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We have studied extensively the Green’s function for the trivial ordinary differen-
tial equation −u′′ = f and the two point boundary value problem

{

−u′′ = f, x ∈ (a, b)
u(a) = u(b) = 0

with homogeneous boundary values in particular. In fact, I think (almost) the very
first homework assignment I gave in this class was to solve this equation for some
specific inhomogeneities f . Now, I’m going to cast all our complicated manipulations
in one dimension into a less trivial setting, namely the setting of the Laplace operator

∆ : C2(U) → C0(U)

where U is a bounded open domain in R
n with smooth C2 boundary.

1 Fundamental Solutions

For each n = 1, 2, 3, . . . there is a fundamental solution. Each is determined up
to an additive constant as a solution, satisfying certain symmetry and regularity
requirements, of the distributional partial differential equation “−∆Φ = δ0,” that is

∫

Rn

Φ (−∆φ) = φ(0) for every φ ∈ C∞
c (Rn).

The symmetry requirement is that Φ(x) = Φ0(|x|) for some function Φ0 : (0,∞) → R.
The regularity requirement is that Φ0 ∈ C2(0,∞). In one dimension, the symmetry
condition amounts to the requirement that Φ0 = Φ0(x) is even, and we have seen
Φ(x) = −|x|/2. Each solution will be singular at the origin in R

n.
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Figure 1: The fundamental solution in one dimension

Exercise 1 Show Φ(x) = −|x|/2 is the unique fundamental solution (up to an addi-
tive constant) when n = 1.

In higher dimensions, the fundamental solutions associated with the Laplace op-
erator are these:

Φ(x) = −
1

2π
ln |x|, (n = 2) (1)

Φ(x) =
1

n(n − 2)ωn

1

|x|n−2
, (n > 2). (2)

where ωn is the “volume,” i.e., n dimensional Lebesgue measure, of the unit ball
B1(0) = {x ∈ R

n : |x| < 1} in R
n. You know ω1 = 2, ω2 = π, and ω3 = 4π/3.

You may not know that ωn = πn/2/Γ(n/2 + 1) in general. But now you know. You
also may not have noticed that the n− 1 dimensional Hausdorff measure (this means
counting measure when n = 1, length when n = 2, area when n = 3 etc.) of the
boundary of the unit ball is nωn, but that is indeed the case, and now you know.
We’ll use this below. Up until this point, I’ve been using x to denote points in
R

n. I’m not going to switch and use x, ξ, etc. We’ll just have to remember that
x = (x1, x2, . . . , xn) has multiple components.

Now, we consider the function Φ(x − ξ) where we translate the singularity to a
point ξ ∈ U . This gives us some nice smooth boundary values to consider on ∂U
as indicated in Figure 4. In particular, we define w = w(x, ξ) as the solution of the
boundary value problem

{

∆w = 0, x ∈ U
w∣

∣

x∈Ω

= Φ(x − ξ). (3)

This function w = w(x, ξ) may be called the corrector for the fundamental solution.
It is obvious from the symmetry that Φ(x − ξ) = Φ(ξ − x), but it is not obvious at
all that the corrector is symmetric. But it is true.
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Figure 2: The fundamental solution in two dimensions

Figure 3: The profiles of fundamental solutions in n = 2, n = 3, and n = 4 dimensions

Figure 4: Boundary values obtained by translating the fundamental solution
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Theorem 1 w(x, ξ) = w(ξ, x).

Consequently, the Green’s function

G(x, ξ) = Φ(x − ξ) − w(x, ξ) (4)

shares the same symmetry. We will prove this symmetry property later.
Recall that the main expectation of a Green’s function is that it is an integral

kernel which can be used to write down a formula for a solution of a certain problem.
In this case, we claim

u(x) =

∫

ξ∈U

f(ξ) G(x, ξ) (5)

solves
{

−∆u = f, x ∈ U
u∣

∣

x∈Ω

= 0. (6)

In fact, we will show more. The usual approach to showing this result depends on
something called Green’s formula. We have discussed the divergence theorem

∫

U

div v =

∫

∂U

v · n

and the generalization arising from the product rule div(uv) = Du · v + u div v. In
particular, when v = Dv is the gradient of a function, then we obtain the identity

∫

U

u ∆v +

∫

U

Du · Dv =

∫

∂U

u Dv · n.

Note the quantity Dnv = Dv · n is called the outward normal derivative of v.
Green’s formula takes this one step further by switching the roles of u and v and then
subtracting:

∫

U

(u∆v − v∆u) =

∫

∂U

(u Dv − v Du) · n. (7)

In order to apply Green’s formula, we replace U with Uǫ = U\Bǫ(ξ) where Bǫ(ξ)⊂⊂U
and we take v(x) = G(x, ξ). This yields

∫

Uǫ

(u∆G − G∆u) =

∫

∂Uǫ

(u DG − G Du) · n. (8)

The first term on the left
∫

Uǫ

u∆G
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vanishes since both the fundamental solution Φ(x − ξ) and the corrector w(x, ξ) are
harmonic in x for x ∈ Uǫ. Furthermore, if we assume u is a (classical) solution of (6),
then the second integral on the left becomes

∫

x∈Uǫ

f(x) G(x, ξ).

In view of the symmetry, this may also be written as
∫

x∈Uǫ

f(x) G(ξ, x)

matching our proposed formula for the solution value u(ξ) given in (5). More gener-
ally, assuming we have a function u ∈ C2(U) satisfying −∆u = f , we have

∫

Uǫ

f(x) G(ξ, x) =

∫

∂Uǫ

(u DG − G Du) · n.

The boundary integrals on the right include integrals around ∂U as well as around
∂Bǫ(ξ) with the unit normal n = −(x − ξ)/|x− ξ| pointing into Bǫ(ξ). For example,

∫

∂Uǫ

u DG · n =

∫

∂U

u DG · n +

∫

∂Bǫ(ξ)

u DG · n.

Decomposing G further as G(x, ξ) = Φ(x − ξ) − w(x, ξ) the second integral on the
right may be written as

∫

∂Bǫ(ξ)

u DG · n =

∫

∂Bǫ(ξ)

u DΦ · n

∫

∂Bǫ(ξ)

u Dw · n.

The second of these integrals has bounded integrand u Du ·n and, therefore, satisfies

lim
ǫց0

∫

∂Bǫ(ξ)

u Dw · n = 0.

Calculating for n ≥ 2, we see

DΦ(x) = −
1

2π

x

|x|2
, (n = 2) (9)

Φ(x) = −
1

nωn

x

|x|n
, (n > 2). (10)
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Consequently, the first integral becomes
∫

∂Bǫ(ξ)

u DΦ · n =
1

nωn

∫

∂Bǫ(ξ)

u
x − ξ

ǫn
·
x − ξ

ǫ

=
1

nωn

∫

∂Bǫ(ξ)

u

ǫn−1

=
1

µ∂Bǫ(ξ)

∫

∂Bǫ(ξ)

u.

Notice this is an average value so that

lim
ǫց0

∫

∂Bǫ(ξ)

u DΦ · n = u(ξ).

We now consider the last term

−

∫

∂Uǫ

G Du · n

in (8). Since G ≡ 0 on ∂U , we have here only

−

∫

∂Uǫ

G Du · n =

∫

∂Bǫ(ξ)

w Du · n −

∫

∂Bǫ(ξ)

Φ Du · n.

The first integrand on the right is bounded, so

lim
ǫց0

∫

∂Bǫ(ξ)

w Du · n = 0.

The growth rate of the fundamental solution also gives

lim
ǫց0

∫

∂Bǫ(ξ)

Φ Du · n = 0.

In fact,
∣

∣

∣

∣

∫

∂Bǫ(ξ)

Φ Du · n

∣

∣

∣

∣

≤ sup |Du|Φ(ǫ)nωnǫ
n−1.

Returning once again to the second term
∫

x∈Uǫ

f(x) G(x, ξ) =

∫

x∈Uǫ

f(x) Φ(x − ξ) −

∫

x∈Uǫ

f(x) w(x, ξ)
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in (8) we may restrict to Br(ξ) with ǫ < r and Φ(x − ξ) > 0 on Br(ξ) to calculate

lim
ǫց0

∫

Br(ξ)\Bǫ(ξ)Φ(x − ξ) < ∞.

Consequently, combining these calculations in the limit, we have
∫

x∈Uǫ

f(x) G(ξ, x) =

∫

∂U

u DG · n + u(ξ).

Exchanging the roles/names of x and ξ, we arrive at our final formula:

u(x) =

∫

ξ∈Uǫ

f(ξ) G(x, ξ)−

∫

ξ∈∂U

u(ξ) DG(x, ξ) · n.

If u ≡ 0 on ∂U , then the second integral on the right vanishes. If u takes other
boundary values, the formula we have still holds, so that we have a formula for
classical solutions u ∈ C2(U) satisfying

{

−∆u = f, x ∈ U
u∣

∣

x∈Ω

= g, (11)

namely

u(x) =

∫

ξ∈Uǫ

f(ξ) G(x, ξ)−

∫

ξ∈∂U

g(ξ) DG(x, ξ) · n.

It remains to show the symmetry G(x, ξ) = G(ξ, x) of the Green’s function. To see
this, note that u(x) = G(x, ξ) is harmonic in U\{ξ} with a singularity at x = ξ while
v(ξ) = G(ξ, x) is harmonic in U\{x} with a singularity at ξ = x. We may apply
Green’s formula integrating with respect to some variable other than x or ξ:

∫

η∈Uǫ

u∆v − v∆u) =

∫

∂Uǫ

(u Dv − v Du) · n.

using the approach above with Uǫ = U\(Bǫ(x) ∪ Bǫ(ξ)). We evidently get

0 =

∫

η∈∂Bǫ(x)

[G(η, ξ) DG(η, x)− G(η, x) DG(η, ξ)]

+

∫

η∈∂Bǫ(ξ)

[G(η, ξ) DG(η, x)− G(η, x) DG(η, ξ)].

Taking the limit as ǫ ց 0 as above, we see that exactly two limits do not vanish:

0 = G(x, ξ) − G(ξ, x).
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