ(ξ)u(x− ξ).

1 Important Preliminary Observations

I will state these observations for n = 1 and leave the generalizations to R
n as

exercises.

1.1 Regularity and Support

The standard bump function satisfies

β ∈ C∞
c (R) with supp β = [−1, 1].

The standard mollifier µ1 satisfies

µ1 ∈ C∞
c (R) with supp µ1 = [−1, 1].

More generally
µδ ∈ C∞

c (R) with supp µδ = [−δ, δ].

All of these functions are non-negative and even. Furthermore,
∫

R

µ1 = 1.

In fact,
∫

R

µδ =
1

δ

∫

x∈R

µ1

(x

δ

)

=

∫

ξ∈R

µ1 (ξ) = 1.

We have used the change of variables ξ = x/δ.
The mollification µδ ∗ u satisfies µδ ∗ u ∈ C∞(R). Also, if u has compact support

(or essential compact support), then µδ ∗ u ∈ C∞
c (R).
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Exercise 1 Determine the support of µδ ∗ u when u is non-negative. Consider also
the case u : R

n → R.

Note that

µδ ∗ u(x) =

∫

ξ∈Bδ(0)

µδ(ξ)u(x − ξ).

Also, the commutativity of the convolution is key to seeing the regularity of the
mollification:

µδ ∗ u(x) = u ∗ µδ(x) =

∫

ξ∈R

u(ξ)µδ(x − ξ) =

∫

ξ∈Bδ(x)

u(ξ)µδ(x − ξ).

Exercise 2 Verify the commutativity of the convolution using the change of variables
η = x − ξ. Consider also the case when µδ, u : R

n → R.

The commutativity allows one to differentiate under the integral sign:

d

dx
µδ ∗ u =

d

dx

∫

ξ∈R

u(ξ)µδ(x − ξ) =

∫

ξ∈R

u(ξ)µ′
δ(x − ξ) = µ′

δ ∗ u.

1.2 Approximation and Convergence

The integral functional associated with µδ is Mδ : C∞
c (R) → R by

Mδ[φ] =

∫

µδφ.

As distributions
lim
δց0

Mδ = δ0

where δ0 is the Dirac delta distribution (or evaluation functional) given by δ0[φ] =
φ(0).

If u ∈ C0(R), then

lim
δց0

µδ ∗ u(x) = lim
δց0

∫

ξ∈R

µδ(ξ)u(x− ξ) = u(x) = δx[u].

More generally, if u ∈ Ck(R), then for any compact set K ⊂ R

lim
δց0

‖µδ ∗ u − u‖Ck(K) = 0.

That is, µδ ∗ u converges to (and approximates) u in Ck(K).
For any u ∈ L1

loc(R),

lim
δց0

µδ ∗ u(x) = u(x) at every Lebesgue point x of u.
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2 Some Elementary Computations

2.1 Mollification of a constant

If u ≡ c is constant, then µδ ∗ u ≡ c.

2.2 Mollification of an affine function

If u(x) = x, then

µδ ∗ u(x) =

∫

ξ∈R

(x − ξ)µδ(ξ) = x

∫

µδ −

∫

ξµδ(ξ) = x.

Notice that the symmetry of the mollifier µδ is required here to conclude

∫

ξµδ(ξ) = 0.

Explicitly, using the change of variables η = −ξ, we have

∫

ξµδ(ξ) =

∫ 0

−δ

ξµδ(ξ) dξ +

∫ δ

0

ξµδ(ξ) dξ =

∫ 0

δ

ηµδ(−η) dη +

∫ δ

0

ξµδ(ξ) dξ = 0.

The symmetry leading to the generalization of this result to higher dimensions is
rather interesting.

2.3 Mollification of a quadratic function

If u(x) = x2, then

µδ ∗ u(x) =

∫

ξ∈R

(x − ξ)2µδ(ξ) = x2 − 2x

∫

ξµδ(ξ) +

∫

ξ2µδ(ξ) = x2 + c

where

c =

∫

ξ2µδ(ξ) > 0.

Exercise 3 Show that if u : R
2 → R by u(x, y) = x2 −y2, then µδ ∗u(x, y) = x2−y2.
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Note that we have shown the mollification of every (classically) harmonic function
u : R → R satisfies µδ ∗ u = u. Notice also that u(x, y) = x2 − y2 is harmonic on R

2.
Furthermore, if u ∈ C2(R) is harmonic, then we an differentiation under the integral
sign directly to see

∆µδ ∗ u = µδ ∗ ∆u = 0,

so the mollification µδ ∗ u is also harmonic.

Exercise 4 Is it true that µδ ∗ u = u for every harmonic function u ∈ C2(R2)?

3 Less elementary computations

We begin with the solution of the exercise just stated above.

3.1 Mollification of a harmonic function

Recall that a harmonic function u satisfies ∆u = 0 and also the mean value property:

u(x) =
1

2πr

∫

ξ∈∂Br(x)

u(ξ) for every r > 0.

With this in mind, we compute using a poloar version of Fubini’s theorem

µδ ∗ u(x) =

∫

ξ∈R2

µδ(x − ξ) u(ξ)

=

∫

ξ∈Bδ(x)

µδ(x − ξ) u(ξ)

=

∫ δ

0

(
∫

ξ∈∂Br(x)

µδ(x − ξ) u(ξ)

)

dr.

It appears that the factor µδ(x−ξ) in the integrand, because it depends on ξ ∈ ∂Br(x),
cannot be taken out of the inside integral (as a constant independent of ξ). However,
recall the symmetry of µδ according to which if |x − ξ| = r, then

µδ(x − ξ) = µδ(|x − ξ|e1) = µδ(re1)
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is, in fact, independent of ξ for ξ ∈ ∂Br(x). Thus, we may continue:

µδ ∗ u(x) =

∫ δ

0

(
∫

ξ∈∂Br(x)

µδ(re1) u(ξ)

)

dr

=

∫ δ

0

µδ(re1)

(
∫

ξ∈∂Br(x)

u(ξ)

)

dr

=

∫ δ

0

µδ(re1) (2πru(x)) dr

= u(x)

∫ δ

0

µδ(re1)

(
∫

ξ∈∂Br(x)

1

)

dr

= u(x)

∫ δ

0

(
∫

ξ∈∂Br(x)

µδ(re1)

)

dr

= u(x)

∫ δ

0

(
∫

ξ∈∂Br(x)

µδ(x − ξ)

)

dr

= u(x)

∫

ξ∈Bδ(x)

µδ(x − ξ)

= u(x)

∫

ξ∈R2

µδ(x − ξ)

= u(x). �

I guess that last computation has taken us out of the realm of “elementary.” It gives
us, however, a proof of a result called Weyl’s lemma which states that any classical
solution u ∈ C2(R2) of Laplaces equation satisfies u ∈ C∞(R2). I prefer to think
of the assertion of the exercise above as the fact that a harmonic function is left
invariant by mollification.

Exercise 5 Generalize the exercise above (and Weyl’s lemma) to higher dimensions
and to the case u ∈ C2(U) for U an open subset of R

n.

3.2 Mollification of weak derivatives

The following computation gives what is often called the fact that mollification com-
mutes with taking weak derivatives.2 I have always found this description a bit opaque.
I prefer to say the following:

2Incidentally, I don’t think this clever observation is explicitly in the standard texts Partial

Differential Equations by Evans or Second Order Elliptic Partial Differential Equations by Gilbarg

6



The mollification of a weak derivative is the classical deriviative of the
mollification:

Dα(µδ ∗ u) = µδ ∗ Dαu.

Here we are taking a multi-index α = (α1, . . . , αn) or order k and assuming u ∈
W k,p(Rn) so that the derivative Dαu appearing on the right is a weak derivative of
order α. Of course, this one works in lower dimensions, but I’ll give the proof in R

n.
We recall the defining condition for weak derivatives:

∫

u Dαφ = (−1)|α|
∫

Dαφ u for all φ ∈ C∞
c (Rn). (1)

Recall also that the order of the derivative is k = |α| = α1 + · · ·+ αn.
In the following computation, I will use the notation Dα

x to distinguish the α
derivative with respect to x as opposed to Dα

ξ denoting the same derivative but with
respect to the variable ξ.

Dα(µδ ∗ u)(x) = Dα

∫

ξ∈Rn

µδ(x − ξ) u(ξ)

=

∫

ξ∈Rn

Dα
xµδ(x − ξ) u(ξ)

=

∫

ξ∈Rn

(−1)|α|Dα
ξ µδ(x − ξ) u(ξ)

= (−1)|α|
∫

ξ∈Rn

Dα
ξ µδ(x − ξ) u(ξ).

Note that φ(ξ) = µδ(x − ξ) satisfies φ ∈ C∞
c (Rn) so that the integrand now has the

form associated with the weak adjoint derivative operator in (1). Thus, we continue
the computation:

Dα(µδ ∗ u)(x) = (−1)|α|
∫

ξ∈Rn

Dαφ(ξ) u(ξ)

= (−1)|α|(−1)|α|
∫

ξ∈Rn

φ(ξ) Dαu(ξ)

=

∫

ξ∈Rn

µδ(x − ξ) Dαu(ξ)

= µδ ∗ Dαu(x). �

and Trudinger, but both certainly use it implicitly. I first learned the explicit statement from Leon
Simon.
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