Fundamental Solutions and Green's Functions For the Laplace Operator

John McCuan

April 13, 2020

We have studied extensively the Green's function for the trivial ordinary differential equation $-u^{\prime \prime}=f$ and the two point boundary value problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}=f, x \in(a, b) \\
u(a)=u(b)=0
\end{array}\right.
$$

with homogeneous boundary values in particular. In fact, I think (almost) the very first homework assignment I gave in this class was to solve this equation for some specific inhomogeneities f. Now, I'm going to cast all our complicated manipulations in one dimension into a less trivial setting, namely the setting of the Laplace operator

$$
\Delta: C^{2}(\bar{U}) \rightarrow C^{0}(\bar{U})
$$

where U is a bounded open domain in \mathbb{R}^{n} with smooth C^{2} boundary.

1 Fundamental Solutions

For each $n=1,2,3, \ldots$ there is a fundamental solution. Each is determined up to an additive constant as a solution, satisfying certain symmetry and regularity requirements, of the distributional partial differential equation " $-\Delta \Phi=\delta_{0}$," that is

$$
\int_{\mathbb{R}^{n}} \Phi(-\Delta \phi)=\phi(0) \quad \text { for every } \phi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)
$$

The symmetry requirement is that $\Phi(\mathbf{x})=\Phi_{0}(|\mathbf{x}|)$ for some function $\Phi_{0}:(0, \infty) \rightarrow \mathbb{R}$. The regularity requirement is that $\Phi_{0} \in C^{2}(0, \infty)$. In one dimension, the symmetry condition amounts to the requirement that $\Phi_{0}=\Phi_{0}(x)$ is even, and we have seen $\Phi(x)=-|x| / 2$. Each solution will be singular at the origin in \mathbb{R}^{n}.

Figure 1: The fundamental solution in one dimension

Exercise 1 Show $\Phi(x)=-|x| / 2$ is the unique fundamental solution (up to an additive constant) when $n=1$.

In higher dimensions, the fundamental solutions associated with the Laplace operator are these:

$$
\begin{array}{r}
\Phi(\mathbf{x})=-\frac{1}{2 \pi} \ln |\mathbf{x}|, \quad(n=2) \\
\Phi(\mathbf{x})=\frac{1}{n(n-2) \omega_{n}} \frac{1}{|\mathbf{x}|^{n-2}}, \quad(n>2) \tag{2}
\end{array}
$$

where ω_{n} is the "volume," i.e., n dimensional Lebesgue measure, of the unit ball $B_{1}(\mathbf{0})=\left\{\mathbf{x} \in \mathbb{R}^{n}:|\mathbf{x}|<1\right\}$ in \mathbb{R}^{n}. You know $\omega_{1}=2, \omega_{2}=\pi$, and $\omega_{3}=4 \pi / 3$. You may not know that $\omega_{n}=\pi^{n / 2} / \Gamma(n / 2+1)$ in general. But now you know. You also may not have noticed that the $n-1$ dimensional Hausdorff measure (this means counting measure when $n=1$, length when $n=2$, area when $n=3$ etc.) of the boundary of the unit ball is $n \omega_{n}$, but that is indeed the case, and now you know. We'll use this below. Up until this point, I've been using \mathbf{x} to denote points in \mathbb{R}^{n}. I'm not going to switch and use x, ξ, etc. We'll just have to remember that $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ has multiple components.

Now, we consider the function $\Phi(x-\xi)$ where we translate the singularity to a point $\xi \in U$. This gives us some nice smooth boundary values to consider on ∂U as indicated in Figure 4. In particular, we define $w=w(x, \xi)$ as the solution of the boundary value problem

$$
\left\{\begin{array}{l}
\Delta w=0, x \in U \tag{3}\\
\left.w\right|_{x \in \Omega}=\Phi(x-\xi)
\end{array}\right.
$$

This function $w=w(x, \xi)$ may be called the corrector for the fundamental solution. It is obvious from the symmetry that $\Phi(x-\xi)=\Phi(\xi-x)$, but it is not obvious at all that the corrector is symmetric. But it is true.

Figure 2: The fundamental solution in two dimensions

Figure 3: The profiles of fundamental solutions in $n=2, n=3$, and $n=4$ dimensions

Figure 4: Boundary values obtained by translating the fundamental solution

Theorem $1 w(x, \xi)=w(\xi, x)$.
Consequently, the Green's function

$$
\begin{equation*}
G(x, \xi)=\Phi(x-\xi)-w(x, \xi) \tag{4}
\end{equation*}
$$

shares the same symmetry. We will prove this symmetry property later.
Recall that the main expectation of a Green's function is that it is an integral kernel which can be used to write down a formula for a solution of a certain problem. In this case, we claim

$$
\begin{equation*}
u(x)=\int_{\xi \in U} f(\xi) G(x, \xi) \tag{5}
\end{equation*}
$$

solves

$$
\left\{\begin{align*}
-\Delta u & =f, x \in U \tag{6}\\
\left.u\right|_{x \in \Omega} & =0
\end{align*}\right.
$$

In fact, we will show more. The usual approach to showing this result depends on something called Green's formula. We have discussed the divergence theorem

$$
\int_{U} \operatorname{div} \mathbf{v}=\int_{\partial U} \mathbf{v} \cdot n
$$

and the generalization arising from the product rule $\operatorname{div}(u \mathbf{v})=D u \cdot \mathbf{v}+u \operatorname{div} \mathbf{v}$. In particular, when $\mathbf{v}=D v$ is the gradient of a function, then we obtain the identity

$$
\int_{U} u \Delta v+\int_{U} D u \cdot D v=\int_{\partial U} u D v \cdot n
$$

Note the quantity $D_{n} v=D v \cdot n$ is called the outward normal derivative of v. Green's formula takes this one step further by switching the roles of u and v and then subtracting:

$$
\begin{equation*}
\int_{U}(u \Delta v-v \Delta u)=\int_{\partial U}(u D v-v D u) \cdot n \tag{7}
\end{equation*}
$$

In order to apply Green's formula, we replace U with $U_{\epsilon}=U \backslash B_{\epsilon}(\xi)$ where $B_{\epsilon}(\xi) \subset \subset U$ and we take $v(x)=G(x, \xi)$. This yields

$$
\begin{equation*}
\int_{U_{\epsilon}}(u \Delta G-G \Delta u)=\int_{\partial U_{\epsilon}}(u D G-G D u) \cdot n . \tag{8}
\end{equation*}
$$

The first term on the left

$$
\int_{U_{\epsilon}} u \Delta G
$$

vanishes since both the fundamental solution $\Phi(x-\xi)$ and the corrector $w(x, \xi)$ are harmonic in x for $x \in U_{\epsilon}$. Furthermore, if we assume u is a (classical) solution of (6), then the second integral on the left becomes

$$
\int_{x \in U_{\epsilon}} f(x) G(x, \xi)
$$

In view of the symmetry, this may also be written as

$$
\int_{x \in U_{\epsilon}} f(x) G(\xi, x)
$$

matching our proposed formula for the solution value $u(\xi)$ given in (5). More generally, assuming we have a function $u \in C^{2}(\bar{U})$ satisfying $-\Delta u=f$, we have

$$
\int_{U_{\epsilon}} f(x) G(\xi, x)=\int_{\partial U_{\epsilon}}(u D G-G D u) \cdot n .
$$

The boundary integrals on the right include integrals around ∂U as well as around $\partial B_{\epsilon}(\xi)$ with the unit normal $n=-(x-\xi) /|x-\xi|$ pointing into $B_{\epsilon}(\xi)$. For example,

$$
\int_{\partial U_{\epsilon}} u D G \cdot n=\int_{\partial U} u D G \cdot n+\int_{\partial B_{\epsilon}(\xi)} u D G \cdot n
$$

Decomposing G further as $G(x, \xi)=\Phi(x-\xi)-w(x, \xi)$ the second integral on the right may be written as

$$
\int_{\partial B_{\epsilon}(\xi)} u D G \cdot n=\int_{\partial B_{\epsilon}(\xi)} u D \Phi \cdot n \int_{\partial B_{\epsilon}(\xi)} u D w \cdot n .
$$

The second of these integrals has bounded integrand $u D u \cdot n$ and, therefore, satisfies

$$
\lim _{\epsilon \searrow 0} \int_{\partial B_{\epsilon}(\xi)} u D w \cdot n=0
$$

Calculating for $n \geq 2$, we see

$$
\begin{align*}
& D \Phi(\mathbf{x})=-\frac{1}{2 \pi} \frac{\mathbf{x}}{|\mathbf{x}|^{2}}, \quad(n=2) \tag{9}\\
& \Phi(\mathbf{x})=-\frac{1}{n \omega_{n}} \frac{\mathbf{x}}{|\mathbf{x}|^{n}}, \quad(n>2) \tag{10}
\end{align*}
$$

Consequently, the first integral becomes

$$
\begin{aligned}
\int_{\partial B_{\epsilon}(\xi)} u D \Phi \cdot n & =\frac{1}{n \omega_{n}} \int_{\partial B_{\epsilon}(\xi)} u \frac{x-\xi}{\epsilon^{n}} \cdot \frac{x-\xi}{\epsilon} \\
& =\frac{1}{n \omega_{n}} \int_{\partial B_{\epsilon}(\xi)} \frac{u}{\epsilon^{n-1}} \\
& =\frac{1}{\mu \partial B_{\epsilon}(\xi)} \int_{\partial B_{\epsilon}(\xi)} u .
\end{aligned}
$$

Notice this is an average value so that

$$
\lim _{\epsilon \searrow 0} \int_{\partial B_{\epsilon}(\xi)} u D \Phi \cdot n=u(\xi) .
$$

We now consider the last term

$$
-\int_{\partial U_{\epsilon}} G D u \cdot n
$$

in (8). Since $G \equiv 0$ on ∂U, we have here only

$$
-\int_{\partial U_{\epsilon}} G D u \cdot n=\int_{\partial B_{\epsilon}(\xi)} w D u \cdot n-\int_{\partial B_{\epsilon}(\xi)} \Phi D u \cdot n .
$$

The first integrand on the right is bounded, so

$$
\lim _{\epsilon \searrow 0} \int_{\partial B_{\epsilon}(\xi)} w D u \cdot n=0 .
$$

The growth rate of the fundamental solution also gives

$$
\lim _{\epsilon \searrow 0} \int_{\partial B_{\epsilon}(\xi)} \Phi D u \cdot n=0 .
$$

In fact,

$$
\left|\int_{\partial B_{\epsilon}(\xi)} \Phi D u \cdot n\right| \leq \sup |D u| \Phi(\epsilon) n \omega_{n} \epsilon^{n-1} .
$$

Returning once again to the second term

$$
\int_{x \in U_{\epsilon}} f(x) G(x, \xi)=\int_{x \in U_{\epsilon}} f(x) \Phi(x-\xi)-\int_{x \in U_{\epsilon}} f(x) w(x, \xi)
$$

in (8) we may restrict to $B_{r}(\xi)$ with $\epsilon<r$ and $\Phi(x-\xi)>0$ on $B_{r}(\xi)$ to calculate

$$
\lim _{\epsilon \searrow 0} \int B_{r}(\xi) \backslash B_{\epsilon}(\xi) \Phi(x-\xi)<\infty
$$

Consequently, combining these calculations in the limit, we have

$$
\int_{x \in U_{\epsilon}} f(x) G(\xi, x)=\int_{\partial U} u D G \cdot n+u(\xi) .
$$

Exchanging the roles/names of x and ξ, we arrive at our final formula:

$$
u(x)=\int_{\xi \in U_{\epsilon}} f(\xi) G(x, \xi)-\int_{\xi \in \partial U} u(\xi) D G(x, \xi) \cdot n
$$

If $u \equiv 0$ on ∂U, then the second integral on the right vanishes. If u takes other boundary values, the formula we have still holds, so that we have a formula for classical solutions $u \in C^{2}(\bar{U})$ satisfying

$$
\left\{\begin{array}{l}
-\Delta u=f, x \in U \tag{11}\\
\left.u\right|_{x \in \Omega}=g
\end{array}\right.
$$

namely

$$
u(x)=\int_{\xi \in U_{\epsilon}} f(\xi) G(x, \xi)-\int_{\xi \in \partial U} g(\xi) D G(x, \xi) \cdot n
$$

It remains to show the symmetry $G(x, \xi)=G(\xi, x)$ of the Green's function. To see this, note that $u(x)=G(x, \xi)$ is harmonic in $U \backslash\{\xi\}$ with a singularity at $x=\xi$ while $v(\xi)=G(\xi, x)$ is harmonic in $U \backslash\{x\}$ with a singularity at $\xi=x$. We may apply Green's formula integrating with respect to some variable other than x or ξ :

$$
\left.\int_{\eta \in U_{\epsilon}} u \Delta v-v \Delta u\right)=\int_{\partial U_{\epsilon}}(u D v-v D u) \cdot n .
$$

using the approach above with $U_{\epsilon}=U \backslash\left(B_{\epsilon}(x) \cup B_{\epsilon}(\xi)\right)$. We evidently get

$$
\begin{aligned}
0=\int_{\eta \in \partial B_{\epsilon}(x)} & {[G(\eta, \xi) D G(\eta, x)-G(\eta, x) D G(\eta, \xi)] } \\
& +\int_{\eta \in \partial B_{\epsilon}(\xi)}[G(\eta, \xi) D G(\eta, x)-G(\eta, x) D G(\eta, \xi)]
\end{aligned}
$$

Taking the limit as $\epsilon \searrow 0$ as above, we see that exactly two limits do not vanish:

$$
0=G(x, \xi)-G(\xi, x)
$$

