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Preface to the Student

These notes from Spring semester 2023 go along with the course MATH 6702 (Geor-
gia Tech) entitled Math Methods of Applied Sciences II. The course is supposed to
consist of a review of multivariable calculus (Calc III) and an introduction to par-
tial differential equations. I also usually include a couple additional topics and (I
expect) this semester will be no exception. Those topics are some elementary aspects
of modeling physical systems and an introduction to the calculus of variations. A
relatively large number of students have reported to me that these additional topics
were among the most interesting and, later, most valuable topics they encountered
in coursework, and I hope the same holds for you...as long as you don’t use them for
anything too destructive.

I will also refer to a few texts. The only ones you might want to purchase for the
course are Mathematical Methods in the Physical Sciences by Mary Boas and Applied
Partial Differential Equations with Fourier Series and Boundary Value Problems by
Richard Haberman. Technically, neither is “required,” and any edition should do.
(Probably the oldest edition you can find of Haberman is the best one.) I will type
up homework assignments, and the problems I suggest you work on (and turn in) will
be stated in relatively complete form, though many are adapted from the text(s). The
books will be for reference (along with these notes). Other good books are Partial
Differential Equations by L.C. Evans and Variational Calculus and Optimal Control
by John Troutman. I may refer to those occasionally.

Start with the homework assignment problems and try to connect them to some-
thing you know. Figure out what you understand (mathematically, physically, etc.)
and try to build on that. I may not know some things you understand, so I’ll ask you
to explain those things. If something I say does not connect to anything you know,
you should try to ask a question to make it connect, and I will try to help you make
a connection. Ask questions.

Mathematics is about communication, and you should think of yourself as respon-
sible for about half of the communication. If you have no good question to ask, one
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wonders why you are taking the course. If you are taking the course because some
administrator decided it was a “requirement,” then it would probably be better for
you to find a different course or a different instructor, or wait until you accrue some
better motivation.



CONTENTS 7

Preface

These are notes for MATH 6702 (Math Methods in Applied Science II) offered in the
Spring semester of 2023 at Georgia Institute of Technology. The text for the course
was Mathematical Methods in the Physical Sciences by Mary Boas.
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Chapter 1

Introduction

A physical system is some phenomenon which you and I can both look at, discuss,
and “compare notes on” so to speak. In particular, we can use words to describe what
we “see,” and especially measure. Hopefully, this results in some kind of common
understanding of the phenomenon (the physical system). Among the choices of lan-
guage, or words, we can use for our discussion, mathematics is a possible choice. It
is the language of choice for this course. Often this choice of language leads to a kind
of parallel entity called a mathematical model. The mathematical model is not the
physical system, but hopefully some aspects of the model can be compared to (espe-
cially) measurements associated with the physical system. When two humans have
a discussion about the comparison of a mathematical model to a physical system,
the result, i.e., the resulting discussion, is what we call science.

Note that the identification of the physical system with the mathematical model,
or the identification of the mathematical model with the physical system, is not
science. That is where science ends and deception begins. Science is about under-
standing why and how the model is different from the physical system, rather than
the assumption (or presumption) that the two are the same.

If we want to have a meaningful scientific discussion, that is involve ourselves with
meaningful science, then we should make an attempt to use precise language. There
are limitations, but many have felt some of the options we can (will?) discuss are
compelling.

9
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1.1 Ordinary Derivatives and Partial Derivatives

A basic object of study in this course is the real valued function f : A→ R where
A is some set we consider as the domain of the function f . If A = (a, b) is an open
interval in the real line R and x ∈ (a, b), then for h ∈ R with |h| small enough we can
consider the difference quotient(s)

f(x+ h)− f(x)

h
. (1.1)

Exercise 1.1 Draw the graph

G = {(x, f(x)) ∈ R
2 : x ∈ (−2, 1)}

of the function f : (−2, 1) → R with values given by

f(x) =
1

(x+ 2)(1− x)
.

Do a good job: Label the axes, make sure the minimum value is in the correct location
and has the correct value; get the monotonicity and concavity correct. Perhaps you
will wish to use a mathematical software package/program like Mathematica, Maple,
or Matlab (or octave).

On the graph you have drawn, illustrate the difference quotient at the point x = 0
with h = 1/2.

For functions like this it makes sense to consider the limit (or at least try to take the
limit) of the difference quotient(s) as h tends to zero:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
. (1.2)

If the limit exists, we call the value f ′(x) the ordinary derivative of f at x and
say f is differentiable at the point x ∈ (a, b). For many functions we consider,
the ordinary derivative will exist and be well-defined at every point x in the domain
interval (a, b), or at most points in (a, b).

Exercise 1.2 (absolute value) Consider the function g : R → R given by

g(x) =

{

−x, if x ≤ 0
x, if x ≥ 0.

(1.3)
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(a) Find the value of the derivative g′(x) for x ∈ (−∞, 0) ∪ (0,∞).

(b) Show the derivative of g is not well-defined at x = 0.

(c) Compute the left and right derivatives

lim
hր0

g(x+ h)− g(x)

h
= lim

h→0−

g(x+ h)− g(x)

h

and

lim
hց0

g(x+ h)− g(x)

h
= lim

h→0+

g(x+ h)− g(x)

h

for all x ∈ R.

If we let g′ : R → {−1, 1} denote the right derivative of g, then another important
function h : R → {0, 1} has values given by

h(x) =
1

2
(g′(x) + 1).

Continuity

A more elementary propety of (some) functions f : (a, b) → R is continuity. Such a
function is said to be continuous at a point x ∈ (a, b) if

lim
h→0

f(x+ h) = f(x). (1.4)

Note: When the symbol h is used to represent a quantity assumed to be small in
absolute value, or tending to zero, as in (1.1), (1.2), or (1.4) we call the quantity an
increment. Sometimes it is convenient to use different symbols for an increment.

Exercise 1.3 (Heaviside function) Consider the function h : (−∞,∞) → R by

h(x) =

{

0, if x < 0
1, if x ≥ 0.

(1.5)

(a) Find the value of the derivative h′(x) for x ∈ (−∞, 0) ∪ (0,∞).

(b) Show the derivative of g is not well-defined at x = 0.

(c) Attempt to compute the left and right derivatives of h.
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(d) Show h is not continuous at x = 0.

(e) Compute the left and right limits

lim
kր0

h(x+ k) = lim
k→0−

h(x+ k) and lim
kց0

h(x+ k) = lim
k→0+

h(x+ k)

for all x ∈ R.

If we let h′ : R → {0,∞} denote the left derivative of h, then h′ is not a real valued
function, but it is a (sort of) interesting extended real valued function.

A function f : (a, b) → R is said to be continuous on the interval (a, b) if f is
continuous at each point x ∈ (a, b). In this case, we write f ∈ C0(a, b) and f is said
to be C0. When you read this it should sound like “f is ’see zero’.”

Similarly, a function is said to be differentiable on the interval (a, b) if f is
differentiable at each point x ∈ (a, b). In this case, the values f ′(x) define for us a
(new, second) function to consider (and talk about). If the function f ′ : (a, b) → R is
well-defined and continuous, we say f is continuously differentiable and write

f ∈ C1(a, b).

Can you guess how to read this?

Exercise 1.4 (ordinary differentiability) Find an example of a function f : (−∞,∞) →
R which is differentiable (at every point x ∈ R) but is not continuously differentiable.

Any function f giving a solution to Exercise 1.4 must be continuous:

Theorem 1 (ordinary differentiability) If f : (a, b) → R is differentiable on (a, b),
then f ∈ C0(a, b).

Proof: Let x ∈ (a, b). Then for any ǫ > 0, there is some δ > 0 so that

∣

∣

∣

∣

f ′(x)− f(x+ h)− f(x)

h

∣

∣

∣

∣

< ǫ if 0 < |h| < δ. (1.6)

Note carefully that the condition given in (1.6) is precisely what

lim
h→0

f(x+ h)− f(x)

h
= f ′(x)
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means. Now we estimate:

|f(x+ h)− f(x)| = |f(x+ h− f(x)− hf ′(x) + hf ′(x)|
≤ |f(x+ h− f(x)− hf ′(x)|+ |hf ′(x)| (1.7)

= |h|
(∣

∣

∣

∣

f ′(x)− f(x+ h)− f(x)

h

∣

∣

∣

∣

+ |f ′(x)|
)

< δ(ǫ+ |f ′(x)|). (1.8)

Given any η > 0, we can take ǫ < |f ′(x)| + 1 in (1.6) and we can also assume the
tolerance δ, for which (1.6) holds, satisfies

δ <
η

2|f ′(x)|+ 1
.

Then following along from (1.8) we have that 0 < |h| < δ implies

|f(x+ h)− f(x)| < η

2|f ′(x)|+ 1
(|f ′(x)|+ 1 + |f ′(x)|)

= η.

This is precisely what it means to say

lim
h→0

f(x+ h) = f(x).

This means f is continuous at x for every x ∈ (a, b) and, hence, f ∈ C0(a, b).
Note: We used something called the triangle inequality in (1.7). You can’t get
very far with the precise mathematical analysis of most physical systems without the
triangle inequality.

A Physical System

I have a coil of spring steel, commonly called a SlinkyTM. I also have a 5 foot long
vertical “yard stick” to the top of which I have attached a bracket to accomodate
hanging the Slinky so that it dangles down from the top end. Here are some starting
assertions (assumptions) with which you are free to agree or disagree.

(i) My hanging Slinky constitutes a physical system which can be compared to a
mathematical model.
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(ii) My hanging Slinky constitutes a nice example of a physical system which can
be compared to a mathematical model, and it is an interesting example.

(iii) A natural element of a mathematical model for the hanging Slinky is a real
valued function of one real variable f : (a, b) → R as discussed above.

If you disagree with the first assertion, then probably this is not the best course for
you to take. If you disagree with the second assertion, then we can certainly discuss
that, so at least we have some place to start. If, on the other hand, you agree that
there is some interest in this hanging slinky, then that should make the following
exercise easier:

Exercise 1.5 Determine an interval (a, b) ⊂ R and a measurement function f :
(a, b) → R which you think are appropriate to describe the shape/position of a
hanging (or otherwise extended) Slinky. Describe any properties of this real valued
function of one variable, e.g, boundary values f(a), f(b), monotonicity, differentiabil-
ity, concavity, you would expect this function to exhibit if any reasonable comparison
between a model involving your measurement function f and the physical system
(Slinky) is possible.

Functions of several variables and partial derivatives

If f : A → R is a function of several real variables x1, x2, . . . , xn instead of just one
real variable x, then the discussion surrounding continuity and differentiability gets
a little bit more complicated. We can start with partial derivatives which should
be familiar from calculus. Let’s assume a point (x1, x2, . . . , xn) ∈ A ⊂ Rn has the
property that there is some δ > 0 for which

{(x1, x2, . . . , xj + h, . . . , xn) ∈ R
n : |h| < δ} ⊂ A. (1.9)

Exercise 1.6 Draw the set

{(x1, x2, . . . , xj + h, . . . , xn) ∈ R
n : |h| < δ}

appearing in (1.9) when

(a) n = 2, (x1, x2) = (2, 1), and δ = 1/3.

(b) n = 3, (x1, x2, x3) = (1, 0, 1/2), and δ = 1/4.

Under the assumption (1.9) we can (again) consider a difference quotient

f(x1, . . . , xj + h, . . . , xn)− f(x1, . . . , xn)

h
.
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Some notation (from linear algebra)

Writing (and typing) points like

(x1, . . . , xj + h, . . . , xn)− (x1, . . . , xn) = (0, . . . , h, . . . , 0) (1.10)

is a little cumbersome (and also a little annoying) sometimes. Recall the standard
unit basis vectors in Rn:

e1 = (1, 0) and e2 = (0, 1) when n = 2

e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1) when n = 3

e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0) and e4 = (0, 0, 0, 1) when n = 4

...

Using these let us write

x = (x1, x2, . . . , xn) =

n
∑

j=1

xjej ∈ R
n

so that (1.10) becomes
(x+ hej)− x = hej .

You may recall that in linear algebra one usually uses the transposes

{

e1 =

(

1
0

)

, e2 =

(

0
1

)}

⊂ R
2







e1 =





1
0
0



 , e2 =





0
1
0



 , e3 =





0
0
1











⊂ R
3

...

of these points/vectors because these are more convenient for matrix multiplication.
We will use the transposes sometimes too; if we want to be careful, we should make
it clear by indicating the transposes explicitly like this:

If e1 = (1, 0, 0), then





1
0
0



 = (1, 0, 0)T = eT1 ,
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but

if e1 =





1
0
0



 , then (1, 0, 0) =





1
0
0





T

= eT1 .

(Sometimes it just doesn’t make much difference, but sometimes it does.)
Given f : A→ R with x ∈ A ⊂ R

n, j ∈ {1, 2, . . . , n}, and δ > 0 for which

{x+ hej : |h| < δ} ⊂ A, (1.11)

the j-th difference quotient of f at x is

f(x+ hej)− f(x)

h

and the j-th partial derivative of f at x (if it exists) is

∂f

∂xj
=

∂f

∂xj
(x) = lim

h→0

f(x+ hej)− f(x)

h
.

Exercise 1.7 Draw the graph

G = {(x, y, f(x, y)) ∈ R
3 : (x, y) ∈ A}

of f : A→ R where

A = {(0, 1)× (0, 2) → {(x, y) : 0 < x < 1, 0 < y < 2}

is an open rectangle in R2 and

f(x, y) = 1 + x2 +
1

10
y2.

Exercise 1.8 Draw the graph of u : A→ R where A = (0, 1)× (0, 2) and

u(x, y) = 1 + x2.

and illustrate (in your drawing) the difference quotients for u at (1/2, 1) with h = 1/4.

As in the case of ordinary derivatives, one convenient way to ensure all sets of the
form of the set considered in Exercise 1.6 (for small |h|) are in the domain of the
function is to require the domain set to be open.
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Definition 1 A set U ⊂ Rn is open if for each

p =
n
∑

j=1

pjej ∈ U,

there is some δ > 0 for which

Qδ(p) =

{

x =

n
∑

j=1

xjej : |xj − pj | <
δ

2

}

⊂ U.

The set Qδ(p) is called the open cube of side length δ centered at p.

Exercise 1.9 Draw Q1(1/2, 1/2) ⊂ R2 and Q1/2(1, 1, 1) ⊂ R3.

Exercise 1.10 Show that for δ > 0 and p ∈ Rn, the cube Qδ(p) is open.

Exercise 1.11 Show that if −∞ ≤ a < b ≤ ∞, then the interval (a, b) is open in R.

Exercise 1.12 Find an open set in R which is not an open interval.

Exercise 1.13 Given r > 0 and p ∈ Rn, the set

Br(p) = {x ∈ R
n : ‖x− p‖ < r}

where

‖x− p‖ =

√

√

√

√

n
∑

j=1

(xj − pj)2

is called the Euclidean ball. Show a Euclidean ball is open.

Definition 2 Given an open set U ⊂ Rn, a function f : U → R is said to be
partially differentiable (or partial differentiable) at the point p ∈ U if

∂f

∂xj
(p) = lim

h→0

f(p+ hej)− f(p)

h
exists for j = 1, 2, . . . , n.

The same function is said to be partially differentiable on the open set U if f
is partially differentiable at each point p ∈ U .
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Partial differentiability does not imply continuity.1

Definition 3 (continuity) Given f : U → R with U an open set in Rn, we say f is
continuous at the point p ∈ U if

lim
q→p

f(q) = f(p). (1.12)

The limit condition (1.12) means (precisely) this:

For any ǫ > 0, there exists some δ > 0 such that

‖q− p‖ < δ implies |f(q)− f(p)| < ǫ.

If f : U → R is continuous at ach point p in an open set U ⊂ Rn, we say f is
continuous on the open set U , and we write

f ∈ C0(U).

Note: While the notion of (partial) differentiability mostly makes sense (and is almost
always applied to) functions f : U → R with U open in Rn, the notion of continuity
can be (quite easily) generalized to arbitrary domains:

Definition 4 (continuity) Given any set A ⊂ Rn and a function f : A→ R, we say
f is continuous at the point p ∈ A if

lim
A∋q→p

f(q) = f(p),

that is, for any ǫ > 0, there is some δ > 0 for which

q ∈ A
‖q− p‖ < δ

}

implies |f(q)− f(p)| < ǫ.

Exercise 1.14 State precisely (the definition of) what it means to have f ∈ C0(A)
for f : A→ R and A any subset of Rn.

I wrote above that partial differentiability does not imply f ∈ C0(U). Here is an
example: Consider f : (−1, 1)× (−1, 1) → R by

f(x, y) =







1, x = 0
1, y = 0
0, xy 6= 0.

(1.13)

1And this may be unexpected in view of Theorem 1.
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Exercise 1.15 Show f : (−1, 1)×(−1, 1) → R with values given by (1.13) is partially
differentiable at every point in U = (−1, 1)× (−1, 1) but not continuous at the points
in

X = {(x, y) ∈ U : xy = 0}.

Exercise 1.16 Using condition (1.12) in the case n = 1, show the definition of
continuity you get in this special case is precisely the same as the notion of continuity
defined by (1.4).

Exercise 1.17 Generalize Theorem 1 as follows: If U is an open subset of R (see
Exercise 1.12) and f : U → R is differentiable at each x ∈ U , then (show) f is
continuous on U , i.e., f ∈ C0(U).

Definition 5 Given an open set U ⊂ Rn and a partially differentiable function u :
U → R, we say u is continuously differentiable if

∂u

∂xj
∈ C0(U) for j = 1, 2, . . . , n.

In this case, we write u ∈ C1(U).

Theorem 2 C1(U) ⊂ C0(U).

In order to prove this result, which one should note gives a weaker conclusion than
Theorem 1 in the special case when n = 1 and U = (a, b) is an open interval, we
will need to recall a little more about functions of a single variable. In order to
motivate the discussion, let us consider first the quantity in (1.12) which we will need
to estimate in order to show a function u ∈ C1(U) is continuous, namely, |u(q)−u(p)|.
In one spatial dimension n = 1 it is convenient to write p = x and q = x + h with
|h| small enough so x+ h ∈ U . More precisely, we can (and more or less should) take
δ > 0 small enough so that x + h ∈ U whenever |h| < δ. With this minor change of
notation, the quantity we want to estimate takes the form

|u(q)− u(p)| = |u(x+ h)− u(x)|.

We showed in the proof of Theorem 1, as you should have reviewed in Exercise 1.17,
that this quantity must become small when |h| is small in order for the limit of the
difference quotient

lim
h→0

u(x+ h)− u(x)

h
= u′(x) (1.14)
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to be well-defined. We have more information here, namely, that u′(ξ) exists for all
ξ with x − h ≤ ξ ≤ x + h or even with x − δ < ξ < x + δ, and we want to make
a more precise conclusion for reasons I will explain in a moment. That more precise
conclusion is the conclusion of the mean value theorem and it tells us, for example,
that if 0 < h < δ, then not only does the limit equality (1.14) hold, but that for some
ξ with x < ξ < x+ h, there holds

u(x+ h)− u(x)

h
= u′(ξ).

Here is a more general precise statement:

Theorem 3 (1-D mean value theorem) If a, b ∈ R with a < b and f : [a, b] → R

satisfies f ∈ C1(a, b)∩C0[a, b], then there is some ξ ∈ (a, b) such that the difference
quotient

f(b)− f(a)

b− a
satisfies

f(b)− f(a)

b− a
= f ′(ξ).

Exercise 1.18 Let a, b ∈ R with a < b. Draw pictures to illustrate the following
assertions:

(a) If f ∈ C1(a, b) and δ > 0 is a positive number for which x+ h ∈ (a, b) whenever
|h| < δ, the given h with −δ < h < 0, there is some ξ ∈ (a, b) with

f ′(ξ) =
f(x+ h)− f(x)

h
. (1.15)

Identify and indicate in your picture the largest possible value of δ and a par-
ticular subinterval of length |h| on which you can be sure to find a point ξ for
which (1.15) holds.

(b) If f ∈ C1(a, b) ∩ C0[a, b], then there is some ξ ∈ (a, b) such that

f ′(ξ) =
f(b)− f(a)

b− a
.

Let us now return to the quantity

|u(q)− u(p)|
when n > 1. First, let us assume δ0 > 0 is small enough so that the cube Qδ0(p) ⊂ U .
Let us also assume ‖q− p‖ < δ0/2 so that q ∈ Qδ0(p).
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Exercise 1.19 Show that for any p ∈ Rn there holds

Br(p) ⊂ Q2r(p) ⊂ Br
√
n(p).

For q ∈ Qδ0(p), we can write all the points on the segment between p and q as
(1 − t)p + tq = p + t(q − p) for 0 ≤ t ≤ 1. In particular, the quantity we wish to
estimate can be written as

|u(q)− u(p)| =
∣

∣

∣

∣

u(p+ t(q− p))∣
∣

1

t=0

∣

∣

∣

∣

.

That is, we can express |u(q)−u(p)| in terms of evaluation of the function f : [0, 1] →
R by f(t) = u(p+ t(q− p)) at the endpoints t = 0 and t = 1:

|u(q)− u(p)| =
∣

∣

∣

∣

f(t)∣
∣

1

t=0

∣

∣

∣

∣

.

Here then is the main result we need:

Lemma 1 Given u ∈ C1(U) with points q,p ∈ Qδ0(p) ⊂ U , there is some δ1 > 0
such that the function f : [−δ1, 1 + δ1] → R with values given by

f(t) = u(p+ t(q− p))

is well-defined and satisfies f ∈ C1(−δ1, 1 + δ1) and

f ′(t) =
n
∑

j=1

(qj − pj)
∂u

∂xj
(p+ t(q− p)).

Proof: In order to see what is going on here, let us consider the case n = 2. In that
case, we can write p = (x, y) and q = (x + h, y + k) for some fixed h and k. The
values of f take the form

f(t) = u(x+ th, y + tk),

and a difference quotient for f looks like

f(t + η)− f(t)

η
=
u(x+ (t+ η)h, y + (t+ η)k)− u(x+ th, y + tk)

η
. (1.16)

Notice that if |η| is small enough, then (x+(t+η)h, y+(t+η)k) is still in Qδ0(p) ⊂ U
and the point R = (x+ th, y+ (t+ η)k) will also be in U along with all the points on
the segments from p+ t(h, k) = (x+ th, y+ tk) to R and from R to p+(t+η)(h, k) =
(x+ (t+ η)h, y + (t+ η)k). This is illustrated in Figure 1.1.
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Figure 1.1: Points involved in the domain of u when taking a difference quotient with
increment η of the function f .

Exercise 1.20 The claim was made above that for |η| small enough the point R =
p + t(h, k) + η(0, k) satisfies R ∈ Qδ0(p). Illustrate the relation between η > 0 and
the tolerance δ1 using the drawing in Figure 1.1. Use the triangle inequality to verify
the claim concerning the point R and the assertion in the statement of Lemma 1
concerning the tolerance δ1 and the domain of definition of the function f .

Introducing the point R into the difference quotient (1.16) for f we can write

u(x+ (t+ η)h, y + (t+ η)k)− u(x+ th, y + tk)

η

=
u(x+ (t + η)h, y + (t + η)k)− u(x+ th, y + (t+ η)k)

η

+
u(x+ th, y + (t+ η)k)− u(x+ th, y + tk)

η
.

Notice the second quotient is a standard partial difference quotient based at the point
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p+ t(h, k) = (x+ th, y + tk) for the function u. In particular,

lim
η→0

u(x+ th, y + (t+ η)k)− u(x+ th, y + tk)

η

= lim
η→0

k
u(x+ th, y + tk + ηk)− u(x+ th, y + tk)

ηk

= k
∂u

∂x2
(x+ th, y + tk)

because ηk tends to zero when η tends to zero. The first quotient

u(x+ (t+ η)h, y + (t+ η)k)− u(x+ th, y + (t + η)k)

η

is, on the face of it, more problematic. It looks something like a difference quotient
for the x1 partial derivative of u with increment η, but when η changes, the common
second argument y + (t + η)k changes as well, so there is no fixed base point. This
is where the mean value theorem comes in: Let g(ξ) = u(x+ ξh, y + (t + η)k). The
domain interval for g depends on whether η < 0 or η > 0. Let us take the case η > 0
as illustrated in Figure 1.1. Then g : [t, t + η] → R. The fact that u ∈ C1(Qδ0(p))
tells us g ∈ C1(t, t+ η) ∩ C0[t, t + η] with derivative

g′(ξ) = h
∂u

∂x1
(x+ ξh, y + (t+ η)k) (1.17)

Exercise 1.21 Write a difference quotient for g and carefully compute an appropriate
limit to verify (1.17).

The mean value theorem applied to g tells us that ξ can be found with t < ξ < t+ η
and

u(x+ (t + η)h, y + (t+ η)k)− u(x+ th, y + (t+ η)k)

η
= h

∂u

∂x1
(x+ ξh, y + (t+ η)k).

Thus, the original difference quotient for f takes the form

f(t+ η)− f(t)

η
= h

∂u

∂x1
(x+ ξh, y + (t + η)k)

+
u(x+ th, y + (t+ η)k)− u(x+ th, y + tk)

η
.

When η tends to zero ξ tends to t and ∂u/∂x1 is continuous, so

f ′(t) = lim
η→0

f(t+ η)− f(t)

η
= h

∂u

∂x1
(x+ th, y + tk) + k

∂u

∂x2
(x+ th, y + tk).
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Exercise 1.22 Verify that this is the conclusion of Lemma 1 when n = 2.

Hopefully, the discussion above makes one proof of Lemma 1 (in the general case)
more or less clear. We can move coordinates one at a time and use the mean value
theorem. To be specific, if we take a difference quotient

f(t+ h)− f(t)

h
=
u(p+ (t + h)(q− p))− u(p+ t(q− p))

h
,

we can write this as a sum of quotients

f(t+ h)− f(t)

h
=
u(p+ (t+ h)(q− p))− u(p+ t(q− p))

h
=

n
∑

j=1

Qj.

In the last quotient only the last coordinate moves:

Qn =
u(p+ t(q− p) + h(qn − pn)en)− u(p+ t(q− p))

h
.

This is a standard difference quotient with

lim
h→0

u(p+ t(q− p) + h(qn − pn)en)− u(p+ t(q− p))

h
=
∂u

∂n
(p+ t(q−p)) (qn − pn).

The second to the last quotient moves the second to the last coordinate:

Qn−1 =
1

h
[u(p+ t(q− p) + h(qn−1 − pn−1)en−1 + h(qn − pn)en)

−u(p+ t(q− p) + h(qn − pn)en)] . (1.18)

Technically, the last two cooridinates of the “moving” value u(p+ t(q−p)+h(qn−1−
pn−1)en−1 + h(qn − pn)en) are both moving and the last coordinate of the “fixed”
value u(p+ t(q− p) + h(qn − pn)en) is moving as well. This is why we need to use
the mean value theorem for quotients like this. Here are the details2 for this second
to last term: We set

g(ξ) = u(p+ t(q− p) + ξ(qn−1 − pn−1)en−1 + h(qn − pn)en).

The expression in (1.18) is
g(h)− g(0)

h

2Exercise 1.22.
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and

g′(ξ) = lim
k→0

1

k
[u(p+ t(q− p) + (ξ + k)(qn−1 − pn−1)en−1 + h(qn − pn)en)

−u(p+ t(q− p) + ξ(qn−1 − pn−1)en−1 + h(qn − pn)en)]

=
∂u

∂xn−1

(p+ t(q− p) + ξ(qn−1 − pn−1)en−1 + h(qn − pn)en) (qn−1 − pn−1).

The mean value theorem tells us we can find ξ between 0 and h such that

g(h)− g(0)

h
= g′(ξ).

That is, we can replace the quotient (1.18) with

Qn−1 =
∂u

∂xn−1
(p+ t(q− p) + ξ(qn−1 − pn−1)en−1 + h(qn − pn)en) (qn−1 − pn−1),

and by continuity (because u ∈ C1)

lim
h→0

Qn−1 =
∂u

∂xn−1

(p+ t(q− p)) (qn−1 − pn−1).

In general,

Qj =
1

h

[

u

(

p+ t(q− p) +

n
∑

k=j

h(qk − pk)ek

)

−u
(

p+ t(q− p) +

n
∑

k=j+1

h(qk − pk)ek

)]

=
gj(h)− gj(0)

h

where gj is defined on some open interval containing the closed interval with end-
points3 0 and h by

gj(ξ) = u

(

p+ t(q− p) + ξ(qj − pj)ej +

n
∑

k=j+1

h(qk − pk)ek

)

.

3This somewhat coplicated wording is the result of the fact that I don’t know if h < 0 or h > 0.
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And finally by the mean value theorem

Qj = g′(ξ) =
∂u

∂xj

(

p+ t(q− p) + ξ(qj − pj)ej +

n
∑

k=j+1

h(qk − pk)ek

)

(qj − pj)

for some ξ between 0 and h, so that by continuity

lim
h→0

Qj =
∂u

∂xj
(p+ t(q− p)) (qj − pj).

We conclude

f ′(t) = lim
h→0

f(t+ h)− f(t)

h

= lim
h→0

n
∑

j=1

Qj

=

n
∑

j=1

∂u

∂xj
(p+ t(q− p)) (qj − pj).

This was the essential assertion of the lemma. From this expression, we can see f ′ is
continuous because the partial derivatives of u are continuous. �

Proof of Theorem 2: Recall that we are wanting to show C1(U) ⊂ C0(U), that is
if each of the partial derivatives of a function u : U → R is continuous on the open
set U ⊂ Rn, then the function u itself is continuous (at each point of U).

Letting p ∈ U , we can take an open cube Cδ(p) with

Qδ(p) ⊂ U. (1.19)

This is standard notation for what should be said here, but I realize you may not
know or understand this notation, so let me explain it (at some length). You may
recall the notion of an open set. The set U , the cube Qδ(p), and the ball Br(p) are
all open sets: Around each point in such a set, there is some “room” in the sense that
there is a ball or a cube centered at the point and lying entirely within the open set.
Such a set does not contain “edge” points or what we call mathematically boundary
points. Precisely, a point x is a boundary point of the set A if every open ball
Br(x) contains points in both A and the complement Ac of A. The collection of all
boundary points of A is called the boundary of A and is denoted by ∂A. An open
set contains within itself no boundary points.
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Exercise 1.23 Show that a set U ⊂ Rn is open if and only if

U ∩ (∂U) = φ.

The extreme in the other direction is called a closed set:

Exercise 1.24 Show the following are equivalent for a set A ⊂ Rn:

(i) ∂A ⊂ A.

(ii) Ac is open.

A set A satisfying the conditions of Exercise 1.24 is said to be closed. A closed set A
may contain a point x for which there is a ball with Br(x) ⊂ A, but usually there are
other points in ∂A as well. If ∂A = φ is empty, then the set A is both open and closed.
The set Rn is both open and closed. Any point x in a set A having the property that
there is some ball Br(x) with Br(x) ⊂ A is called an interior point. Remember that
open sets U are characterized by the condition that every point x ∈ U is an interior
point. In general the set of all interior points of a set A is denoted by int(A) (or by
A◦ in some contexts).

I think we are ready for the explanation of the notation in (1.19). Given any set
A ⊂ R

n, there is a unique smallest closed set containing A. That set is called the
closure of A and is denoted by A.

Exercise 1.25 Show the closure of a set A is always given by

A = A ∪ (∂A).

Hint: Show that A ∪ (∂A) is closed and any closed set F with A ⊂ F satisfies
F ⊂ A ∪ (∂A). (This makes A ∪ (∂A) the smallets.)

Show in particular,

∂Qδ(p) = ∪nj=1

{

x =

n
∑

k=1

xkek ∈ R
n : |xj − pj| =

δ

2
and |xk − pk| ≤

δ

2
for all k.

}

,

so that the closure of the cube is the closed cube

Qδ(p) = {x : |xj − pj| ≤ δ/2 for j = 1, 2, . . . , n}.



28 CHAPTER 1. INTRODUCTION

The case we have here where Qδ(p) is a subset of an open set U as in (1.19) is special
because Qδ(p) is bounded, that is to say the entire set Qδ(p) will fit inside some ball
BR(0). A set that is not bounded in this way is called. . . (you guessed it!) unbounded.
Why is this situation special? One good reason (and the main reason of interest right
at the moment) is because of the following important result:

Theorem 4 (extreme value theorem) If f : A → R is a continuous function defined
on a set A ⊂ Rn and the set A is closed and bounded, then there are values m and
M and corresponding points xm ∈ A and xM ∈ A such that

m = f(xm) ≤ f(x) ≤ f(xM) =M for all x ∈ A.

The values m and M are called the extreme values of the function f on A; the value
m is called the minimum, and the value M is called the maximum.

Returning to the proof of Theorem 2, we know the partial derivatives

∂u

∂xj
∈ C0(Qδ(p)) for j = 1, 2, . . . , n.

Since the absolute value of a continuous function is also continuous, we know that for
each j = 1, 2, . . . , n

∣

∣

∣

∣

∂u

∂xj

∣

∣

∣

∣

takes a nonnegative maximum value on Qδ(p). It follows that there is some M > 0
with

n
∑

j=1

∣

∣

∣

∣

∂u

∂xj
((1− t)p+ tq)

∣

∣

∣

∣

≤M (1.20)

for all q ∈ Qδ(p) and t with 0 ≤ t ≤ 1.

Recall that we want to estimate |u(q) − u(p)| and show this is small when q is
close to p. In view of Lemma 1 we can write

|u(q)− u(p)| =
∣

∣

∣

∣

u((1− t)p+ tq)∣
∣

1

t=0

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

0

d

dt
u((1− t)p+ tq) dt

∣

∣

∣

∣

.
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Because
d

dt
u((1− t)p+ tq) =

n
∑

j=1

(qj − pj)
∂u

∂xj
((1− t)p+ tq)

we can estimate as follows:

|u(q)− u(p)| ≤
∫ 1

0

∣

∣

∣

∣

d

dt
u((1− t)p+ tq)

∣

∣

∣

∣

dt

=

∫ 1

0

∣

∣

∣

∣

∣

n
∑

j=1

(qj − pj)
∂u

∂xj
((1− t)p+ tq)

∣

∣

∣

∣

∣

dt

≤
∫ 1

0

n
∑

j=1

|qj − pj|
∣

∣

∣

∣

∂u

∂xj
((1− t)p+ tq)

∣

∣

∣

∣

dt

≤M max
j

|qj − pj |

where M > 0 is the (upper) bound for

n
∑

j=1

∣

∣

∣

∣

∂u

∂xj
((1− t)p+ tq)

∣

∣

∣

∣

obtained from the extreme value theorem. Now, for any tolerance ǫ > 0 we can be
sure |u(q)− u(p)| < ǫ as long as we take q ∈ Qδ(p) and so that

max
j

|qj − pj | <
ǫ

M + 1
.

This means u is continuous. �

We have established (at least) a couple things:

1. Partial differentiability does not imply continuity when n > 1. (Though differ-
entiability is the same as partial differentiability when n = 1, and differentia-
bility does imply continuity when n = 1.)

2. Continuity of the first partial derivatives, i.e., u ∈ C1(U), does imply continuity
for all n.

There is also something interesting in Lemma 1. This result is a special case of one
form of what is known as the multidimensional chain rule. You may remember
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the chain rule from calculus, at least in one dimension, as it applies to compositions:
If a, b, c, d ∈ R with a < b and c < d and f ∈ C1(a, b) with f(x) ∈ (c, d) for all x and
g ∈ C1(c, d), then the composition g ◦ f : (a, b) → R by g ◦ f(x) = g(f(x)) satisfies
g ◦ f ∈ C1(a, b) with

(g ◦ f)′(x) = g′(f(x)) f ′(x).

Roughly speaking, the multidimensional chain rule4 says that if a function u ∈ C1(U)
with U ⊂ Rn so that u = u(x1, x2, . . . , xn) depends on multiple variables, all of which
may depend on other (multiple) variables

xk = fk(ξ1, ξ2, . . . , ξm) for k = 1, 2, . . . , n

(and the composition u ◦ f makes sense where

f = (f1, f2, . . . , fn) : V → R
n,

V is open in Rm and f1, f2, . . . , fm ∈ C1(V ) satisfy f(ξ) ∈ U for all ξ = (ξ1, ξ2, . . . , ξm) ∈
V , then u ◦ f ∈ C1(V ) and each partial derivative is given by the inner product

∂(u ◦ f)
∂ξj

(ξ1, ξ2, . . . , ξm) =
n
∑

k=1

∂u

∂xk
(f(ξ))

∂fk
∂ξj

(ξ).

Lemma 1 is the special case when f : (0, 1) → Rn is an affine function given by
f = f(t) = p+ t(q− p). Notice that in this case

∂fk
∂t

=
dfk
dt

= f ′(t) = qk − pk.

Boas has two interesting sections on this topic in Chapter 4 (sections 5.1 Chain Rule
and 5.7 More Chain Rule). This is also, more or less, the topic of sections 5.11 and
5.12 in Boas, and generally, understanding the chain rule (or how to differentiate
to determine the partial derivatives (or rates of change) of quantities depending on
multiple variables in complicated ways is rather important for the analysis of many
physical systems. she also talks about power series in two variables, but I’ll tell you
soon about power series in any (finite) number of variables—no extra charge.

Let’s finish up with basic partial differentiation (theory).
There is another condition on a function u : U → R which is weaker than C1 but

which also implies the continuity of u. It is also fairly important. This is called (full
or total) differentiability. Here is the definition:

4Or at least one multidimensional chain rule.
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Definition 6 (differentiability for a function of several variables) Given an open set
U ⊂ Rn and u : U → R, we say u is differentiable at p ∈ U if there exists a linear
function L : Rn → R such that

u(x)− u(p)− L(x− p) = ◦(‖x− p‖)

as x → p. The notation on the right here is read “little-o of ‖x− p‖.” It means the
limit of the quotient of u(x)− u(p)− L(x− p) and ‖x− p‖ is zero as x tends to
p, or more properly for any ǫ > 0, there is some δ > 0 such that

0 < ‖x− p‖ < δ implies

∣

∣

∣

∣

u(x)− u(p)− L(x− p)

‖x− p‖

∣

∣

∣

∣

< ǫ.

Exercise 1.26 Show differentiability implies partial differentiability.

The linear function L : Rn → R featured in the definition of differentiability is
called the differential map determined by u at p and is denoted by

dup : Rn → R.

This linear function is determined by a single vector (as all real valued linear func-
tions): Recall that owing to the linearity of L we have for

x =

n
∑

j=1

xjej ∈ R
n

L(x) = L

(

n
∑

j=1

xjej

)

=
∑

j=1

xjL(ej) = 〈x, Du(p)〉

where the vector Du(p) = (dup(e1), dup(e2), . . . , dup(en)) with the real images of the
standard unit basis vectors, i.e., the real numbers dup(e1), dup(e2), . . . , dup(en), is
called the gradient or total derivative of u.

Exercise 1.27 According to Exercise 1.26, a differentiable funcction u : U → R is
partiallly differentiable, meaning that the partial derivatives of u exist. Determine the
gradient vector associated with the differential dup in terms of the partial derivatives.

Theorem 5 Differentiability implies continuity.
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Proof: The proof is not so different from the proof that differentiability implies con-
tinuity for n = 1. Which may be a little surprising since C1 implies differentiability
(see Theorem 6 below) and Theorem 2 was not so easy to prove. On the other
hand, Theorem 6 is not so easy to prove. In any case, let ǫ > 0. If x = p, then
|u(x)− u(p)| = 0 < ǫ. If, on the other hand, ‖x− p‖ > 0, then we can write

|u(x)− u(p)| = ‖x− p‖
∣

∣

∣

∣

u(x)− u(p)

‖x− p‖

∣

∣

∣

∣

= ‖x− p‖
∣

∣

∣

∣

u(x)− u(p)− L(x− p)

‖x− p‖ +
L(x− p)

‖x− p‖

∣

∣

∣

∣

≤ ‖x− p‖
∣

∣

∣

∣

u(x)− u(p)− L(x− p)

‖x− p‖

∣

∣

∣

∣

+ |L(x− p)| .

The first term tends to zero by differentiability. More precisely, there is some δ1 > 0
for which 0 < ‖x− p‖ < δ1 implies

‖x− p‖
∣

∣

∣

∣

u(x)− u(p)− L(x− p)

‖x− p‖

∣

∣

∣

∣

< δ1
ǫ

2
.

Taking, without loss of generality δ1 < 1, we have

‖x− p‖
∣

∣

∣

∣

u(x)− u(p)− L(x− p)

‖x− p‖

∣

∣

∣

∣

<
ǫ

2

for 0 < ‖x− p‖ < δ1.
The second term |L(x − p)| = |dup(x − p)| also tends to zero as x tends to p.

There are various ways to see this. One good fact to know is that every linear linear
function (on a finite dimensional vector space) is continuous. More explicitly, we can
use a famous inequality, which may be thought of as a second inequality that can
be very important for modeling physical systems—like the triangle inequality. This
inequality is called the Cauchy-Schwarz inequality and it says that given two
vectors v and w in Rn the dot product satisfies

|v ·w| = |〈v,w〉| ≤ ‖v‖ ‖w‖
where ‖v‖ and ‖w‖ are the Euclidean norms of v and w. The gradient vector Du(p)
for which Lu(v) = dup(p) = 〈Du(p),v〉, as you should have noted when you did
Exercise 1.27 above, has a pretty simple form in terms of the partial derivatives of u
at p. In particular, Du(p) is a fixed vector independent of x, so that

|L(x− p)| = |dup(x− p)| = |〈Du(p),x− p〉| ≤ ‖Du(p)‖ ‖x− p‖
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by the Cauchy-Schwarz inequality. Thus, we can take

‖x− p‖ < δ2 ≤
ǫ

2(‖Du(p)‖+ 1)

and conclude that for ‖x− p‖ < min{δ1, δ2} there holds

‖u(x)− p‖ < ǫ

2
+
ǫ

2
= ǫ.

Thus, u ∈ C0(U). �

Theorem 6 If u ∈ C1(U), then u is differentiable on U .

As mentioned, this theorem is a little more difficult to prove, but it is not too diffi-
cult using some kind of multidimensional chain rule like Lemma 1 which ultimately
depends on the mean value theorem.

Exercise 1.28 Prove Theorem 6. Hint: Consider the vector containing the partial
derivatives of u ∈ C1(U):

(

∂u

∂x1
(p),

∂u

∂x2
(p), . . . ,

∂u

∂xn
(p)

)

=
n
∑

j=1

∂u

∂xj
(p) ej

which we can still call Du(p), though perhaps it is not quite proper to call this a
gradient vector in all circumstances.5 Define a linear function L : Rn → R by

Lv = Du(p) · v.

Use this function in the definition, and prove the limiting statement using Lemma 1.

Exercise 1.29 Prove a multidimensional mean value theorem: If u ∈ C1(U) and the
segment

Γ = {(1− t)p+ tq : 0 ≤ t ≤ 1}
is a subset of U , then there is some x along the segment Γ for which

u(q)− u(p) = Du(x) · (q− p).

5For example when the partial derivatives exist but the function u is not even continuous.
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We have given a pretty careful discussion of derivatives (partial derivatives, dif-
ferentiability, differential approximation, and so forth) including estimates and toler-
ances. In many instances, engineers use the differential approximation results above
in a kind of informal manner without worrying really about how good the approxi-
mation they are using actually is. One such approximation formula is the following:

u(q) ≈ u(p) + dup(q− p)

which can also take the form(s)

u(q) ≈ u(p) +Du(p) · (q− p)

or
u(q) ≈ u(p) + 〈Du(p),q− p〉.

Notice there is no explicit indication of how good such an approximation may or
may not be. If you can get uniform bounds on higher derivatives, then sometimes
you can get some information about tolerances, but engineers (and even applied
mathematicians) sometimes do not have too much tolerance for that. The important
thing I would like for you to note is that the symbol “≈” here is not an equality.
Even if you know the term dup(p − q) completely, you still don’t know exactly how
much you might be off. You only know something vague, like “If ‖q−p‖ is small (?),
then the approximation should (?) be good.

Editorial note: Generally for the flow of these notes as I’m composing them this
semester, I would like to now proceed to the next section “ordinary differential equa-
tions and partial differential equations.” This is, however, a natural place to discuss
multivariable power series which probably should be done at some point (and was
promised above). I found a discussion of power series in some notes on “differentia-
tion” from spring 2020 (at least that seemed to be the last edit, perhaps they were
even older notes). Reading over that presentation, I don’t think I could have said it
better myself—actually I did say it myself—but I don’t think I will produce substan-
tially better notes. Consequently, I’ve cut the entire section 6 from those notes on
“partial differentiation” and included it below as Appendix 1. I suggest you read it as
a review of the material above paying especially close attention to the treatement of
multi-index notation (which is not above) and the discussion of multivariable power
series. I will lecture on both topics in class (using Appendix 1 below as reference).
This material will also be addressed in Assignment 3 as it was in Assignment 2 in the
spring semesters of 2020 and 2021.

Before I proceed to Section 1.2, I offer something of a suggestive aside:
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Affirmative action for the absolute value function

You may recall that g : R → [0,∞) by g(x) = |x| was considered above and was put
forward as an example of a function which is not differentiable. There is, however,
a good theory of derivatives for functions like this. It is called the theory of weak
derivatives. Leaving out some details, a function v : R → R is the weak derivative
of a function u : R → R if

−
∫

uφ′ =

∫

vφ

where φ is a function which is differentiable in the usual (classical) sense involving
difference quotients and satisfies φ ∈ C1(R) but for which there is some R > 0 for
which φ(x) ≡ 0 for |x| ≥ R. Those integrals probably look a little strange to you.
Once we know the value of R we can, at least in some circumstances, write them in
the more familiar form

−
∫ R

−R
u(x)φ′(x) dx =

∫ R

−R
v(x)φ(x) dx. (1.21)

Exercise 1.30 Guess what is the weak derivative of the absolute value function and
check that it satisfies the condition (1.21) defining weak derivatives.

1.2 Ordinary differential equations and PDE

There is supposed to be a review of ordinary differential equations in MATH 6701
(Math Methods of Applied Science I and a prerequisite for this course). Let’s start
with a review of that review—which may not quite be a review at all because perhaps
you have not considered ODE from the point(s) of view I will now adopt/present.

The main object of study in ODE is the first order system in the form

x′ = F(x, t) (1.22)

and in particular the initial value problem
{

x′ = F(x, t), a < t < b
x(t0) = x0

(1.23)

for some t0 ∈ (a, b). Two main themes should be kept in mind:

1. Any ordinary differential equation (in particular any ODE of any order) is es-
sentially equivalent to a first order system of the form (1.22).
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2. There is a sweeping theory of existence and uniqueness for the initial value
problem (IVP) which essentially says that there exists a unique solution for
the problem (1.23) in some open interval containing t0 under extremely mild
structual assumptions on the equation and that existence holds under even
milder assumptions.

Let us briefly review some details of these two points. One might start by saying an
ODE of order n is an equation of the form

f (n) = G(f (n−1), f (n−2), . . . , f ′, f, t) (1.24)

where

f (j) =
djf

dtj
(1.25)

represents the j-th order derivative of a function f : (a, b) → R on some interval
(a, b) of the real line. One can also use the Lagrange notation6 f ′, f ′′, f ′′′ for the first
few derivatives or, alternatively, Newton’s notation ḟ , f̈ ,

...
f which is often used to

suggest the use of a (model) time variable these days. Though it was not mentioned
in section 1.1 above, it should almost go without saying that a function f : (a, b) → R

which is differentiable on (a, b) determines a function f ′ : (a, b) → R, that function f ′

may have a derivative itself f ′′ = f (2) and this process may be repeated as often as
regularity allows. There is much more to say about this, and I should probably say
at least some of it at some point, but for now let me simply mention the (essentially
obvious) observation that a similar situation persists with regard to partial derivatives
of functions of several variables, and we have already encountered the use of such
repeated differentiation in the context of power series expansions.

Returning to the ODE (1.24), the function G is assumed to be a function of n
variables usually defined on some open subset of Rn but, in practice and to avoid
complications, very often is assumed to be defined on all of Rn. One might imagine
the following slightly more general form for an n-th order ODE:

F (f (n), f (n−1), f (n−2), . . . , f ′, f, t) = 0 (1.26)

where F : Rn+1 → R. This leaves open the possibility, however, that F depends on
its first argument in some “singular” manner, for example not at all, which would

6This notation was pardoxically first introduced by Euler, but traditionally “Euler notation” for
derivatives (which paradoxically was introduced by Arbogast, was probably never used by Euler, and
will be used in this course and these notes for something else) is something different yet: Djf . What
can you do? At least Leibniz’ notation using a quotient of differentials as in (1.25) was introduced
and used by Leibniz, and Newton’s notation was introduced and used by Newton.
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mean you really somehow do not have a proper n-th order ODE but maybe an ODE
of some lower order. The usual nonsingularity condition for such an equation is

∂F

∂pn
6= 0 (1.27)

where we think of F as a function of the n+ 2 variables pn, pn−1, . . . , p1, p0, t so

F = F (pn, pn−1, . . . , p1, p0, t).

Exercise 1.31 Given a nonsingular n-th order ODE in the form (1.24) above, write
the equation in the form (1.26) and compute

∂F

∂pn
.

The set on which the nonsingularity condition (1.27) should hold is, like the domain
of F , largely dependent on circumstances, but most safely assumed to be holding
most everywhere, e.g., on Rn+2. When (1.27) does hold, there is a technical theorem
called the implicit function theorem which asserts that the ODE (1.26) really does
depend on f (n) and, not only that but, (1.26) can be “solved” for f (n) and written in
the form (1.24).

This is not at all to say the nonsingularity condition (1.27) always holds. A good
example where this condition most definitively does not hold is for Bessel’s ODE

x2y′′ + xy′ + (x2 − α2)y = 0. (1.28)

Bessel’s equation (1.28) is manifestly singular at the value x = 0 of the independent
variable. It is an important ODE, the singularity is one that should be studied
carefully and understood, and this is an ODE we should even talk about in this
course before the semester is over. In the big scheme of things with regard to the
subject of ODEs however, we can think of such singular points as details which can
be (and will be for the moment) swept under the rug.

Theorem 7 The nonsingular n-th order ODE (1.24) is equivalent to a system of n
first order equations as introduced in (1.22) in the sense that there is an n-th order
system x′ = F(x, t) determined by (1.24) and the solutions x ∈ C1 of this system are
in one to one correspondence with the solutions f ∈ Cn of (1.24).

On the one hand, perhaps we are a little ahead of ourselves. The question should be
asked: What is a solution of an ODE? Here are some answers:
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(i) A solution of x′ = F(x, t) is a differentiable function u : (a, b) → Rn defined on
some open interval (a, b) of the real line for which the equation holds, i.e., when
you substitute u(t) for x on the right in (1.22) you get u′(t) for every t ∈ (a, b).

(ii) A solution of f (n) = G(f (n−1), f (n−2), . . . , f ′, t) is an n times differentiable func-
tion u : (a, b) → R defined on some open interval (a, b) for which the equation
holds, i.e., u(n)(t) = G(u(n−1)(t), . . . , u′(t), u(t), t) for every t ∈ (a, b).

This question and answer are almost not worth mentioning, but it is probably worth
emphasizing that whenever one considers a differential equation, and an ODE in
particular, one is implicitly asking a question, and it is a question you should
(always) keep in mind. That question is:

Can you find a function satisfying this equation? If there is more than
one, can you find all of them?

There are also some new kinds of players involved in the system of ODEs (1.22) and
(i) which are worth it for me to mention and for you to contemplate. First of all the
solution itself x : (a, b) → Rn is a vector valued function of one real variable
which is a basic object of study in ODEs, but has not been mentioned too much in
this course so far. Such a function consists of n real valued coordinate functions so
that x = (x1, x2, . . . , xn) where for each j = 1, 2, . . . , n, the function xj : (a, b) → R

is differentiable. If we want to make things simple, we can imagine xj ∈ C1(a, b) for
j = 1, 2, . . . , n. Geometrically, one does not usually talk about the “graph” of such a
function,7 but the image

{(x1(t), x2(t), . . . , xn(t)) ∈ R
n : t ∈ (a, b)}

is usually the geometric object of interest. As t moves long the domain interval (a, b),
the point x(t) traces out some curve in Rn. The derivative

x′ = (x′1, x
′
2, . . . , x

′
n),

which is a vector consisting of the derivatives of the coodinate functions, may be
visualized as a tangent or velocity vector along the image curve at x(t).

7If you happen to be interested, the graph of a vector valued function of one variable x : (a, b) →
Rn is {(t, x1(t), x2(t), . . . , xn(t)) ∈ Rn+1 : t ∈ (a, b)}. When n = 2, this set can be visualized in R3.
You can decide if the graph in this case gives more information than the image; take for example
x(t) = (cos t, sin t).
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The other entity worth mentioning is the function F : Rn+1 → Rn which is a
vector valued function of a vector variable and determines the structure of the
ODE. For now simply note that F = (F1, F2, . . . , Fn) where each function Fj is a
function of n + 1 variables pn−1, pn−2, . . . , p0, t.

Here are two theorems about ODEs to know/recall:

Theorem 8 (existence and uniqueness) If F ∈ C1(N → Rn) where N is an open
subset of Rn+1, by which we mean Fj ∈ C1(N ) for j = 1, 2, . . . , n, and

(p1, p2, . . . , pn, t0) ∈ N ,

then there exists some δ > 0 such that the initial value problem
{

x′ = F(x, t), |t− t0| < δ
x(t0) = p

has a unique solution. The structural assumption on F in this theorem can be weak-
ened8 to the assumption that F is Lipschitz continuous on N , that is, there is
some constant λ > 0 such that

‖F(x, t)− F(ξ, τ)‖ ≤ λ‖(x, t)− (ξ, τ)‖ for (x, t), (ξ, τ) ∈ N .

Existence, but not necessarily uniqueness, will follow if it is only assumed that F ∈
C0(N → Rn).

Here is the example you should know concerning the relation between the size of N
and the size of δ.

Exercise 1.32 Explain how Theorem 8 applies to the ODE y′ = y2. Choose N as
large as possible. Solve the ODE to determine δ.

Here is the/an example you should know concerning uniqueness.

Exercise 1.33 Explain how Theorem 8 applies to the ODE y′ =
√

|y|. Solve the
ODE to show how and where uniqueness fails.

There is a second theorem from ODEs everyone should know. It applies to a class
of ODEs with a special structure. A system of first order ODEs is said to be linear if
there is an n× n matrix A = (aij) with each entry aij ∈ C0(a, b) and a vector valued
function b ∈ C0((a, b) → Rn) such that the system can be written as

x′ = Ax+ b = A(t)x+ b(t).
8Actually, only continuity is required in t and Lipschitz continuity in x; look up the Picard-

Lindelöf theorem for details. In any case, the C1(N ) version is adequate in many instances.
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Theorem 9 (existence and uniqueness for linear ODEs) Given t0 ∈ (a, b) and any
p ∈ Rn, the initial value problem

{

x′ = Ax+ b, t ∈ (a, b)
x(t0) = p

has a unique solution on all of (a, b).

The big difference here is that you get, so called, “long time” existence rather than
unspecified local existence for |t − t0| < δ. For example, if the domain interval is
(a, b) = R, then you get existence for all t ∈ R.

The other big thing

To summarize our bi-review of ODE:

1. The subject of “ordinary differential equations” is the study of first order
systems of ordinary differential equations (though there are a lot of other topics
in the subject, e.g., linear second order equations and Laplace transforms, that
may obscure this assertion.

2. The existence and uniqueness theorems (a local one for nonlinear ODE and a
global one for linear ODE) should be kept in mind.

And there is one more thing you should realize when thinking about ODE which I
did not mention:

For most ODEs, you can find out most of what you want to know by
using the ODE (adaptive fourth and fifth order Runge-Kutta) numerical
“solvers” in standard mathematical software, e.g., Mathematica, Maple,
Matlab, Octave, etc..

In this regard, I note the following:

(i) You often need to understand the existence and uniqueness theorems both to
interpret the output of a numerical solver as well as to configure/use them
correctly and/or to your advantage.

(ii) Probably the most useful/powerful thing you can pick up in a course on ODEs
is familiarity with and competence in using one of these solvers, e.g., NDSolve
in Mathematica or ODE45 in Matlab.

(iii) You can write your own Runge-Kutta solver as well, and this is probably a good
exercise, but it will be hard to beat the “canned” solvers.
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An exercise in geometric ODEs

Here is an exercise that involves most of the ODE topics mentioned above and con-
stitutes a pretty good review of most of what you should have learned in ODEs.

If a curve in the plane is given by the graph of a function f ∈ C2(a, b) where
a, b ∈ R with a < b as usual, then the signed curvature of the graph of f is given
by

k =
f ′′

(1 + f ′2)3/2
.

Exercise 1.34 Consider the functions fj ∈ C2(−r, r) for j = 1, 2 where r > 0 and

fj(x) = (−1)j
√
r2 − x2.

(a) Plot/draw the graph of fj for j = 1, 2.

(b) Compute the signed curvature of the graph of fj for j = 1, 2.

Exercise 1.35 Let a, b ∈ R with a < b and consider a function f ∈ C2(a, b). Given
a point x0 ∈ (a, b),

(a) Find the formula for the tangent line to G = {(x, f(x)) : x ∈ (a, b)} at the point
(x0, f(x0)) and plot/draw a picture illustrating this tangent line.

(b) Assuming f ′(x0) = 0 and f ′′(x0) 6= 0, find the equation of the osculating circle
to the graph of f at (x0, f(x0)). This circle should pass through (x0, f(x0)) and
be given locally near this point by the graph of a function g satisfying

(i) g ∈ C2(x0 − ǫ, x0 + ǫ) for some ǫ > 0,

(ii) g′(x0) = 0, and

(iii) g′′(x0) = f ′′(x0).

(c) What is the maximum possible value of the tolerance ǫ in part (b)(i) above?

Exercise 1.36 What is the relation between the radius of the osculating circle you
found in Exercise 1.35 above and the signed curvature of the graph of f at (x0, f(x0)?

Now I’m going to focus this discussion on a certain specific function f : (−a, a) →
R on a symmetric interval having graph with signed curvature equal to the signed
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Figure 1.2: The graph of a function f whose signed curvature is equal to the signed
arclength.

arclength along the graph. The graph of the function I have in mind is illustrated in
Figure 1.2.

The signed arclength along the graph of f is defined by s : (−a, a) → R by

s(x) =

∫ x

0

√

1 + [f ′(ξ)]2 dξ. (1.29)

This function is monotone increasing with

s′(x) =
√

1 + [f ′(x)]2 ≥ 1

and therefore is invertible with inverse we can denote by τ : (−L, L) → R where

L = lim
x→a

s(x) ∈ [0,∞].

In fact, for the graph we will construct L <∞. Notice that there holds

σ =

∫ τ(σ)

0

√

1 + [f ′(ξ)]2 dξ,

so
dτ

dσ
=

1
√

1 + [f ′(ξ)]2
.
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Consequently, γ : (−L, L) → R2 by γ(σ) = (τ(σ), f(τ(σ))) is a paremeterization of
the graph of f by arclength. The speed of this parameterization is a unit vector,
namely,

dγ

dσ
=

(1, f ′(τ))
√

1 + [f ′(τ)]2
.

Most curves can be parameterized by arclength, though we have only carried out the
details for a particular curve given as the graph of a function. It is also customary
to use the symbol s both for the arclength function defined in (1.29) and for the
arclength parameter, so that one writes

s =

∫ τ

0

√

1 + [f ′(ξ)]2 dξ and
dγ

ds
=

(1, f ′)
√

1 + [f ′]2

where it is understood that the argument of f ′ in the latter formula is τ = τ(s) = s−1.
Furthermore, it is customary to denote derivatives with respect to arclength s, that
is with respect to an arclength parameter, using Newton’s notation for derivatives:

γ̇ =
(1, f ′)

√

1 + [f ′]2
.

Definition 7 (curvature vector) Given a curve parameterized by arclength γ = γ(s) :
(s0 − ℓ, s0 + ℓ) → Rn for some ℓ > 0, meaning

‖γ̇‖ = 1,

the curvature vector of Γ = {γ(s) : s0 − ℓ < s < s0 + ℓ} at the point γ(s) ∈ Γ is
defined to be

~k = γ̈(s).

The norm of the curvature vector ‖~k‖ is called the (unsigned) curvature.

Exercise 1.37 Show the curvature vector is normal to the unit tangent vector γ̇.

Definition 8 (signed curvature of a planar curve) Given a planar curve Γ parame-
terized by γ with respect to an arclength parameter s on an interval (s0−ℓ, s0+ℓ), the
signed curvature of Γ with respect to the parameterization (direction) γ is defined
to be

γ̈ · γ̇⊥

where γ̇⊥ = (−γ̇2, γ̇1) when γ̇ = (γ̇1, γ̇2).
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Exercise 1.38 Show the definition of signed curvature we have given for a general
plane curve agrees with the signed curvature we have defined for the graph of f above
when the (forward) parameterization introduced above is used.

Exercise 1.39 Show that in general for a plane curve one has

‖~k‖ = |k|.

That is, the unsigned curvature is the absolute value of the signed curvature.

If one thinks carefully about the assertion of Exercise 1.38, according to which

γ̈ · γ̇⊥ =
f ′′

(1 + f ′2)3/2

where γ is the paraemterization by arclength of the parameterized graph α(x) =
(x, f(x)) for −a < x < a, there is no reason to restrict attention to a graph. That is,
it is very natural to consider the initial value problem

{

γ̈ · γ̇⊥ = s, s ∈ R

γ(0) = (0, 0) γ̇(0) = (1, 0)
(1.30)

for a curve parameterized by arclength. In this situation, one can do something very
clever.

Exercise 1.40 What happens if you attempt to write down the ordinary differential
equation in (1.30) as an equivalent system of first order ordinary differential equa-
tions? Hint: Writing γ̈ = (γ̈1, γ̈2), you should be able to write down a regular system
for −L1 < s < L1 where L = L1 is the positive arclength

L = lim
xրa

s(x)

discussed above. For |s| ≥ L1, this system (you have written down) is singular, but
(1.30) as a whole is not singular.

The unpleasantness encountered in Exercise 1.40 may be avoided through the in-
troduction of a certain “geometric” parameter having nice compatibility with the
arclength parameter. This new parameter is inclination angle. Let Γ denote a
curve parameterized by γ : I → R2 with

γ ∈ C2(I → R
2) (1.31)
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with respect to an arclength parameter where I is some (perhaps open) interval in
R and (1.31) means the coordinate functions in γ = (γ1, γ2) satisfy γj ∈ C2(I) for
j = 1, 2. Recall the assumption that we have an arclength parameterization means
γ̇ = γ̇(s) is a unit (length) vector for all s ∈ I. Given an initial inclination γ̇(s0)
for some s0 ∈ I, by which we mean an angle θ0 ∈ R for which

γ̇(s0) = θ0,

i.e.,
cos θ0 = γ̇1(s0) and sin θ0 = γ̇2(s0),

there exists a unique inclination angle ψ ∈ C1(I) satisfying







cosψ = γ̇1(s), s ∈ I
sinψ = γ̇2(s), s ∈ I
ψ(s0) = θ0

(1.32)

and the inital value problem







sinψ ψ̇ = −γ̈1(s), s ∈ I

cosψ ψ̇ = γ̈2(s), s ∈ I
ψ(s0) = θ0.

(1.33)

I have used the existence of an inclination angle for a parameterized curve as
asserted above in my research many times. It occurs to me now that I do not know
a reference for this “fact.” It might be expected that (1.33) might be used as a kind
of system of ordinary differential equations to determine ψ. It is, in fact, a system of
ordinary differential equations for ψ, and what we are asserting is that this system
has a unique solution. This approach is problematic for a couple reasons. Both
differential equations in the system are potentially singular, though it will be noted
that they cannot both be singular at the same time. Beyond that, taking one of the
equations as locally non-singular, say sin θ0 6= 0, that equation can be solved for ψ
locally. After that, it is not immediately obvious that the other (potentially singular)
equation will be satisfied.

Everything asserted above concerning the existence of an inclination angle does
turn out to be true. I’ll try to write up an explanation for why that is the case and
make it available later. For now, let us assume that is the case. Most of the time
when I use inclination angle it is, to a certain extent, in the “reverse direction” with
regard to the differential equations, which is what I wanted to show you (and use as
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a nice review of ODEs). Specifically, if we believe a certain curve should exist and we
believe that curve should have a well-defined inclination angle, then we can attempt
to construct the curve by starting with the ordinary differential equations

{

γ̇1 = cosψ
γ̇2 = sinψ

for the coordinate functions γ = (γ1, γ2) assumed to be parameterized by arclength.
It (usually or at least often) only remains to find a differential equation satisfied by
the inclination angle function ψ = ψ(s) given as a function of arclength. This is often
very convenient, as the derivative ψ̇ has an extremely useful interpretation as the
signed curvature of the curve.

Let us begin by noting that the signed curvature of the graph of f may be expressed
as

k =
d

dx

(

f ′
√

1 + f ′2

)

=
d

dx
sin θ = cos θ

dθ

dx
.

On the other hand, we can note that

cos θ =
1

√

1 + f ′2
and

dθ

dx
= θ̇

ds

dx
= θ̇
√

1 + f ′2.

In this way, we see the signed curvature satisfes

k = θ̇.

This final expression is not limited by the restriction tha the curve is the graph of a
function f , and it fact we may assume (up to some questions about orientation) that

k = θ̇ = γ̇⊥γ̈.

Thus, we see that in practical terms the initial value problem (1.30) may be expressed
as







γ̇1 = cos θ, γ1(0) = 0
γ̇2 = sin θ, γ2(0) = 0

θ̇ = s, θ(0) = 0.

The solution of this system is given explicitly in terms of indefinite integrals with

γ(s) =

(
∫ s

0

cos

(

σ2

2

)

dσ,

∫ s

0

sin

(

σ2

2

)

dσ

)
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and these coordinate functions may also be expressed in terms of standard special
functions called Fresnel integrals. Practically speaking, however, it is probably
preferable to simply put the system directly into a numerical ODE solver/approximator.
The resulting parametric curve is plotted in Figure 1.3.

Figure 1.3: A curve whose signed curvature is equal to the signed arclength starting
from the origin/horizontal point.

Notice that this curve conincides with the graph of f illustrated in Figure 1.2
on some interval [−a, a]. The actual value of a is difficult to discern from the non-
parametric system because a corresonds to the singular value where f ′(a) = +∞. This
singularity is not present in the parametric representation and corresponds simply to
θ = π/2. More precisely, we have a = γ1(s1) where s1 is the first positive arclength
for which θ(s1) = π/2. Plotting θ = θ(s) as on the right in Figure 1.4, we see

Figure 1.4: A curve whose signed curvature is equal to the signed arclength starting
from the origin/horizontal point and this curves first vertical point.

there is a well-defined intersection which is easily approximated numerically using
Newton’s method or with, for example, a more sophisticated root find algorithm
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like Mathematica’s FindRoot. Using such software, we find the s1
.
= 1.77245 and

a = γ1(s1)
.
= 1.38232.

Partial Differential Equations

Assuming you know a thing or two about ordinary differential equations, there is no
reason to avoid consideration of partial differential equations (PDE). The first thing
to know about PDE is that there is no general theory of existence and uniqueness.
There is no theorem like Theorem 8.

Actually, there is a PDE theorem called the Cauchy-Kowalevski theorem that
looks supeficially something like Theorem 8, and it can be a pretty useful theorem
sometimes. At least as a mathematician studying partial differential equations, I’ve
used the Cauchy-Kowalevski theorem a time or two, but I do not know of any really
common application of the result in either applied math or engineering. Furthermore,
the theorem is really not very much like Theorem 8 in that it requires everything
involved with the structure of the PDE to be real analytic. And if you give up
the real analytic structure, then you can find9 not so bad looking PDE for which
there is no solution anywhere to be found. The upshot of this somewhat surprising
situation is that it makes a lot more sense to just start with some very special classes
of PDE and see what one can say about them.

In this course, we will mostly stick to four special classes of PDE, and it might
be even more accurate to say we will consider one special class and three additional
specifc PDE. The PDE we will consider are

1. First order linear (and maybe quasilinear) PDE.

2. Laplace’s PDE.

3. The heat equation (or Fourier’s PDE).

4. The wave equation.

In defence of the three specific PDE, this trio is, on the one hand, known as the three
partial differential equations of classical physics, which is a pretty grandiose
title. On the other hand, the properties of these three are representative of three

9Actually, a mathematician named Hans Lewy found these examples of PDE in 1957. They were
not so easy to find, and many other mathematicians were really surprised that they were out there,
i.e., that this was the situation with existence (or more properly non-existence) of solutions for PDE.
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special classes of linear second order PDE, namely the elliptic PDE (of which Laplace’s
equation is an example), parabolic PDE (of which the heat equation is an example),
and (you guessed it) hyperbolic PDE of which the wave equation is an example.

Let’s start. Here is a first order linear PDE:

x
∂u

∂x
+ y

∂u

∂y
= 0. (1.34)

It is linear because the (classical partial differential) operator L : C1(R) → C0(R) by

Lu = x
∂u

∂x
+ y

∂u

∂y

is linear. These first order linear PDE (it has been discovered) are intimately related
to special curves called characteristic curves. Here’s the idea: Imagine you have
a parameterized curve γ : (a, b) → R2 given by γ(t) = (ξ(t), η(t)) for some fuctions
ξ, η ∈ C1(a, b). Then if u ∈ C1(U) for some open set U containing the image {γ(t) :
t ∈ (a, b)}, then it makes sense to consider (and differentiate) the composition

u ◦ γ(t) = u(ξ(t), η(t)).

This leads to
d

dt
u(ξ(t), η(t)) =

∂u

∂x
ξ′ +

∂u

∂y
η′ (1.35)

by the chain rule. Comparing (1.35) to our PDE (1.34) strongly suggests the consid-
eration of the following characteristic equations:

ξ′ = ξ and η′ = η.

This is, of course, a system of two first order ODEs. They happen to be completely
decoupled10 so we can consider them independently as two single ODEs. In fact, we
know the general solutions of these ODEs:

ξ(t) = c1e
t and η(t) = c2e

t

where c1 and c2 are some real numbers. This seems to be going pretty well, but
what does it tell us about a solution for the original PDE (1.34)? The idea is the
following: Given a points (x0, y0), (x, y) ∈ U and a particular initial value u(x0, y0) if
we can find one of these characteristic curves γ connecting (x0, y0) and (x, y) with

10As you might guess, this decoupling doesn’t always happen.
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γ(t0) = (x0, y0) and γ(t) = (x, y), then we can be sure u(x, y) = u(x0, y0) at all points
(x, y) = γ(t) along the characteristic curve. The claim is that the characteristic curve
must “transport” the value u(x0, y0) to all the points along the curve.

More precisely, if u ∈ C1(U) is a solution of (1.34) on U and γ(t) ∈ U for
t0 ≤ t ≤ T , then

d

dt
u ◦ γ(t) = ξ

∂u

∂x
(ξ, η) + η

∂u

∂y
(ξ, η) = 0.

In particular, u ◦ γ(t) is constant for t0 ≤ t ≤ T , so if (x, y) = γ(T ) = (ξ(T ), η(T )),
then

u(x, y) = u(x0, y0).

The questions then become:

1. Where do we get the starting points (x0, y0) ∈ U? What is the nature of the
initial values?

2. Which points in U can be “reached,” i.e., connected to initial points, by a
characteristic curve (in U)?

In two dimensions, the answer to the first question is what is called a non-
characteristic curve. In higher dimensions the non-characteristic manifold will
typically also be higher dimensional, e.g., a non-characteristic surface when n = 3.
Let’s go ahead and deal with n = 2. Remember (or note) that for the characteristic
curve of the first order quasilinear PDE

a1
∂u

∂x1
+ a2

∂u

∂x2
= f

we wanted γ = (ξ, η) to satisfy ξ′ = a1 and η′ = a2. What we want for a non-
characteristic curve is that this doesn’t happen, and nothing remotely like this hap-
pens. Precisely, a curve ν : (α, β) → U is non-characteristic for the first order
quasilinear PDE

a1
∂u

∂x1
+ a2

∂u

∂x2
= f

if
(α′, β ′) · (−a2, a1) = a1β

′ − a2α
′ 6= 0. (1.36)

Geometrically, this means the characteristic curve should be transverse, i.e., not
tangent, to the non-characteristic curve. Let’s illustrate this point with a specific ex-
ample. For the PDE (1.34) above, take U to be the punctures plane U = R2\{(0, 0)}
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and consider ν(t) = (cos t, sin t) parameterizing the unit circle. Recall that the
field (a1, a2) = (x, y) from the PDE. Along the image of ν, this field is (a1, a2) =
(cos t, sin t). Therefore,

ν ′ · (a1(ν), a2(ν))⊥ = (− sin t, cos t) · (− sin t, cos t) = 1 6= 0.

So our chosen initial curve ν(t) = (cos t, sin t) is non-characteristic. You will often
have the non-characteristic initial curve chosen for you—or be stuck with a charac-
teristic initial curve (which can be a problem). With practice, however, you should
get a feel for good initial non-characteristic manifolds for a given PDE.

Now, let’s take a point (x, y) ∈ R2\{(0, 0)}, and see if we can address the second
question above, at least for this particular example. We imagine a point (x0, y0) =
(cos t0, sin t0) along the non-characteristic circle, and we look for a characteristic γ =
(ξ, η) starting at (x0, y0). This means

γ(t) = (x0e
t, y0e

t).

Can we choose x0, y0, and t so that γ(t) = (x, y)? Sure we can. Taking x0 =
x/
√

x2 + y2 and y0 = y/
√

x2 + y2 we see that when t = ln
√

x2 + y2 γ(t) = (x, y).
Thus, if we take any function u0 : S1 → R where S1 = {(x, y) : x2 + y2 = 1} is the
unit circle and u0 ∈ C1(S1) (whatever that means), then

u(x, y) = u0

(

x
√

x2 + y2
,

y
√

x2 + y2

)

should be a/the solution of our PDE. One way to interpret the regularity condition
u0 ∈ C1(S1) is to say there exists an open subset V of R2 and a function v ∈ C1(V )
so that S1 ⊂ V and the restriction

v∣
∣

S1

satisfies v∣
∣

S1

= u0.

In this case, we can write the proposed solution as

u(x, y) = v

(

x
√

x2 + y2
,

y
√

x2 + y2

)

.

Then we can compute.

∂u

∂x
=
∂v

∂x

(

1
√

x2 + y2
− x2

(x2 + y2)3/2

)

+
∂v

∂y

(

− xy

(x2 + y2)3/2

)

=
1

(x2 + y2)3/2

(

y2
∂v

∂x
− xy

∂v

∂y

)
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and

∂u

∂y
=
∂v

∂x

(

− xy

(x2 + y2)3/2

)

+
∂v

∂y

(

1
√

x2 + y2
− y2

(x2 + y2)3/2

)

=
1

(x2 + y2)3/2

(

x2
∂v

∂y
− xy

∂v

∂x

)

.

This means

x
∂u

∂x
+ y

∂u

∂y
= 0.

And this means we have solved our first PDE.
Let’s think a little bit about what happened here. For one thing, you probably

should remember that when you solve ODEs (in general), you expect to get one or
more “arbitrary” constants. These are the constants you usually try to choose to fit
some initial condition. Maybe you didn’t think about it like this, but what this means
is that the solution set of an ODE, though it may include infinitely many different
functions, e.g, x′′ = −x has solutions x(t) = c1 cos t + c2 sin t for arbitrary c1 and
c2, but this solution set is essentially (somehow) finite dimensional or at least it is
parameterizee by a finite dimensional set {(c1, c2) : c1, c2 ∈ R} = R2.

In contrast, for the PDE we can choose an arbitrary function u0 ∈ C1(S1), and
C1(S1), the collection of all contunuously differentiable functions on the circle, no
matter how you cut it, is an infinite dimensional space. What this indicates is that
(at least sometimes) the solution spaces of PDEs are much bigger than the solution
spaces of ODEs. Remember, however, that I mentioned some PDE have no solutions
whatsoever, so this observation, if adopted as intuition, should be taken with a grain
of salt.

At any rate, there are new and interesting things to consider here. Among them
is the set C1(S1). Continuity, i.e., the set of function C0(S1) wouldn’t be so bad.
You can define the set of real valued continuous functions on any set with a notion of
distance (or more generally on any set with a notion of open sets). Since these topics
will probably be of more direct interest soon, I will postpone that discussion until
later. For now, let me point out that there is a natural identifiction of C1(S1) with a
certain subspace of C1(R), namely the subspace of 2π periodic functions traditionally
denoted11 by

C1(T) = {f ∈ C1(R) : f(x+ 2π) = f(x) for all x ∈ R}.
11Generally, T is just another name for the circle S1, but it is used especially in the context of

Fourier series where one focuses on functions defined on S1 and specifically on the correspondence
with 2π periodic functions on R or [0, 2π). More generally, Tk for k > 1 is the Cartesian product of
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Exercise 1.41 Given a real valued function f : S1 → R, define a function g : R → R

by g(θ) = f(cos θ, sin θ). Show that given a function f for which there exists an open
set N ⊂ R2 with S1 ⊂ N and an extension F ∈ C1(N ) with

F∣
∣

S1

= f,

the function g given by the correspondence above satisfies g ∈ C1(T). Hint: Use F
to compute derivatives of g and show they are continuous.

Exercise 1.42 Given g ∈ C1(T), show the following:

(a) There exists a unique function f : S1 → R given by

f(x, y) = g(θ)

where

cos θ = x and sin θ = y.

(b) There exists an open set N ⊂ R2 and a function F ∈ C1(N ) such that

F∣
∣

S1

= f.

(c) Show the function F given/found in part (b) above is not unique.

Exercise 1.43 Find a natural non-characteristic curve on which to consider an initial
function for the PDE

y
∂u

∂x
= x

∂u

∂y
,

and solve the PDE.

S1 with itself k times. This is called the k-torus and is the natural setting for the consideration of
Fourier series in several variables, which is in a certain sense analogous to our discussion of power
series in several veriables. For k ≥ 1 the set Sk denotes the boundary of the unit ball in Rk+1 or the
k-sphere. When k = 1 the spaces S1 and T = T1 coincide.
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1.3 Wave equation

First order linear PDE are most closely related to the (one dimensional) wave equation

∂2u

∂t2
=
∂2u

∂x2

for the simple reason that the wave operator or d’Alembertian factors as two linear
first order partial differential operators.

When we talk about a one-dimensional wave equation we are referring to
the spatial dimension. Of course, if we only have one dimension altogether for
(the domain of a solution of) a differential equation, then that should be an ordinary
differential equation. It is customary for equations like the wave equation and the heat
equation to designate one particular variable t as the time variable. Such equations
are called evolution equations and, given a solution u = u(x, t) of such an equation,
we can think of the function f given by

f(x) = u(x, t0)

for a fixed time t = t0 as a particular function (in some function space) which changes
in time as a function of t. The domain Ω of such a “snap-shot” function f : Ω → R is
called the spatial domain. The variable x ∈ Ω in this context is called the spatial
variable and might be a vector variable, i.e., x = (x1, x2, . . . , xn) might itself actually
represent a dependence on several variables.

The simplest possibility for an evolution equation might be

∂u

∂t
= ft = Φ[u]

where Φ is a partial differential operator only depending on partial derivatives with
respect to the spatial variables. The heat equation would fall into this categor, and
perhaps this is why the heat equation is usually discussed before the wave equation,
cf. Chapter 13 of Boas. But we’re aiming to get a (preliminary, small) taste of the
wave equation first. Before we really get started with that, let me introduce a little
more general terminology and notation. You know the notation for the gradient

Du =

(

∂u

∂x1
,
∂u

∂x2
, . . . ,

∂u

∂xn

)

(1.37)

of a function of several variables u : U → R where U is an open subset of Rn. We
use the same notation in the context of evolution equations (PDE) with the small
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difference that the function u : Ω × [0, T ) (and its partial derivatives as well) are
assumed to also depend on the time variable t, usually found in some time interval
[0, T ) ⊂ R as I’ve indicated. So then technically, according to our previous discussion
of the gradient, we should really have

Du =

(

∂u

∂x1
,
∂u

∂x2
, . . . ,

∂u

∂xn
,
∂u

∂t

)

. (1.38)

We do not do this. When we write Du with u = u(x, t) a solution of a PDE,
specifically an evolution equation, we use the notation suggested in (1.37). If we want
to emphasize this usage, we refer to the gradient in (1.37) as the spatial gradient,
and sometimes we might write something like

Dxu =

(

∂u

∂x1
,
∂u

∂x2
, . . . ,

∂u

∂xn

)

for the spatial gradient of u = u(x, t), but using such notation for the spatial gradient
is a bit unusual. On the other hand, if we really do want to refer to the full gradient
with respect to space and time given in (1.38), then we will definitely denote it by
Dx,tu. This also doesn’t happen very often, but it does happen.

In more than one space dimension, the wave equation looks like

∂2u

∂t2
=
∂2u

∂x21
+
∂2u

∂x22
+ · · ·+ ∂2u

∂x2n
. (1.39)

The operator on the right has natural domain C2(Ω × (0, T )) where Ω is an open
subset of Rn and is denoted by

∆u =
∂2u

∂x21
+
∂2u

∂x22
+ · · ·+ ∂2u

∂x2n
.

Again, these homogeneous second partials may (and probably will) depend on the
time variable t. Following the convention we used for the gradient, this operator is
called the Laplacian in this context, but should perhaps more properly be called the
spatial Laplacian.

Exercise 1.44 Consider the function u ∈ C∞(Rn+1) given by

u(x, t) = t2 +
n
∑

j=1

x2j .



56 CHAPTER 1. INTRODUCTION

Show u satisfies Poisson’s equation

∂2u

∂x21
+
∂2u

∂x22
+ · · ·+ ∂2u

∂x2n
+
∂2u

∂t2
= 2n+ 2.

I do not anticipate saying much about the n-dimensional wave equation given in
(1.39). We will stick mostly to one space dimension when it comes to the wave equa-
tion. For the moment, I would like to draw your attention to some simple solutions
and a technique for finding some more general solutions of the one-dimensional wave
equation by factoring the operator as mentioned above.

Simple wave forms

Notice that in one dimension

∂2

∂x2
cos(ax) = −a2 cos(ax).

Consequently, if we consider u : Rn × R → R by

u(x, t) = g(t)
n
∏

j=1

cos(ajxj)

for any constants a1, a2, . . . , an ∈ R, then

∆u = −
(

n
∑

j=1

a2j

)

u. (1.40)

Also,

ut = g′(t)
n
∏

j=1

cos(ajxj).

Therefore, if we take g(t) = cos(bt) where

b =

√

√

√

√

n
∑

j=1

a2j ,

then we get

u(x, t) = cos





√

√

√

√

n
∑

j=1

a2j t





n
∏

j=1

cos(ajxj)



1.3. WAVE EQUATION 57

is a solution of the n-dimensional wave equation. This observation/construction sim-
plifies in a pretty nice way in one space dimension.

Exercise 1.45 Consider

u(x, t) = cos(at) sin(ax)

for some a > 0.

(a) Plot u as a function of t and x on the strip [0, π/a]× [0,∞).

(b) Plot the evolution of u0(x) = sin(ax) for 0 ≤ x ≤ π/a and t > 0.

(c) Use mathematical software to animate the evolution of u0.

So far, I’ve said what the wave equation is as a PDE, introduced some related
notation and terminology, and given a few rather simple explicit solutions. When I
return to the wave equation next time, I should start by discussing the initial and
boundary conditions properly associated with this PDE. It is natural at this point,
however, to discuss one more elementary topic, namely the construction of solutions
obtained by factoring the operator. This uses directly the material above on first order
linear PDE and the method of characteristics. One consequence of this discussion is
a nice derivation of a general solution of the (one-dimensional) wave equation with
spatial domain the entire real line. This is called d’Alembert’s solution, and I guess
I will basically leave that dervation to you as an exercise.

Say we have Cauchy data given by u(x, 0) = x2 and ut(x, 0) = −3x on the spatial
interval (−1, 2) in the line. Notice that the wave operator or d’Alembertian

�u = utt − uxx = (ut − ux)t + (ut − ux)x.

That is,

� =

(

∂

∂t
+

∂

∂x

)(

∂

∂t
− ∂

∂x

)

factors as a composition of two constant coefficient linear first order partial differential
operators. Furthermore, if we set w = ut − ux, then a solution

u ∈ C2(W ) ∩ C1(W ) (1.41)
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of the wave equation12 with the Cauchy data given above provides us with a Cauchy
problem satisfied by w. To see this, note first of all, that

wt + wx = 0, (1.42)

so that is a first order PDE for w. Furthermore when t = 0, we should have

w(x, 0) = ut(x, 0)− ux(x, 0) = −3x− 2x = −5x for − 1 < x < 2. (1.43)

Thus, we can consider a characteristic propagating into the half plane of positive
time. More precisely, let x0 ∈ (−1, 2) and for t ≥ 0 let ξ = ξ(t) satisfy the IVP

{

ξ′ = 1, t > 0
ξ(0) = x0.

(1.44)

If we compose w on the parameterized curve α(t) = (ξ(t), t), then we find

d

dt
w ◦ α(t) = ∂w

∂x
ξ′(t) +

∂w

∂t
= 0

by (1.42). Thus, w is constant along the characteristic. Now, let (x, t) be any point
with t > 0, we seek a starting position x0 so that the characteristic determined by
(1.44) passses through (x, t). This is not difficult. Since α(t) = (x0 + t, t), we see
x0 = x− t is the unique choice. There is of course an additional subtlety to consider.
Our initial data for w given in (1.43) above required the argument x to lie in the
interval (−1, 2) ⊂ R. This means that if our choice x0 = x − t is to give us a valid
initial point (x0, 0) we must have

−1 < x− t < 2.

This tells us, perhaps not surprisingly in retrospect, a natural condition to impose on
the domain W . Namely,

W ⊂ {(x, t) : t > 0, t− 1 < x < t + 2}.

The superset here, it will be noted, is a diagonal strip tending spatially to the right as
illustrated in Figure 1.5. Thus, assuming (x, t) is in the strip {(x, t) : t > 0, t− 1 <

12You will presumably have no idea what the regularity assumption on u specified in (1.41) actually
means. I haven’t even said what W might be, much less W . You might guess what these conditions
might mean, however, and I can either tell you in a moment below, or I can tell you if you ask, or
I can cover it when we come back to the wave equation in more detail later. I guess we’ll see what
happens.
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Figure 1.5: An initial region of exclusion: Because the characteristics associated with
the PDE for w propagate to the right, the interior of the domain of definition W
should lie within the strip {(x, t) : t > 0, t − 1 < x < t + 2} in which the spatial
domain propagates to the right with increasing t.

x < t+ 2} we have

w(x, t) = w(x0, 0) = w(x− t, 0) = −5(x− t).

This, then becomes a forcing term in a first order PDE for the solution u = u(x, t) of
the wave equation:

ut − ux = w = −5(x− t).

We couple this with the initial condition/Cauchy data u(x, 0) = x2 for −1 < x < 2.
Again we use the method of characteristics seeking a characteristic β(t) = (η(t), t)
with β ′(t) = (−1, 1) and η(0) = x0. The characteristic is given by β(t) = (x0 − t, t)
and propagates left in space so that

d

dt
u ◦ β(t) = w ◦ β(t) = −5(x0 − 2t).

We conclude

u ◦ β(t) = u(x0, 0) +
5

4
(x0 − 2t)2 − 5

4
x20,

as long as there is some x0 with −1 < x0 < 2 and β(t) = (x, t) ∈ W . For this
latter condition, we need W in the strip in space-time determined by propagation of
the spatial domain (−1, 2) left with unit speed. Consequently, our solution method
applies to the wave domain

W = {(x, t) : 0 < t < 3/2, t− 1 < x < −t + 2}
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and gives the solution u :W → R by

u(x, t) = u(x0, 0) +
5

4
(x0 − 2t)2 − 5

4
x20

= (x+ t)2 +
5

4
(x− t)2 − 5

4
(x+ t)2

=
5

4
(x− t)2 − 1

4
(x+ t)2.

This function is easily seen to satisfy all conditions of the problem with u ∈ C2(W )∩
C1(W ) where W = {(x, t) : 0 ≤ t < 3/2, t− 1 < x < −t + 2}. In fact, u extends by
the same formula to a function in

C2(W )∩C1(W )∩C0(|W |) where |W | = {(x, t) : 0 ≤ t < 3/2, t−1 ≤ x ≤ −t+2},

and this represents the “natural classical regularity” for the problem. It will not
escape your notice that u extends by the same formula to be real analytic on all of
R2. In particular, u ∈ Cω(W ) ∩ Cω(R2) where we recall

W = {(x, t) : 0 ≤ t ≤ 3/2, t− 1 ≤ x ≤ −t + 2}.

This last extension is a solution of the wave equation on all of R2, but it is
interesting to consider to what extent the values of a solution of the wave equation
on sets larger than W must agree with the values of this natural extension. Note, for
example that the extension formula

u(x, t) =
5

4
(x− t)2 − 1

4
(x+ t)2

satisfies

u(−1, t) =
3t2 + 4t+ 3

2

which is not constant in time.
Let us attempt to find a solution13 v : [−1, 2]× [0, 3/2] → R of the wave equation

satisfying v(−1, t) ≡ 1 = u1(−1, 0) and v(2, t) ≡ 4 = u1(2, 0). We again write
w = vt − vx so that wt + wx = 0 and w(−1, t) = vt(−1, t) − vx(−1, t) = −vx(−1, t).

13There is some natural interest in having an evolution on all of the initial spatial domain (−1, 2).
Of course, we have such a solution in u, but it is also natural (perhaps) to impose different boundary
conditions at the spatial endpoints x = −1 and x = 2.
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The function g(t) = −vx(−1, t) we may take as arbitrary but to be specified later.
That is, we assume for now there is some function g : (0,∞) → R for which

w(−1, t) = g(t) for t > 0. (1.45)

Notice the characteristics associated with the equation

wt + wx = 0

impinge on the boundary line x = −1. Accordingly, we start with a point (−1, t0) on
this line, and attempt to propagate the value g(t0) into the region

{(x, t) : t > 0, −1 < x < −1 + t}

as indicated in Figure 1.6. Accordingly we have

Figure 1.6: Given a solution u of the wave equation determined by Cauchy data at
time t = 0 in the region W = {(x, t) : 0 < t < 3/2, −1 + t < x < 2− x}, we attempt
to find an extension v satisfying the wave equation classically in W− = {(x, t) : t >
0, −1 < x < −1 + t} and satisfying v(−1, t) ≡ u(−1, t) = 1.

d

dτ
w(−1 + τ, t0 + τ) = wx + wt = 0.

From this and (1.45) we conclude

w(−1 + τ, t0 + τ) ≡ w(−1, t0) = g(t0).

It remains to determine the argument of the function g. For this, we need x = −1+ τ
and t = t0 + τ . That is,

τ = x+ 1 and t0 = t− x− 1.
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Hence,

w(x, t) = g(t− x− 1) = G(x, t).

Having specified w in this tentative form, we turn to the PDE for v. The characteristic
of vt − vx = G(x, t) terminating at (x, t) ∈ W− impinges, as indicated in Figure 1.6,
on the boundary of W at a point (−1 + t1, t1). Again, we compute using the chain
rule/directional derivatives:

d

dτ
v(−1 + t1 − τ, t1 + τ) = −vx + vt = G(−1 + t1 − τ, t1 + τ) = g(2τ).

Integrating, we find for a solution v with values continuously matching those of u
along ∂W there must hold

v(−1 + t1 − τ, t1 + τ) = v(−1 + t1, t1) +

∫ τ

0

g(2σ) dσ = u(−1 + t1, t1) +

∫ τ

0

g(2σ) dσ.

The starting point for this characteristic should be determined by the terminal rela-
tions −1 + t1 − τ = x and t1 + τ = t, or

{

t1 − τ = x+ 1
t1 + τ = t.

We conclude

v(x, t) = u

(

x+ t− 1

2
,
x+ t+ 1

2

)

+

∫ (t−x−1)/2

0

g(2σ) dσ

=
5− (x+ t)2

4
+

∫ (t−x−1)/2

0

g(2σ) dσ.

We recall finally that we wished to have v(−1, t) ≡ 1. For this we need

∫ t/2

0

g(2σ) dσ = 1− 5− (t− 1)2

4

or
1

2
g (t) =

t− 1

2
.

That is,

g(t) = t− 1.
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We obtain then

v(x, t) =
5− (x+ t)2

4
+

∫ (t−x−1)/2

0

(2σ − 1) dσ

=
5− (x+ t)2

4
+

1

4
(t− x− 1)2 − t− x− 1

2
= 2 + x− xt− t.

Weak solutions

Say we take a function u ∈ C2(R × [0,∞)) meaning there is some open set U ⊂ R2

with R× [0,∞) ⊂ U and u ∈ C2(U). Let us also assume this function u satisfies the
wave equation classically:

utt = uxx on (x, t) ∈ R× (0,∞)

with initial values/Cauchy data u(x, 0) = f(x) and ut(x, 0) = g(x) taken classically.
Multiplying the PDE by a test function φ ∈ C∞

c (R× [0,∞)) and integrating we have

∫

R×(0,∞)

[utt − uxx]φ = 0. (1.46)

Now, take the first term and write the area integral as an iterated integral:

∫

R×(0,∞)

utt =

∫

R

(
∫

(0,∞)

uttφ

)

.

Writing the inner integral in the usual notation and integrating by parts we find

∫ ∞

0

uttφ dt = (utφ)∣
∣

∞

t=0

−
∫ ∞

0

utφt dt

= −ut(x, 0)φ(x, 0)−
(

(uφt)∣
∣

∞

t=0

−
∫ ∞

0

uφtt dt

)

= −ut(x, 0)φ(x, 0) + u(x, 0)φt(x, 0) +

∫ ∞

0

uφtt dt

= −g(x)φ(x, 0) + f(x)φt(x, 0) +

∫ ∞

0

uφtt dt.
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We consider also the term
∫

R×(0,∞)

uxx =

∫

(0,∞)

(∫

R

uxxφ

)

.

For this inner integral we have

∫ ∞

−∞
uxxφ dx = (uxφ)∣

∣

∞

x=−∞

−
∫ ∞

−∞
uxφx dx

= −
(

(uφx)∣
∣

∞

x=−∞

−
∫ ∞

−∞
uφxx dx

)

=

∫ ∞

−∞
uφxx dx.

Substituting these expressions for the inner integrals (1.46) we conclude

−
∫

x∈R
g(x)φ(x, 0) +

∫

x∈R
f(x)φt(x, 0) +

∫

R×(0,∞)

u[φtt − φxx] = 0.

Notice that this expression formally makes sense whenever u ∈ C0(R× [0,∞). Thus,
we arrive at the following definition:

Definition 9 (continuous weak solution of the wave equation) A function w ∈ C0(R×
[0,∞) is said to be a weak solution of the initial value problem







utt = uxx, (x, t) ∈ R× (0,∞)
u(x, 0) = f(x), x ∈ R

ut(x, 0) = g(x), x ∈ R

(1.47)

if
∫

R×(0,∞)

w[φtt − φxx] =

∫

x∈R
g(x)φ(x, 0)−

∫

x∈R
f(x)φt(x, 0)

for every φ ∈ C∞
c (R× [0,∞)).

There are a couple nice theorems that go along with this definition. One of
them states that every weak solution of (1.47) is unique and is given by d’Alembert’s
formula:

w(x, t) =
1

2
[f(x+ t) + f(x− t)] +

1

2

∫

(x−t,x+t)
g. (1.48)
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This is a little bit tricky to prove, and we probably won’t cover it, though when we
have done a little integration theory, you should have most of the tools to go through
the proof.

It is also true that given any f, g ∈ C0(R), the formula (1.48) defines a weak
solution of (1.47). Notice, however, that the function g is not in general required to
be continuous either for the definition of a weak solution to hold nor for (1.48) to give
a weak solution.

Of course, a classical solution is a weak solution and a classically differentiable
weak solution is a classical solution. These assertions are included in Assignment 9.

1.4 Heat Equation

The heat equation has the form

ut = ∆u,

and many of the comments above concerning the wave equation as an evolution
equation apply, though the behavior of solutions is strikingly different. we will again
consider some simple solutions in one space dimension (or perhaps sometimes more)
both on a bounded domain and on all of the spatial domain R (or perhaps Rn).
Returning to (1.40) we observe that

u(x, t) = e−c
2t

n
∏

j=1

sin

(

πxj
ℓj

)

where ℓ1, ℓ2, . . . , ℓn are positive lengths and

c2 =
n
∑

j=1

π2

ℓ2j

is a solution u ∈ Cω(Ω× (0,∞)) where

Ω =
n
∏

j=1

(0, ℓj) = (0, ℓ1)× (0, ℓ2)× · · · × (0, ℓn)



66 CHAPTER 1. INTRODUCTION

of the initial/boundary value problem


































ut = ∆u, (x, t) ∈ Ω× (0,∞)

u(x, 0) =
n
∏

j=1

sin(πxj/ℓj) x ∈ Ω

u(x, t) = 0, x · ej = 0, (x− ℓjej) · ej = 0, t > 0.

(1.49)

Again, we specialize to one space dimension, so the problem becomes






ut = uxx, (x, t) ∈ (0, ℓ)× (0,∞)
u(x, 0) = sin(πx/ℓ) x ∈ (0, ℓ)
u(0, t) = 0 = u(ℓ, t), t > 0

with solution
u(x, t) = e−π∗2t/ℓ

2

sin
(πx

ℓ

)

.

Exercise 1.46 Consider
u(x, t) = e−a

2t sin(ax)

for some a > 0.

(a) Plot u as a function of t and x on the strip [0, π/a]× [0,∞).

(b) Plot the evolution of u0(x) = sin(ax) for 0 ≤ x ≤ π/a and t > 0.

(c) Use mathematical software to animate the evolution of u0.

1.5 Laplace’s equation

All the solutions u of the heat equation considered above have the property

lim
tր∞

u(x, t) = 0.

One should not get the idea from this that all solutions of the heat equation have this
property, though admittedly in one space dimension the limit

lim
tր∞

u(x, t)

of a solution of the heat equation, i.e., the (model) long time heat distribution, is not
very exciting. Note that v(x, t) = x is a solution of the heat equation.
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Exercise 1.47 Consider

u(x, t) = x+ e−a
2t sin(ax)

for some a > 0.

(a) Plot u as a function of t and x on the strip [0, π/a]× [0,∞).

(b) Plot the evolution of u0(x) = x+ sin(ax) for 0 ≤ x ≤ π/a and t > 0.

(c) Use mathematical software to animate the evolution of u0.

Functions in the kernel of the Laplace operator ∆ : C2(U) → C0(U) are called
harmonic functions.

Exercise 1.48 Find the general solution of Laplace’s equation (which becomes an
ODE) in one space dimension.
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Chapter 2

Integration

As with most topics presented in this course, I attempt to present the topic in a
relatively general form with some key points for guidance. There are many kinds of
integrals in the world. Among the most useful are the abstract Riemann integrals
on sets presented below, in fact presented now:

Given a set A on which integration is possible1 the abstract Riemann integral of
a real valued function f : A→ R is defined as the limit

∫

A

f = lim
‖P‖→0

n
∑

j=1

f(p∗j)µ(Aj). (2.1)

The sum on the right is called a Riemann sum. The sets A1, A2, . . . , An form a
partition of the set A and are called the “pieces” of A. This simply means

A =
n
⋃

j=1

Aj

with “small” pairwise overlaps, i.e., µ(Ai ∩ Aj) = 0 if i 6= j. The value µ(Aj) is the
measure. One has to define a measure to integrate, and there are many different
measures in the world. I won’t go into the details of what it means for a function
µ : M → [0,∞) (or more often µ : M → [0,∞] to be a measure on a collection of
subsets of a given set, but you already know quite a few measures, or can get to know
them easily:

1I’ll discuss what is required later.

69
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1. Counting measure is the number of points in a set. (This may not be a
measure you have thought of before, but it’s a measure.) The counting measure
of a set A is often denoted by #(A). Notice #(A) = ∞ if A has infinitely many
elements.

2. Length is a measure both for many subsets you know in the real line and
for subsets of curves and other sets in higher dimensional Euclidean spaces
as well. Length is sometimes denoted by m(A) or µ(A). Sometimes we can
also write length(A). Especially, if we are measuring the length of a subset
A ⊂ Rn, then we usually denote the length measure by H1(A). This is called
length measure in Rn or one-dimensional Hausdorff measure. Notice that
H1({(x, y) ∈ R2 : x2 + y2 < 1}) = ∞.

3. Area is a nice measure. As with length, there are various flavors of area. If
you measure area of subsets of R1 or in any line, you’ll always get zero. If you
measure area of subsets of the plane, then the area measure is often denoted
(again) by m or µ. These symbols are used simply because the first letter of
the word measure is “m.” We can also write area(A) in many cases. But if
we measure the area of a subset of R3, for example a surface or a piece of a
surface—assuming say that we wanted to integrate on a surface—then we should
use two-dimensional Hausdorff measure in R3: H2.

Hopefully, this is an adequate description for you to understand the basics of what
it means to measure sets. There is volume measure and hypervolume measure
of all dimensions (and in all ambient dimensions). There are lots of less familiar
measures too, but these will get us a long way.

Conclusion/important take-away: You need a measure to integrate.

What else is up there in the Riemann sum and the definition of the integral (2.1)?
Working from right to left I see the evaluation points p∗j . It is assumed that p∗j ∈ Aj
and f(p∗j) is (of course) the value of f (evaluated) at the point p∗j .

In this definition, the partition is given a name. That name is P. Thus,

P = {A1, A2, . . . , An} = {Aj}nj=1.

Partitions can take various forms, and the indexing can vary a bit too, but this gives
the basic idea. One notable variation is when one partitions an interval [a, b]. In this
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case, one often refers to the partition points rather than the partition sets. To
be precise, many calculus books will introduce the partition

a = x0 < x1 < x2 < . . . < xn = b.

This means there are subintervals which might be designated by something like A0 =
[x0, x1], A1 = [x1, x2], . . . , An−1 = [xn−1, xn]. And the Riemann sum might look like

∫ b

a

f(x) dx = lim
max(xj+1−xj)→0

n−1
∑

j=0

f(x∗j )(xj+1 − xj).

This explains, for example, why the evaluation points are called p∗j instead of just pj.
Returning to the general situation, the norm of the partitition is taken (ab-

stractly) to be

‖P‖ = max
j

diam(Aj)

where the maximum is taken over all the partition pieces, and diam is some kind of
measure of the extent of the piece. The measure diam is often not really a measure
in the technical sense, but it is another function on sets which usually dominates the
measure in the sense that

lim diam(A) = 0 implies limµ(A) = 0.

Very often there are constants α and β so that µ(A) ≤ α diam(A)β. Also, in Euclidean
spaces we very often take

diam(A) = sup{‖p− q‖ : p, q ∈ A}.

What (2.1) means then is the following: There is some number I ∈ R so that for
any ǫ > 0, there is some δ > 0 for which

‖P‖ < δ implies

∣

∣

∣

∣

∣

I −
n
∑

j=1

f(p∗j)µ(Aj)

∣

∣

∣

∣

∣

< ǫ

no matter which evaluation points and which partition pieces are used. If this happens,
we call the number I the integral and denote it by the left side of (2.1).

The definition I have just given you agrees in most respects with all the other
integrals you’ve used and run across before. There is one significant difference: This
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kind of integral does not have orientation. For example, there is no general
version of the identity

∫ a

b

f(x) dx = −
∫ b

a

f(x) dx

which depends on a fixed convention concerning orientation/direction of the integr-
gration on R. Our abstract integration doesn’t have that, and this must be taken
into account occasionally. But there is a big advantage in that we can use this kind
of integral to integrate on a much broader collection of objects. All that is required
is to be able to (1) cut the objects up in “small” pieces, (2) calculate the measures
of those pieces, and (3) find the required limit—or show it exists.

Concerning the last point, there is a separate general structure with which you
are familiar and which, when in place, can be used to get the existence of integrals.
It is this:

Generally speaking, when it can be said that f ∈ C0(A), i.e., the real
valued function f : A → R is continuous, then abstract set integration
will very often work without a hitch.

This is not to say there may still be various special considerations associated with
things like improper integrals that have to be obtained as secondary limits, and there
may be other “pathological” situations where an integral or two may not exist. But
continuity is generally sufficient for Riemann integration.

I’ve now presented the definition. It’s time for the general guiding principles.

2.1 Evaluation of integrals

Most every integral we encounter must eventually be reduced to the basic integrals
from 1-D calculus, i.e., Calculus I. There are basically two tools used to do this:

1. change of variables

2. iterated integrals

The first tool is somewhat more general and the second one is somewhat more special,
but they are both necessary, and you should master them.

The basic principle of change of variables, is that if you have a nice parameteriza-
tion of your set A given by some function ψ : B → A, which we assume is invertible,
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then you can integrate f on A by integrating the composition f ◦ψ on B. The formula
looks like this:

∫

A

f =

∫

B

f ◦ ψ σ.

The factor σ is called the scaling factor and it is included in the integrand of the sec-
ond integral, so it’s important to remember, you can’t just integrate the composition
f ◦ ψ. You know this.

Say I want to integrate the function x2 on the interval [0, 2]. Of course, I can just
integrate, but say for whatever reason, I want to change variables using ψ : [0, 1] →
[0, 2] by ψ(ξ) = 2ξ. The set A here is [0, 2] and the set B is [0, 1]. The function
f : [0, 2] → R is given by f(x) = x2. If I were to write

∫

x∈[0,2]
x2 =

∫

ξ∈[0,1]
(2ξ)2 (2.2)

that would be wrong. The composition f ◦ ψ(ξ) = (2ξ)2 is basically okay giving the
function to integrate, but this only gives the function values. I have to take account
of the fact that the domain variable is getting stretched by ψ. Put another way, the
measure µ(Bj) of a small piece of B = [0, 1] corresponding to a piece ψ(Bj) = Aj
does not have the correct measure µ(Aj) to give the Riemann sum for the integral
on the left in (2.2). A scaling factor is required, and that factor is σ = 2, because
the pieces in B = [0, 1] are half the length of the corresponding pieces in A = [0, 2].
Thus, the correct change of variables is

∫

x∈[0,2]
x2 =

∫

ξ∈[0,1]
(2ξ)2(2).

Back in Calculus I this would have been expressed as a “u”-substitution as x = 2u
with dx = 2 du so that

∫ 2

0

x2 dx =

∫ 1

0

(2u)2(2) du =

∫ 1

0

(2ξ)2 ψ′(ξ) dξ.

For integration on R1 we see the orientation difference: In Calculus I
∫ b

a

f(x) dx =

∫ ψ−1(b)

ψ−1(a)

f ◦ ψ(ξ)ψ′(ξ) dξ,

but with our set integrals, the scaling factor is σ = |ψ′(ξ)| in this case, so
∫

(a,b)

f =

∫

ψ−1(a,b)

f ◦ ψ |ψ′|
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with ψ−1(a, b) = {ψ−1(x) : x ∈ (a, b)}. You see, we have no way to determine if ψ
reversed the orientation of the endpoints. And of course, for most higher dimensional
integrals, it’s convenient to not keep track of such questions of orientation. We just
integrate on sets.

Here are two really useful rules for scaling factors you’ll want ot memerize/remember:

1. If ψ : B → A with B,A ⊂ Rn and you’re integrating with respect to the full
dimension n-volume measure, then

σ = | detDψ|
where

Dψ =

(

∂ψi
∂ξj

)

ij

is the n× n matrix containing all the first partial derivatives of ψ.

2. If ψ : B → A with B ⊂ R
k and A ⊂ R

n with n > k, then

σ =
√

det[DψTDψ].

In this case, Dψ will not be a square matrix, but the product DψTDψ will be
a k × k positive definite matrix, so the determinant will be positive.

Those two scaling rules will get you a long way.
When A ⊂ Rn has a special form, then an integral

∫

A
f can sometimes be expressed

as iterated integrals over sets of lower dimension. You should have some familiarity
with how this works. If for example A ⊂ R

2 is a domain of the form

A = {(x, y) ∈ R
2 : a < x < b, ψ1(x) < y < ψ2(x)}

for some function ψ1, ψ2 : (a, b) → R with ψ1 < ψ2, then
∫

A

f =

∫

x∈(a,b)

(
∫

y∈(ψ1(x),ψ2(x))

f(x, y)

)

.

In the “inner” integral
∫

y∈(ψ1(x),ψ2(x))

f(x, y)

the value of x is considered a constant. Generally, such relations between general
integrals on sets and iterated integrals are considered applications of Fubini’s theorem.

Let me conclude this section with the basic physical modeling principle of inte-
gration:
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The real valued function f appearing in an integral may always be inter-
preted to model a density, so that

∫

A

f

models the amount of the physical quantity having units matching the phys-
ical dimension

[f ]Lk

where k is the dimension of the domain of integration A.

Perhaps the simplest example is when f = ρ ∈ C0(A) is amass density with physical
dimensions

[ρ] =
M

Lk
.

In this case
∫

A

ρ

models the mass contained in the (model) region A.
If n = 1 and [ρ] = M/L, then ρ is called a lineal mass density or a linear

mass density. If n = 2 and [ρ] = M/L2, then ρ is called an areal mass density
or an area mass density or a laminar mass density. These terms often are used
to distinguish the context from that where n = 3 and [ρ] = M/L3 and ρ is simply
referred to as a mass density.

2.2 Divergence and the divergence theorem

Let us restrict attention to integration on a “full dimension” domain of integration
with “smooth boundary.” This means, for example, that we have an open set U ⊂ Rn

and ∂U is a C1 hypersurface. As an even more specific example, consider Br(p) ⊂ R3

where p is a fixed center in R2 and U = Br(p) = {x ∈ R3 : ‖x− p‖ < r} is the open
ball of radius r centered at p. The boundary of U in this case is a sphere, which is
a two-dimensional surface in R3. That spherical surface is C1 in the sense that the
surface admits a continuous ambient outward unit normal field N given by

N(x) =
x− p

r
.
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The detail may vary among domains of integration U , but this should give the basic
idea. On such domains, we can form the flux integral

∫

∂U

v ·N (2.3)

associated with a vector field v ∈ C0(U → Rn). If the vector field has n− 1 spatial-
rate-density dimension, that is

[v] =
V

TLn−1

where V is some/any physical dimension, then the flux integral (2.3) gives the “amount”
measured in units of V passing through ∂U per unit of time. For example, if v is a
simple velocity field with

[v] =
L

T
=

Ln

TLn−1
,

measured in, say meters per second, then
∫

∂U

v ·N

measures the n-dimensional volume measure passing out of U over ∂U . If a simple
velocity field v is weighted by a mass density function ρ ∈ C0(U) of full dimension
so that

[ρ] =
M

Ln

then
∫

∂U

ρv ·N

measures the rate of mass exiting U along ∂U .
Returning to a general field v, it is interesting2 to consider subdomains Q ⊂ U

shrinking “nicely” to a point p ∈ U . I won’t go into the full generality of what it
means to shrink “nicely,” but I’ll give you two examples:

Q = Br(p) = {x ∈ U : ‖x− p‖ < r} → {p} as r ց 0

and

Q = Qǫ(p) =
{

x ∈ U : |xj − pj | <
ǫ

2
, j = 1, 2, . . . , n

}

→ {p} as ǫց 0.

2It turns out to be interesting.
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In words, a ball of radius r > 0 centered at p shrinks nicely to p as r ց 0, and a
coordinate cube of side length ǫ centered at p shrinks nicely to p as ǫց 0.

One can take as a goal to extract some real valued measure of the divergence of
the field v at the single point p by considering the quantity

∫

∂Q

v ·N

and the limit

lim
Q→{p}

∫

∂Q

v ·N (2.4)

in particular. Unfortunately,3 elementary estimation gives

∣

∣

∣

∣

∫

∂Q

v ·N
∣

∣

∣

∣

≤ max
x∈U

‖v‖Hn−1(∂Q)

and this quantity tends to zero as Q→ {p}. Thus, the limit (2.4) does not recover a
meaningful number. It is natural to consider next the average value

1

Hn−1(∂Q)

∫

∂Q

v ·N.

You should recall from the discussion above that Hn−1, the n− 1 dimensional Haus-
dorff measure, is the natural measure for the domain of integration ∂Q ⊂ Rn. Again,
it can be shown that

lim
Q→{p}

1

Hn−1(∂Q)

∫

∂Q

v ·N = 0,

so this does not work. In this instance, the third time is the charm, and the strange
quanity

div v(p) = lim
Q→{p}

1

µ(Q)

∫

∂Q

v ·N = 0, (2.5)

where µ(Q) is the full dimension (Lebesgue) measure of the set Q gives a real number
which can, at least in some instances capture the divergence of a vector field. In fact,
this quantity divv : U → R is called the divergence of the vector field v.

Let me mention in passing that it is also quite possible (and perhaps natural) to
define the divergence on other domains of integration where the concepts of “nicely

3Technically, this is not really unfortunate; it’s just the way it is.
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shrinking” domains with boundaries providing domains of integration carry over.
Such a definition might look like this

A

divv(p) = lim
Q→p

1

Hk(Q)

∫

∂Q

v · ν

where A is, for example, a k-dimensional submanifold of Rn, e.g., a surface in R3

and Q is a k dimensional subset of A nicely shrinking to p ∈ A. The normal ν
here is typically called an outward conormal to ∂Q, and is nominally a bit more
complicated: ν should be a tangent vector to A (or Q) that is normal to ∂Q. Of
course, ν should point out of Q along ∂Q.

We won’t have much practical use for this last “intrinsic” divergence except in the
case of full dimension open subsets of Rn considered first.

In rectangular coordinates, the divergence takes the familiar form

div v =

n
∑

j=1

∂vj
∂xj

.

It is now (perhaps) natural to consider the integral

∫

U

div v. (2.6)

If we partition U into small pieces, then the quantity in (2.6) is approximately

∑

j

div v(p∗
j) µ(Uj).

In fact, the integral in (2.6) is the limit of Reimann sums of this form. On the other
hand, the quanity

div v(p∗
j)

appearing in the Riemann sum is approximately

1

µ(Uj)

∫

∂Uj

v ·Nj.

This requires that we imagine each of the pieces Uj as part of some sequence of
subdomains Q shrinking nicely to p∗

j , and that Uj is far enough along in that sequence
so that the approximation is a good one. Technically, this procedure requires some
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estimates which we will not do (at the moment at least). If these approximations are
valid, i.e., if they can be backed up with estimates, then we are looking at a quantity
like

∑

j

div v(p∗
j) µ(Uj) ≈

∑

j

∫

∂Uj

v ·Nj

where Nj is the outward unit cornormal along ∂Uj . In particular, setting P = {Uj}kj=1,
we suggest/claim

∫

U

divv = lim
‖p‖→0

∑

j

∫

∂Uj

v ·Nj

= lim
‖p‖→0

∫

∂U

v ·N

=

∫

∂U

v ·N.

The interior boundary integrals cancel in pairs of adjacent regions Ui and Uj because
Ni = −Nj on the common boundary manifold. The last expression

∫

∂U

v ·N

is independent of the partition, and this is how/why we obtain the limit. The assertion
we are suggesting is called the divergence theorem:

∫

U

div v =

∫

∂U

v ·N.

In two dimensions for Γ = ∂U a simple closed (smooth) curve bounding an
open set U , and even more generally for Γ ⊂ Rn a simple closed curve in any Eu-
clidean/Cartesian space, the circulation integral

∫

Γ

v · T,

where v is a continuous vector field along Γ and T is a unit tangent field along Γ,
makes sense. In the special case Γ = ∂U and U a full dimension set in R2, there is a
natural relation between the circulation integral

∫

∂U

v · T
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and the divergence theorem. It is precisely this: If T is taken as the counterclockwise
normal on ∂U , then the unit outward normal satisfies N⊥ = T or −T⊥ = N where
v⊥ = (−v2, v1) is the counterclockwise rotation by an angle π/2 of any vector v. Thus
we find

∫

∂U

v · T =

∫

∂U

(−v⊥) ·N =

∫

U

div(v2,−v1)

by the divergence theorem. That is, (in rectangular coordinates)

∫

∂U

v · T =

∫

U

(

∂v2
∂x

− ∂v1
∂y

)

.

This is called Green’s theorem.

Stokes’ theorem
∫

S
curlv ·N =

∫

∂S
v · T

where S ⊂ R3 is a (two-dimensional) surface, T is the unit tangent vector field
(counterclockwise with respect to the ambient surface normal N to S) and

curlv =

(

∂v3
∂x2

− ∂v2
∂x3

,−
(

∂v3
∂x1

− ∂v1
∂x3

)

,
∂v2
∂x1

− ∂v1
∂x2

)

is also a manifestation of the divergence therem taking the (usual) form

∫

S
div v =

∫

∂S
v · ν. (2.7)

It will be noted that the divergence div v = divS v appearing in (2.7) is an intrinsic
surface divergence which is not necessarily familiar from a formula, but has a good
definition in the form

divSv(p) = lim
Q→{p}

1

area(Q)

∫

∂Q

v · ν

where ν denotes the unit outward conormal field (tangent to S) along ∂Q, just as ν
denoted the unit outward conormal field to ∂S in (2.7).

If you have trouble remembering the formula for the curl, it may be helful (if you
can remember how to take a cross-product of vectors in R3 to remember the “operator
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cross-product form”

curlv =























∂

∂x1

∂

∂x2

∂

∂x3























×













v1

v2

v3













.

Incidentally, you’ll notice that the vector field v considered on the surface S in Stokes’
theorem is assumed to be defined in some open set of R3 containing S. For such
vector fields, there is also an intrinsic/coordinate free definition of the curl. It is the
following: Given any unit vector N ∈ R3, let Q be a planar domain in a plane ΠN

through p with normal N . Assuming also that Q shrinks nicely to p in ΠN , we define

curlv(p) ·N = lim
Q→{p}

1

area(Q)

∫

∂Q

v · T.

It turns out that if you determine the dot product w ·N of a given vector w ∈ R3 with
every unit vector N ∈ R3, then you have determined w uniquely. We are applying
this fact to the vector field w = curlv.
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Chapter 3

PDE: A Quick and Dirty Intro

Let me recall the three fundamental partial differential equations of nineteenth cen-
tury mathematical physics. These are Laplace’s equation

∆u =
n
∑

j=1

∂2u

∂x2j
= 0,

The heat equation
ut = ∆u

and the wave equation
utt = ∆u.

It has been said that the great discovery of nineteenth century physics1 is that the
fundamental laws of nature are linear. . . .2 Indeed, each of these three introductory
PDE are linear. This means associated with each PDE there is an operator L : V →
W with a natural (classical) domain V and codomainW of functions; these collections
of functions are vector spaces, and

L(au+ bv) = aLu + bLv for a, b ∈ R, u, v ∈ V. (3.1)

The easiest is the equilibrium equation assocated with the Laplace operator

Lu = ∆u =
n
∑

j=1

∂2u

∂x2j

1In my view “physics” cannot “discover” anything. Only an individual human can discover
something, but I’m just quoting, perhaps T.W. Körner, here to produce some kind of psychological
feeling about the subject.

2I’ll give the other half of this quote at the end of this chapter.

83



84 CHAPTER 3. PDE: A QUICK AND DIRTY INTRO

or oftentimes

Lu = −∆u = −
n
∑

j=1

∂2u

∂x2j
.

Either way we can take the Laplace operatore L : C2(U) → C0(U) with V = C2(U)
and W = C0(U), and observe that the linearity condition (3.1) holds. Sometimes
it may be convenient to look for solutions of a boundary value problem for Laplace’s
equation Lu = 0 in the smaller vector subspace V0 = C2(U)∩C0(U) or for weak solu-
tions in a much larger vector space like H1(U), the collection of all square integrable
measurable functions u ∈ L2(U) with first order weak derivatives in L2(U), but the
classical domain C2(U) is convenient at least for a start.

Briefly, a heat domain is typically of the form U × [0,∞) or more generally U ×
[0, T ) for some T > 0 where U is an open subset of Rn. Thus, the simplest (classical)
domain and codomain for the heat operator L : V →W are V = C2(U × (0, T )) and
W = C0(U × (0, T )) with

Lu = ut −∆u.

More often it is natural to only require one continuous partial derivative with respect
to time t and the existence and continuity of all second partial derivatives with respect
to the spatial variables. This space has no standard notation, but is sometimes
denoted by C2,1(U × (0, T )).

Similarly, the d’Alembertian or wave operator � : C2((U × (0, T )) → C0(U ×
(0, T )) by

�u =
∂2u

∂t2
−∆u.

The primary consequence of linearity for these operators is called the principle
of superposition which is discussed in each case below. For each operator, and
hence each equation, we will discuss natural boundary and/or initial conditions along
with some comments which may be viewed as falling roughly into three categories

1. Derivation (or at least some comments about some kind of derivation)

2. Separated variables solutions (or Fourier series solutions on some special do-
mains)

3. Integral identities and related properties, especially energy considerations.
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3.1 Laplace’s equation

The natural boundary value problem(s) for Laplacian involve some combination of
prescribing the value of a solution u ∈ C2(U) ∩ C0(U) on the boundary ∂U of the
domain U and prescribing the (outward unit) normal derivative of u along ∂U . Sep-
arately,

{

∆u = 0, on U
u∣
∣

∂U

= g (3.2)

is called the Dirichlet problem for Laplace’s equation and

{

∆u = 0, on U
(Du · ν)∣

∣

∂U

= h (3.3)

is called the Neumann problem for Laplace’s equation. More generally, the bound-
ary ∂U may be partitioned with ∂U = A ∪ B and a Dirichlet condition

u∣
∣

A

= g

can be prescribed on A while a Neumann condition

(Du · ν)∣
∣

B

= h

can be prescribed on B. Roughly speaking, one would first like to assert the existence
and uniqueness of a solution of the Dirichlet problem (3.2) when, for example, U
is a bounded open subset of Rn, ∂U is a C1 n − 1 dimensional submanifold, and
g ∈ C0(∂U). (Think when n = 2 of the situation when ∂U is a simple closed curve.)
This turns out to be a relatively difficult proposition, but it turns out to be true.
Perhaps we can (and will) make some simple observations related to this assertion.
One is that the problem is quite closely related to the boundary value problem for
Poisson’s equation

{

∆v = f, on U
v∣
∣

∂U

= 0 (3.4)

with homogeneous boundary values. The reason is quite simple: Let us assume
we can find a function G ∈ C2(U) ∩ C0(U) satisfying

G∣
∣

∂U

≡ g.
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Then given a solution u ∈ C2(U) ∩ C0(U) of (3.2) the function v = u−G satisfies

{

∆v = −∆G, on U
v∣
∣

∂U

= 0

which is clearly a version of (3.4).

Exercise 3.1 Assume g ∈ C2(∂B1(0, 0)) where B1(0, 0) is the open unit disk in R2.
Find an extension G ∈ C2(B1(0, 0)) on the entire closed unit disk with restriction to
∂B1(0, 0) given by g. Hint: You should think carefully about what it means to have
g ∈ C2(∂B1(0, 0).

Exercise 3.2 Assume g ∈ C2(∂B1(0, 0)) as in Exercise 3.1 above. Formulate a
Dirichlet problem for Poisson’s equation with homogeneous boundary values which,
if you can solve it, allows you to solve the boundary value problem (3.2) for Laplace’s
equation.

The conclusion you should observe here is that existence and uniqueness for the
Dirichlet problem (3.2) for Laplace’s is equivalent to existence and uniqueness for the
Dirchlet problem (3.4) for Poisson’s equation.

Two final comments about existence and uniqueness: The first is that we are not
really going to address much in detail about existence and uniqueness for the Dirichlet
problem for Laplace’s equation, but this question is a very important one, and it is
a difficult one. It would be very easy to spend an entire semester discussing the
existence and uniqueness of solutions for the Dirchlet problem for Laplace’s equation.
The second observation is that there is no uniqueness for the Neumann problem—
actually, that’s not quite true, but if u1 ∈ C1(U) is a solution of (3.3), then every
function u ∈ C1(U) with u(x) = u1(x) + c and c ∈ R constant is also a solution of
(3.3). It does turn out that solutions (on a smooth bounded domain) are unique up
to a constant.

Exercise 3.3 Let U be a bounded domain with C1 boundary. Prove a solution
u ∈ C1(U) of (3.3) with h ≡ 0 satisfies u ≡ c is constant. Hint: Integrate div(uDu).

Exercise 3.4 Let U be a bounded domain with C1 boundary. Prove a solution
u ∈ C1(U) of (3.3) is unique up to an additive constant.
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3.1.1 Derivation

I will discuss two topics/observations concerning Laplace’s equation, each of which
might be considered a “derivation.” Each has its drawbacks when viewed as such.

The first observation is that solutions of the Dirichlet problem for Laplace’s equa-
tion may be viewed as the equilibrium (i.e., long time steady state solutions) associ-
ated with a certain heat evolution problem. It is interesting to note that this was put
forward by Dirichlet as a proof of existence and uniqueness for the Dirichlet prob-
lem for Laplace’s equation, though such an approach is not considered particularly
insightful, or at least not very mathematically rigorous/satisfying these days.

Consider the initial/boundary value problem






vt = ∆v, on U × [0,∞)
v(x, 0) = v0(x), x ∈ U
v(x, t) = g(x), x ∈ ∂U, t > 0.

“Obviously,” said Dirichlet, “this problem has a solution and that solution will reach
a long time steady state”

u(x) = lim
tր∞

v(x, t).

That limiting function will be independent of the initial temperature distribution v0,
and the function u will be independent of time

∂u

∂t
= 0.

Thus, commuting the derivatives and assuming the second partial derivatives with
respect to the spatial variables converge we conclude

0 = lim
tր∞

∂v

∂t

= lim
tր∞

(−∆v)

= −∆

(

lim
tր∞

v

)

= −∆u

while for x ∈ ∂U ,

g(x) = v(x, t)

= lim
tր∞

v(x, t)

= u(x).
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Obviously, there is a lot to justify mathematically, or more properly a lot we have
not mathematically justified, chiefly the existence (and uniqueness?) of solutions
for the heat evolution problem. Nevertheless, Dirichlet has suggested a heuristic it
is perhaps useful to keep in mind: Physically, solutions of the Dirichlet problem for
Laplace’s equation model equilibrium solutions for an initial/boundary value problem
for the heat equation, and the long time steady state of such a problem “should” be
independent of the initial temperature distribution.

Differentiating in infinite dimensions

Our second “derivation” was provided by Lagrange. It is much more interesting, in
some sense. Lagrange starts with the assumption that the real valued functional3

E : C2(U) ∩ C1(U) → R given by

E [u] =
∫

U

|Du|2

gives a kind of “energy” measuring the irregularity,4 in the vague sense of “variability,”
of the temperature distribution u on U . More precisely, E : C2(U) ∩C1(U) → [0,∞)
is a non-negative functional and, if restricted to the admissible class

A =

{

u ∈ C2(U) ∩ C1(U) : u∣
∣

∂U

= g

}

,

we can look for a minimizer, that is a function u0 ∈ A satisfying

E [u0] ≤ E [u] for every u ∈ A.

If the domain of a real valued function E happened to be an open subset A of a (finite
dimensional) Euclidean space Rn, then we would know a systematic method to find
(at least interior) minimizers: We would take the derivative E ′ : A → R and try to
find a point a ∈ A with E ′(a) = 0. Of course, not so much of this makes sense for
E : A → R where A is a subset (open?, does open even make sense?) of an infinite
dimensional vector space of functions like C2(U) ∩ C1(U). Nevertheless, Lagrange
realized that something (interesting) can be done:

3A functional is simply a real valued function defined on a collection, very often as in this case a
vector space, of functions.

4Incidentally, this functional E is called the Dirichlet energy of the function u. Lagrange’s
insight was that, roughly speaking, solutions of Laplace’s equation are minimizers of the Dirichlet
energy.
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If u0 ∈ A, and φ ∈ C∞
c (U), then u0 + tφ ∈ A for every t ∈ R. This means

f : R → R by
f(t) = E [u0 + tφ],

for u0 and φ (temporarily) fixed, is a real valued function of one real variable. This
function is not so unlike the functions considered in first semester calculus, and if u0
is a minimizer of E , then t = 0 is a minimum point of f . This means, from Calc I,
that if f has a derivative, then

f ′(0) = 0.

In this way was born what is called the first variation of a functional E :

f ′(0) =

(

d

dt
E [u0 + tφ]

)

∣

∣

t=0

. (3.5)

Naturally, there are lots of interesting and important questions we should ask about
what exactly is the quantity defined in (3.5). At the top of the list: What kind of
derivative is this? And indeed, we should ask some of those questions sooner or later,
but let me suggest (with Lagrange that) we make a computation first:

f ′(0) =

(

d

dt

∫

U

|D(u0 + tφ)|2
)

∣

∣

t=0

.

Note that the integral and the gradient in the integrand are taken with respect to the
spatial variables, but this parameter t is not among those spatial variables. Therefore,
first of all,

D(u0 + tφ) = Du0 + tDφ.

Furthermore, we know

|D(u0 + tφ)|2 = D(u0 + tφ) ·D(u0 + tφ)

is given by a dot product, so

|D(u0 + tφ)|2 = |Du0|2 + 2(Du0 ·Dφ) t + |Dφ|2 t2.
The integrand is quadratic in t. If we differentiate under the integral sign, which can
be mathematically justified if the dependence on t is relatively nice, which it is, then

f ′(0) =

(

d

dt

∫

U

[2(Du0 ·Dφ) + 2|Dφ|2 t]
)

∣

∣

t=0

= 2

∫

U

Du0 ·Dφ.
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Now we need to “integrate by parts” in several variables, which amounts to using the
divergence theorem along with a product rule for the divergence operator. Specifically,

div(φDu0) = Dφ ·Du0 + φ∆u0.

Therefore,

∫

U

Du0 ·Dφ =

∫

U

div(φDu0)−
∫

U

φ∆u0

=

∫

∂U

φDu0 · n−
∫

U

φ∆u0

= −
∫

U

φ∆u0

because φ ∈ C∞
c (U) and

φ∣
∣

∂U

≡ 0.

Putting this together with our computation of the derivative f ′(0) and the necessary
conditon f ′(0) = 0 for a minimizer, we conclude:

∫

U

φ∆u0 = 0 for every φ ∈ C∞
c (U). (3.6)

So, we should ask ourselves at this point, what does this tell us about the minimizer
u0?

Two important principles of integration

We will use the following result in the derivation of the heat equation below:

Theorem 10 If U is an open subset of Rn and f ∈ C0(U) satisfies

∫

V

f = 0 for every open set V ⊂ U ,

then f(x) = 0 for x ∈ U .

Proof: Assume f(x0) 6= 0 for some x0 ∈ U . Then either f(x0) > 0 or f(x0) < 0.
Take the case f(x0) > 0. The other case is similar. By continuity, there is some δ > 0
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for which V = Bδ(x0) ⊂ U and |f(x) − f(x0)| < f(x0)/2 for x ∈ Bδ(x0). It follows
that

f(x) >
f(x0)

2
> 0 for x ∈ Bδ(x0).

In fact,

f(x0)

2
= f(x0)−

f(x0)

2
+ f(x)− f(x)

≤ |f(x)− f(x0)|+ f(x)− f(x0)

2

<
f(x0)

2
+ |f(x)| − f(x0)

2
= f(x).

Therefore, taking V = Bδ(x0)) we find

∫

V

f ≥
∫

V

f(x0)

2

=
f(x0)

2

∫

V

1

=
f(x0)

2
µ(Bδ(x0))

> 0.

This is a contradiction of the hypothesis

∫

V

f = 0. �

Our second result, which is proved much the same way, is called the fundamen-
tal lemma of the calculus of variations, though perhaps a better name is the
fundamental lemma of vanishing integrals.

Theorem 11 If U is an open subset of Rn and f ∈ C0(U) satisfies

∫

f φ = 0 for every φ ∈ C∞
c (U),

then f(x) = 0 for x ∈ U .
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Proof: Assume f(x0) 6= 0. Then either f(x0) > 0 or f(x0) < 0. This time let’s take
the case f(x0) < 0. By continuity, there is some δ > 0 with Bδ(x0) ⊂ U and

u(x) <
u(x0)

2
< 0 for x ∈ Bδ(x0).

Now we take a function φ ∈ C∞
c (U) with φ ≥ 0 and supp(φ) = Bδ(x0). For example,

we can take the standard test function with value

µ0(x) =

{

e−1/|x|2 , x ∈ B1(0)
0, x /∈ B1(0)

and then take φ given by

φ(x) = µ0

(

x− x0

δ

)

.

For this choice of φ we find

∫

uφ =

∫

Bδ(x0)

uφ

≤ u(x0)

2

∫

Bδ(x0)

φ

< 0.

This is a contradiction of the hypotheses of the lemma. �

Applying the fundamental lemma (the second theorem above) to (3.6) we find it
is a necessary condition for u ∈ C2(U)∩C1(U) to minimize the Dirichlet energy that
u satisfy Laplace’s equation on U :

∆u = 0. (3.7)

We will give a third, and perhaps somewhat more compelling, derivation of Laplace’s
equation (3.7) in connection with our derivation of the heat equation below. There
are several other mathematical “derivations” of Laplace’s equation, that is to say,
there are problems of mathematical (and often practical) interest to which solutions
of Laplace’s equation are intimately related. We briefly mention one topic falling into
this category.
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Conformal mapping

Given an open subset U of the complex plane C, we say U is a conformal image of the
open unit disk D = {z ∈ C : |z| < 1} if there exists a complex differentiable function
f : D → U such that f is one-to-one and onto. Such functions are very often used
on the making of maps depicting the geographic features of the earth. Such maps
preserve angles, though they may scale by different amounts at different points. This
is why, for example, Greenland appears to be much larger than South America in a
Mercator projection of the land masses on the surface of the earth. Given a complex
differentiable function f : D → U , we can write f = u+ iv where u = u(x, y) = Re(f)
and v = v(x, y) = Im(f) and z = x + iy is the complex independent variable. In
this case, u and v satisfy the Cauchy-Riemann equations, which is a system of partial
differential equations:

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
.

It is easy to check that u and v are solutions of Laplace’s equation. Given a harmonic
function u = u(x, y), satisfying ∆u = 0, a function v is said to be a harmonic
conjugate for u if the complex valued function f = u+ iv is complex differentiable,
or in other words conformal.

Note: When we say a function f : D → U is complex differentiable here we mean
the limit

f ′(z) = lim
ζ→z

f(ζ)− f(z)

ζ − z
(3.8)

exists at every point z ∈ D. Such a function has many interesting properties:

1. If the first complex derivative5 exists, then the second complex derivative f ′′

and all subsequent derivatives exist.

2. The function f is locally representable at each z0 ∈ D by a power series

f(z) =
∞
∑

j=0

f (j)(z0)

j!
(z − z0)

j .

5This limit of a difference quotient (3.8) looks superficially like some kind of real derivative, but
this is very much not the case. The fact that the limit is taken as the variable ζ takes values in the
complex plane C makes this kind of derivative fundamentally different from any real derivative.
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This condition (local power series representation) is equivalent to complex dif-
ferentiability on an open set, and when this property is emphasized one says the
function f is analytic or complex analytic in contrast to a function of several
real variables which may (or may not be) real analytic, i.e., locally represented
by a real power series.

3. The function f considered as geometrically mapping the domain D to the do-
main U preserves angles at points where f ′(z) 6= 0. The value of the derivative
f ′(z0) is called the conformal factor at z0, and given a curve γ : (−1, 1) → D
with γ(0) = z0 there holds, by the chain rule,

d

dt
(f ◦ γ)(0) = f ′(z0)

d

dt
γ(0).

This corresponds to a local scaling by length, in every direction, by a factor
|f ′(z0)| and a rotation determined by the argument θ of f ′(z0) = |f ′(z0)|eiθ.
To emphasize this property one can say the function is conformal or is a
conformal mapping. Conversely, if a function f : D → U preserves angles,
then the function will be complex differentiable.

3.1.2 Separated variables solutions

Let U be a bounded open connected subset of Rn with ∂U a smooth, say C2 hyper-
surface, i.e., n− 1-dimensional submanifold. Then we have the following:

Theorem 12 (existence and uniqueness for the Dirichlet problem for Laplace’s equa-
tion) Given any g ∈ C2(∂U), there exists a unique solution u ∈ C2(U) ∩ C0(∂U) of
the Dirichlet boundary value problem

{

∆u = 0, on U
u∣
∣

∂U

= g,

We will not prove this theorem here, but it is good to know about it. Another result
that is similarly important to know is the following:

Theorem 13 (interior regularity for solutions of Laplace’s equation) If u ∈ C2(U)
and ∆u = 0, then u ∈ C∞(U). In fact, u is real analytic, i.e., u ∈ Cω(U).

The real analyticity, local power series representation, of a harmonic function is closely
related to the complex analyticity of a complex differentiable function. See the dis-
cussion in the “derivation” section above. We will not prove the regularity result
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either, though the integration techniques, the mean value property in particular, dis-
cussed in the third section below will take us quite close to a proof. In certain cases,
the integration techniques may also be extended to prove existence and uniqueness,
though we will not discuss this directly. If you are interested, look up the Poisson
integral formuala for harmonic functions.

Here we will consider certain special domains. In particular, we will consider a
rectangle in R

2. This is not a domain with C2 boundary, but in certain cases existence
and uniqueness does hold. Our interest is in computing formulas for solutions and
formulas involving (Fourier) series in particular. If we take finitely many terms in a
series solution, then we can think of our objective as approximating a solution.

Fourier series representation

A Fourier series for a periodic function f : R → R with period 2π, i.e., f(x + 2π) =
f(x) for all x ∈ R has the form

∞
∑

j=0

aj cos(jx) +

∞
∑

j=1

sin(jx).

Notice j = 0 gives a constant term a0. You can think of such a series as roughly
comparable to a power series. As we have written things so far, there is no intimate
connection between the function f and the series. The only connection is that they
are both 2π periodic functions. This is the only thing we have used about the function
f to write down the “form” of the series, but we did use the fact that f is 2π periodic
in this way. The idea is to find the coefficents, so that the series represents a given
function f . The first sum (if convergent) is even, and the second sum (if convergent)
is odd. We will not concern ourselves greatly with convergence, but if f ∈ L2(−π, π),
i.e., f is measurable and

∫

(−π,π)
|f |2 <∞,

then the series will converge at some set of points G satisfying

µ(G ∩ (−π, π)) = 2π,

and it makes sense (if one explains what one means) to write

f(x) =
∞
∑

j=0

aj cos(jx) +
∞
∑

j=1

sin(jx). (3.9)
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In general what this means is the following: There exists a well-defined function
g : G→ R given by

g(x) =

∞
∑

j=0

aj cos(jx) +

∞
∑

j=1

sin(jx),

and setting

g0(x) =

{

g(x), x ∈ G
0, x /∈ G,

there holds
∫

(−π,π)
|g0 − f |2 = 0.

If f ∈ C1(R), then one can say the series converges at every point and (3.9) holds
classically, i.e., pointwise at every x ∈ R. Of primary initial interest to us is the
determination of the coefficients aj and bj .

Fourier series can also sometimes be discussed for 2π periodic function f : R → C

in the (unified) form

f(t) ∼
∞
∑

j=0

αje
it

where the coefficients are also complex.

Fourier sine series

For simplicity, we will restrict attention to a slightly different framework than the one
just described, but the approach can be applied more generally. Instead of focusing
on the symmetric interval (−π, π) directly, we will consider the interval (0, π) and the
situation where aj = 0 for all j. In this way, we are effectively assuming f is an odd
function. As we shall see, Fourier series are quite robust in their behavior, and this
turns out to be less of a restriction than one might think.

Here is the main point: If we assume a representation

f(x) =

∞
∑

j=1

bj sin(jx)

and whatever convergence might be convenient for us, then multiplying both sides of
the representation formula by sin(kx), which is called a single Fourier sine mode, we
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have

f(x) sin(kx) =

∞
∑

j=1

bj sin(jx) sin(kx).

Integrating both sides

∫

(0,π)

f(x) sin(kx) =
∞
∑

j=1

bj

∫

(0,π)

sin(jx) sin(kx). (3.10)

There holds
∫

(0,π)

sin(jx) sin(kx) =

∫ π

0

sin(jx) sin(kx) dx =

{

0, j 6= k
π/2, j = k.

Thus, rearranging the relation (3.10) we find

π

2
bk =

∫

(0,π)

f(x) sin(kx),

or

bk =
2

π

∫

(0,π)

f(x) sin(kx). (3.11)

This is a formula for the coefficients because the integral(s) on the right are simply
numbers determined by the function f . In specific cases, these numbers can be
computed. In this case the coefficients bk are called the Fourier sine coefficents of
f .

As an example, let’s consider the function

f(x) =
π2

4
−
(

x− π

2

)2

.

According to (3.11)

bk =
2

π

∫ π

0

[

π2

4
−
(

x− π

2

)2
]

sin(kx) dx

=
π

2

∫ π

0

sin(kx) dx− 2

π

∫ π

0

(

x− π

2

)2

sin(kx) dx.

First we note that
∫ π

0

sin(kx) dx = −1

k
cos(kx)∣

∣

π

x−0

=

{

2/k, k odd
0, k even.
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Next we integrate by parts:

∫ π

0

(

x− π

2

)2

sin(kx) dx = −1

k

(

x− π

2

)2

cos(kx)∣
∣

π

x−0

+
2

k

∫ π

0

(

x− π

2

)

cos(kx) dx

=
2

k

[

π2

8
[1− (−1)k]− 1

k
sin(kx)∣

∣

π

x−0

+
1

k

∫ π

0

sin(kx) dx

]

=
2

k

[

π2

8
[1− (−1)k]− 1

k2
cos(kx)∣

∣

π

x−0

]

=
2

k

[

π2

8
− 1

k2

]

[1− (−1)k].

Thus,
∫ π

0

(

x− π

2

)2

sin(kx) dx =

{

(1/k)[π2/2− 4/k2], k odd
0, k even,

and

bk =

{

8/(πk3), k odd
0, k even.

We have not shown it, but in fact it is true, that for each x ∈ [0, π] there holds

π2

4
−
(

x− π

2

)2

=

∞
∑

k=0

8

π(2k + 1)3
sin[(2k + 1)x]. (3.12)

Perhaps a more practically interesting consideration for you might be the conver-
gence of the partial sums implied by (3.12). The first term for example, corresponding
to k = 0 in the sum, is f1(x) = (8/π) sinx. I have plotted the functions f , f1 and P1

and Q1 the first order Taylor expansions of f at x = 0 and x = π/2 respectively; see
Figure 3.1.

It should be absolutely no surprise that the first term of the Fourier expansion does
not match the quadratic function f exactly, simply because the Fourier approximation
is sinusoidal. What may be slightly surprising is how well the single Fourier term
matches the quadratic function globally of the interval of interested 0 ≤ x ≤ π.
We can get a quantitative measure of how well f1 approximtes f by plotting the
difference f1 − f . In fact, adding the second term of the Fourier expansion to obtain
f3 : [0, π] → R by

f3(x) =
8

π

[

sin x− 1

27
sin(3x)

]
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Figure 3.1: The function f : [0, π] → R by f(x) = π2/4 − (x − π/2)2 is plotted
in red along with the natural extension outside the interval of interest. Various
approximations are plotted as well: The first term of the Fourier sine expansion f1
is plotted in blue. Two Taylor polynomial approximations of first order are plotted
in black. It will be noted that the Fourier series is a kind of “global” approximation
as opposed to the Taylor approximation which is inherently local. (Note well that
the Fourier coefficents are determined by an integral while the Taylor coefficients are
determined by a derivative (at a point). This can have some significant advantages.

gives an approximation globally/uniformly within about 0.03 of f on an interval of
length about 3, that is, the approximation is within about 1/100 of the length of the
domain of the function. (If the functions f and f3 are plotted at a reasonable scale,
the two are essentially indistinguishable on the interval of interest.) In Figure 3.2 we
have plotted the differences δj = fj − f for fj corresponding to k = 0, . . . , 3.
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Figure 3.2: The signed pointwise error δj = fj−f of the Fourier expansion with k+1
terms and j = 2k + 1 for k = 0, 1, 2, 3.

Solving the PDE

Now we apply the discussion of the previous section to solve the boundary value
problem







∆u = 0, on U
u(x, π) = g(x), x ∈ (0, π)
u(x) = 0, x ∈ ∂U\Γ

(3.13)

where U = (0, π) × (0, π) is an open domain in R2 with boundary a square and
boundary component Γ = {(x, π) : x ∈ (0, π)}, and g : [0, π] → R by

g(x) = π2/4− (x− π/2)2

is the example function considered (and called f) above. We seek first separated
variables solutions having the form u(x, y) = A(x)B(y). Substituting into Laplace’s
equation we find

A′′B + AB′′ = 0
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where the derivatives on A are with respect to x and the derivatives on B are with
respect to y of course. At points (x, y) where A and B are nonzero we can write

A′′

A
= −B

′′

B
. (3.14)

Furthermore, at points y where B(y) 6= 0 the boundary condition gives

A(0) = A(π) = 0.

Differentiating (3.14) with respect to x, we find

d

dx

(

A′′

A

)

= 0.

This means A′′/A is constant. Let us call the constant λ and focus on the “problem”

{

A′′ = λA, x ∈ (0, π)
A(0) = 0 = A(π).

(3.15)

This is a somewhat different kind of mathematical problem than you may have en-
countered before. It has a special name: This kind of problem is called a Sturm-
Liouvill problem. Superficially, the Sturm-Liouville problem looks a little bit like
an ordinary differential equation. It has an ordinary derivative of second order A′′

in it. On the other hand, there are two things that make it different. First the
boundary condition is rather unlike the standard initial condition encountered in the
elementary study of second order ordinary differential equations, namely A(0) = a0
and A′(0) = b0. The condition we actually have here A(0) = 0 and A′(π) = 0 is
called a two point boundary condition, and if λ is a given constant, then the
problem (3.15) would be a two point boundary value problem which is usually
studied in, for example, a second course on ODEs or a course in applied mathematics
like this one.6 The really big difference, however, is that λ is not a given constant,
but finding the value(s) of λ for which a solution A of the corresponding two point
boundary value problem exists is included as a part of the Sturm-Liouville problem.
As a consequence, we must consider cases.

Let us consider the two point boundary value problem (3.15) for a given, fixed,
constant λ < 0. Again, note this may be a slightly different kind of ODE problem
than you have considered before, but you can do it, and maybe you have solved such

6How appropriate!
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a problem before. At any rate what you should know is that the general solution of
A′′ = λA when λ < 0 is A(x) = a cos(µx)+b sin(µx) where a and b are some constants,
µ2 = −λ, and we can take µ > 0 for simplicity. Having made this observation we
may turn to the boundary conditions which require

a = 0 and a cos(µπ) + b sin(µπ) = 0.

In view of the fact that a = 0, we find b sin(µπ) = 0. Now there are two possibilities:
Either a = 0 or sin(µπ) = 0. The first possibility is not interesting because we get
from it only the trivial solution A(x) ≡ 0. Turning to the second possibility, we get
interesting solutions for µ = µj = j and j = 1, 2, 3, . . .. These correspond to the
sequence

λ = λj = −j2 for j = 1, 2, 3, . . . .

You may note/recall that the symbol λ was used extensively in linear algebra to denote
eigenvalues. In that case, there was invariably a linear function L : Rn → Rn defined
on a finite dimensional vector space for which there was a nonzero vector v ∈ Rn

with L(v) = λv. The same dynamic is at work here, but the operator is the ordinary
differential operator

d2

dx2
: C∞(0, π) → C∞(0, π)

defined on the infinite dimensional vector space C∞(0, π). Nevertheless, it is the case
for the (nonzero) functions

Aj(x) = sin(jx),

that
d2

dx2
Aj = A′′

j = λjAj.

Thus, Aj is the eigenvector. (Think about that.) Also, the sequence of values
{λj}∞j=1 with λj = −j2 are called the Sturm-Liouville eigenvalues. Remember
that in linear algebra there were only finitely many eigenvalues, but here, on an
infinite dimensional space, there are infinitely many.

To be thorough, we should check to see if there are any others. If λ = 0 and
A′′ = λA, then A(x) = ax + b for some a, b ∈ R. The solution has quite a different
qualitative behavior. The boundary conditions give b = 0 and πa + b = 0. It follows
that a = b = 0, and we only get the trivial solution (and no eigenvalue).

If λ > 0, then the general solution of A′′ = λA is

A(x) = aeµx + be−µx
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or alternatively
A(x) = a cosh(µx) + b sinh(µx)

where µ2 = λ. Taking the second form and applying the boundary values gives a = 0
and a cos(µπ)+b sinh(µπ) = 0. Since there is no positive value µπ with sinh(µπ) = 0,
we only get the trival solution a = b = 0.

At this point, we can be sure we have found every number λ and every function
A so that the Sturm-Liouville pair (λ,A) gives a solution of (3.15). In fact, there
is a sequence of eigenvalues λj = −j2 and corresponding solutions a sin(jx) for j =
1, 2, 3, . . .. We can also take a = aj = 1 for every j if we like.

In the end, the separated variables solutions must all look like

uj(x, y) = aj sin(jx)Bj(y)

with B′′
j = −λjBj = −(−j2)Bj . It follows that

Bj(y) = αj cosh(jy) + βj sinh(jy).

We also have a boundary condition Bj(0) = 0. This means αj = 0, and we can take,
again for simplicity, βj = 1 for all j = 1, 2, 3, . . ..

Finally, then we attempt to solve the original problem (3.13) with a solution given
by a superposition

u(x, y) =

∞
∑

j=1

ajAj(x)Bj(y) =

∞
∑

j=1

aj sin(jx) sinh(jy)

of separated variables solutions. A superposition is rather like a linear combination
of solutions, except that infinitely many terms are allowed, and (we at least hope)
we find coefficients a1, a2, a3, . . . so that we have convergence of the series. Assuming
the convergence the PDE should be satisfied and the boundary condition(s) on ∂U\Γ
should be satisfied. For the final step, we consider the boundary condition on Γ, i.e.,
where y = π. For this, we need

u(x, π) =

∞
∑

j=1

aj sinh(jπ) sin(jx) = g(x) =
π2

4
−
(

x− π

2

)2

.

We know how the coefficients must be chosen to accomplish this. Namely, we must
have

aj sinh(jπ) =
8

π(2k + 1)3
for j = 2k + 1
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and aj = 0 otherwise, i.e., for the even index terms. Thus, we obtain a solution

u(x, y) =
8

π

∞
∑

k=0

1

(2k + 1)2 sinh[(2k + 1)π]
sin[(2k + 1)x] sinh[(2k + 1)y]. (3.16)

The partial sum with two terms is illustrated in Figure 3.3.

Figure 3.3: The partial sum u3 of the solution given in (3.16) consisting of two terms
corresponding to k = 0 and k = 1. The function u3 is actually harmonic, satisfies
u3(x, y) = 0 for (x, y) ∈ ∂U\Γ, and matches the boundary values along Γ to within
about δ = 0.03. The error in the interior can be no larger: You can prove that using
the maximum principle.

3.1.3 Integral identities and properties

Perhaps the two most interesting properties of solutions of Laplace’s equation are the
mean value property and the maximum principle. Remember that a solution
of Laplace’s equation ∆u = 0 is called a harmonic function.
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integral identities

Owing to the divergence structure of the Laplace operator, that is because

∆u = divDu,

one can obtain some kind of integral identities simply by integrating each of the
fundamental equations and applying the divergence theorem. For example, if V is a
nice domain of integration contained in an open set U on which ∆u = 0, then

0 =

∫

V

∆u =

∫

V

divDu =

∫

∂V

Du · n

where n is the unit outward conormal to ∂V . It may be recalled from our discussion
of the divergence operator that

∫

∂V

Du · n

is the flux integral of the gradient with respect to the domain V . The quantity

Dnu = Du · n
is also the outward normal derivative. In particular Du ·n is a directional deriva-
tive with respect to the outward normal and gives the rate of change (with respect
to length in the domain) of the value of u along a normal line leaving the domain u.
Thus, the integral identity

∫

∂V

Du · n = 0

may be interpreted to say the average value of the normal derivative around the
boundary of V is zero.

A second integral identity may be obtained using the product formula

div(uDu) = |Du|2 + u divDu.

Integrating both sides of the product rule and noting/assuming divDu = ∆u = 0,
we have

∫

V

|Du|2 =
∫

∂V

uDu · n =

∫

∂V

uDnu.

Let us assume this discussion may be applied on the entire domain U , so that
∫

∂U

uDnu =

∫

U

|Du|2 ≥ 0.

If this is the case, we can consider the Dirichlet boundary value problem and prove a
uniqueness result:
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Theorem 14 If u, v ∈ C2(U) are two solutions of

{

∆u = 0, on U
u∣
∣

∂u

= g,

where U is a bounded open subset of Rn with C1 boundary, then u ≡ v.

Proof: The difference w = u− v is harmonic and vanishes on ∂U . Thus,

∫

U

|D(u− v)|2 =
∫

∂V

(u− v)Dn(u− v) = 0.

Since the integrand is non-negative and continuous, it must be the case that D(u−
v) = Du − Dv is identically the zero vector. This means u − v = c is constant
on each connected component C of U . Given any p ∈ C, we can take a segment
{(1 − t)p + tq : 0 ≤ t ≤ 1} with (1 − t)p + tq ∈ C for 0 ≤ t < 1 but q ∈ ∂C. By
continuity

0 = g(q)− g(q) = u(q)− v(q) = lim
tր1

[u((1− t)p+ tq)− v((1− t)p+ tq)] = c.

Therefore u(p) = v(p) for every p ∈ U . �

The mean value property

Given an open set U ⊂ Rn, the value of a harmonic function u : U → r at a point
p ∈ U is given by the average over any (hyper)sphere Br(p)⊂⊂U centered at p:

u(p) =
1

nωnrn−1

∫

∂Br(p)

u. (3.17)

The (n−1)–dimensional measure of ∂Br(p) is nωnr
n−1 where ωn is the n–dimensional

measure of the unit ball B1(0). It is a nice exercise to explore these measures. You
know, for example, that the area measure of the unit disk in R2 is given by ω2 = π,
and the area of the disk of radius r is obtained by scaling by the square of the radius:
πr2. It is interesting, on the one hand, that the length of the boundary circle is the
derivative of the area with respect to the radius:

2ω2r =
d

dr
πr2.
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The same thing holds in all dimenions. You are probably familiar with the case n = 3
in which the volume of the unit ball is

ω3 =

∫

B1(0)

1 =
4π

3
and

∫

Br(0)

1 =
4π

3
r3.

You may not have noticed that

∫

∂Br(0)

1 =
d

dr
ω3r

3 = 3ω3r
2.

What becomes quite interesting is to find a formula for the n-dimensional measure

ωn =

∫

B1(0)

1

when B1(0) = {x ∈ Rn : |x| < 1} ⊂ Rn. A formula involving the gamma function
Γ : [0,∞) → R by

Γ(x) =

∫ ∞

0

tx−1e−t dt

can be obtained by induction, namely,

ωn =
πn/2

Γ(n/2 + 1)
. (3.18)

Then
∫

Br

1 = ωnr
n and

∫

∂Br

1 = nωnr
n−1.

Incidentally, for each positive integer m there holds Γ(m) = (m−1)!, and these values
play a role in the formula for ωn when n is even. For example, when n = 2 formula
(3.18) becomes ω2 = π because Γ(2) = 1. More generally, when n = 2k

ω2k =
πk

k!
andnωn = 2k

πk

k!
,

so these are all rational multiples of an integer power of π, namely πn/2. The situation
is somewhat different when n = 2k + 1 is odd. When n = 1, we know ω1 = 2 and
the measure of the boundary, which in this case is counting measure, has the same
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numerical value becuase the boundary of the interval B1(0) = (−1, 1) consists of two
points. According to (3.18) we should have

2 = ω1 =

√
π

Γ(3/2)
,

so

Γ(3/2) =

∫ ∞

0

√
te−t dt =

√
π

2

which is indeed the case. A similar comparison of (3.18) in the case n = 3 to the
known value of ω3 gives

Γ(5/2) =
3

4
πn/2−1 =

3

4

√
π.

It is not difficult to show Γ(x + 1) = xΓ(x). It follows from this recursion that
Γ(n/2 + 1) is a rational multiple of

√
π for each n and ω2k+1 is a rational multiple of

an integer power of π as well.
Let us return to the mean value property. When Br(p)⊂⊂U , it is also possible

to average over the entire ball:

u(p) =
1

ωnrn

∫

Br(p)

u. (3.19)

Both mean value formulas (3.17) and (3.19) relate the value of u at a single point p
in a very rigid/structured way with many values of u at points different from p. The
proof(s) of these formulas follow from various change of variable formulas for integrals
and the divergence theorem.

d

dt

1

tn−1

∫

∂Bt(p)

u =
d

dt

1

tn−1

∫

x∈∂B1(0)

u(p+ tx)tn−1

=
d

dt

∫

x∈∂B1(0)

u(p+ tx)

=

∫

x∈∂B1(0)

Du(p+ tx) · x

=

∫

B1(0)

÷[Du(p+ tx)].

The second expression follows from a change of variables in the integral. Notice the
scaling factor tn−1. The expression in the third line is obtained by differentiating
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under the integral sign. The last expression comes from the divergence theorem, and
we have to be a little careful because the divergence is with respect to x rather than
the original variable p + tx of integration. It follows from the chain rule, however,
that

÷[Du(p+ tx)] = t∆u(p+ tx).

Thus, we can continue:

d

dt

1

tn−1

∫

∂Bt(p)

u = t

∫

x∈B1(0)

∆u(p+ tx)

= t

∫

∂B1(p)

∆u
1

tn

=
1

tn−1

∫

∂B1(p)

∆u

= 0.

It follows that the average
1

nωntn−1

∫

∂Bt(p)

u

over ∂Bt(p) is a constant independent of t. On the other hand, by continuity we can,
for any ǫ > 0, take r > 0 small enough so that

|u(x)− u(p)| < ǫ whenever t < r.

Thus, for t < r we have
∣

∣

∣

∣

1

nωntn−1

∫

∂Bt(p)

u− u(p)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

nωntn−1

∫

∂Bt(p)

[u− u(p)]

∣

∣

∣

∣

≤ 1

nωntn−1

∫

∂Bt(p)

|u− u(p)|

≤ ǫ
1

nωntn−1

∫

∂Bt(p)

1

= ǫ.

This means the constant value of the average is the same as the limiting value and

lim
tց0

1

nωntn−1

∫

∂Bt(p)

u = u(p). �
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We have established the mean value property for averages over spheres. To get the
averages over entire balls, we use a version of Fubini’s theorem which sometimes goes
by the names generalized polar coordinates or the coarea formula. Specifically,

1

ωnrn

∫

Br(p)

u =
1

ωnrn

∫ r

0

(
∫

∂Bt(p)

u

)

dt

=
1

ωnrn

∫ r

0

nωnt
n−1

(

1

nωntn−1

∫

∂Bt(p)

u

)

dt

=
1

ωnrn

∫ r

0

nωnt
n−1 (u(p)) dt

=
nu(p)

rn

∫ r

0

tn−1 dt

=
nu(p)

rn
rn

n
= u(p). �

The application of Fubini’s theorem/the coarea formula is in the first line. You can
think about whether you believe it or not.

The maximum principle

The place to start in understanding the maximum principle is with the weak max-
imum principle which is easy to state, understand, and prove.

Theorem 15 (weak maximum principle) If u : U → R is harmonic on a bounded
open subset U of Rn and u ∈ C0(U), then

u(p) ≤ max
x∈∂U

u(x) for every p ∈ U . (3.20)

Proof: If it were the case that u(p) > maxx∈∂U u(x) for some p ∈ U , then we can
begin by considering a function of the form

w0(x) = −ǫ|x− p|2.

In this case, there is certainly a maximum point p0 ∈ U at which

m0 = u(p0) = max
x∈U

u(x) > max
x∈∂U

u(x).
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Let us start with the function v = m0+w0. Since U is bounded, it is possible to take
ǫ > 0 small enough so that

v∣
∣

∂U

> u∣
∣

∂U

.

In fact, if every point x ∈ U satisfies |x− p0| < R, then taking ǫ > 0 with

ǫ <
m0 −maxx∈∂U u(x)

R2

we have

v(x) = m0 − ǫ|x− p0|2
≥ m0 − ǫR2

> m0 − [m0 − max
x∈∂U

u(x)]

= max
x∈∂U

u(x).

Consequently, there is some p1 ∈ U with v(p1) ≤ u(p1) and

c1 = v(p1)− u(p1) = min
x∈U

[v(x)− u(x)] ≤ 0.

Thus, if we let w = v − c1, then the following hold:

1. w(x) ≥ u(x) for x ∈ U ,

2. w(p1) = u(p1).

From these conditions, it follows that Du(p1) = Dv(p1) and

uxx(p1) ≤ vxx(p1) and uyy(p1) ≤ vyy(p1).

Therefore,
∆v(p1) ≥ ∆u(p1) = 0.

On the other hand, direct calculation gives ∆v ≡ −2n < 0. Therefore, we have
obtained a contradiction, meaning the assumption u(p) > maxx∈∂U u(x) is impossible,
and the weak maximum principle is proved. �

The strong maximum principle is most easily understood by taking the weak
maximum principle as a starting point. The strong maximum principle asserts that
strict inequality holds in (3.20) in most cases. The exact statement is as follows:
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Theorem 16 (E. Hopf strong maximum principle7) If u : U → R is harmonic on a
bounded open subset U of Rn and u ∈ C0(U), then

u(p) < max
x∈∂U

u(x) for every p ∈ U (3.21)

unless equality holds at every point and u is a constant function.

I will not prove the strong maximum principle here, but it is most often derived from
a nice result called the E. Hopf boundary point lemma.

3.2 The heat equation

ut = ∆u

3.2.1 Derivation

We have gone over this in class. I’ll try to include some more detail here.
We start with the assumption that heat energy within subregions V of a given

solid8 U is expressible by a thermal energy density Θ x ∈ U and time t and having
units/physical dimensions

[Θ] =
[energy]

Ln
=

[force]

Ln−1
=

M

Ln−2T 2

so that

E = E(t, V ) =

∫

V

Θ

models the thermal energy within the region V . It is assumed the thermal energy
density Θ : U × [0, T ) → R is dependent on spatial position x ∈ U and time t ∈ [0, T )
for some positive final time T . Thus, while Θ = Θ(x, t), the energy within V is time
dependent. We assume sufficient regularity so that differentiation under the integral
sign with respect to t is justified and

d

dt
E =

∫

V

∂Θ

∂t
.

7Eberhard Hopf, German mathematician (1902-1983), not to be confused with Heiz Hopf, German
mathematician (1894–1971) known for the Hopf fibration.

8The mathematical assumption that the media is solid means we do not (need to) consider
transport of heat energy via motion in the medium. This could also be included, but the model
necessarily becomes substantially more complicated.
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This quantity models/gives the rate of change of the energy within the specified region
V . Notice this, when positive, is the rate thermal energy (globally in a net sense)
enters V . When Et < 0, this model quanity gives the negative rate/speed at which
thermal energy leaves V .

We introduce next a thermal energy density flux field Φ : U × [0, T ) → Rn.
The physical dimensions of this model function are

[Φ] =
[energy]

Ln−1T

so that the flux integral

B(t) =

∫

∂V

Φ · n,

with n the outward unit conormal, i.e., tangent vector to V normal to ∂V , along ∂V ,
models also the rate at which thermal energy passes through ∂V with, in a certain
sense, the opposite sign convention: B > 0 gives the net rate at which thermal energy
leaves V through ∂V , andB < 0 gives the negative of the rate at which thermal energy
enters V .

There is another natural contribution to Et we can easily model. Say, for example,
an electrical current is passed through U creating heat internally or some cooling
device is externally applied draining thermal energy from U , not through ∂U , but
into some space ambient to the model space Rn ⊃ U . The latter can be imagined
if one is modeling a laminar region U ⊂ R2 so that n = 2, but a heat sink like an
ice cube is applied to the interior of the lamina U from a larger physical space R3

containing both U and the nominal ambient space R2 containing U and (defining)
∂U . In any case, we introduce a second energy-rate density term ρ : U × [0, T ) → R

with physical units

[ρ] =
[energy]

LnT
so that

F =

∫

V

ρ

gives the rate of change of energy in V due to interior sources and/or sinks.
For our model, then, we begin with the assumed relation

Et = −B + F ;

the net rate of energy entering V is the negative of the rate at which energy exits
through the boundary ∂V plus the rate at which energy is generated internally. That
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is,
∫

V

Θt = −
∫

∂V

Φ · n+

∫

V

ρ for every domain of integration V ⊂ U . (3.22)

This may be taken as a first (weak) form of the heat equation involving (usually) two
unknown functions Θ and Φ, the latter of which constitutes actually n unknown real
valued functions, and one structural, or driving, function f , often referred to as the
“forcing.” Applying the divergence theorem to the flux integral, when the regularity
of Φ allows it, we obtain a second weak form for the same functions

∫

V

[Θt + divΦ− ρ] = 0. (3.23)

Again, assuming the regularity of the integrand in (3.23) is adequate, we may apply
some version of Theorem 10 to conclude

Θt = − div Φ + ρ. (3.24)

This third form of the heat equation may, at this point, be simply taken as a classical
model equation for the evolution of heat energy within U , involving a partial differen-
tial equation, and augmented with appropriate initial and boundary value conditions.
For example, one may seek, for ρ = ρ(x, t) given, thermal energy densities Θ and flux
fields Φ satisfying (3.24) for (x, t) ∈ U × [0, T ) and

Θ(x, 0) = θ(x), x ∈ U (an initial thermal energy density on U)

Φ(x, t) = φ(x, t), x ∈ ∂U (a prescribed flux field on ∂U).

A common alternative to the general boundary condition here is the prescription of
the normal flux along ∂U :

Φ(x, t) · n(x) = v(x, t), x ∈ ∂U. (3.25)

In general, the evolution of thermal energy in such a model may be considered as
underdetermined due to lack of additional constitutive relations. Nevertheless,
consideration of aspects of heat flow can sometimes be clarified by consideration of
these conditions/relations.

The standard constitutive relations are obtained by the introduction of a further
quantity assumed to have its own fundamental physical dimension: temperature.
Precisely, we assume there exists a real valued function u : U × [0, T ) → R for which
the following model assumptions/relations hold:
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1. (the law of specific heat) The thermal energy density is proportional to the
temperature

Θ = σu.

The “constant” σ having physical dimensions

[σ] =
[energy]

temp

is called the specific heat capacity, and generally may be spatially and time
dependent within U .9

2. (Fourier’s law of heat conduction) The flux field Φ is proportional to the negative
of the gradient

Φ = −kDu
where the “constant” of proportionality is called the thermal conductivity.
Generally, k = k(x, t, u). Again, the assumption that k depends on Du is a
direct affront to the modeling hypothesis.

Applying the temperature relations to (3.22) we obtain a fourth form of the heat
equation

∫

V

[(σu)t − ρ] =

∫

∂V

kDu · n (3.26)

assumed to hold for every suitable subdomain V ⊂ U . From the divergence theorem
we derive a fifth form involving the single unknown function u:

∫

V

[(σu)t − div(kDu)− ρ] = 0. (3.27)

From this weak form we obtain the classical (sixth) form

(σu)t = div(kDu) + ρ. (3.28)

9If you look up specific heat capacity, you may (and should) be troubled to find this “constant” of
proportionality depends on the temperature u—and perhaps even derivatives of u. Such dependence
obviously throws into question the entire modeling assumption. In fact, what is really being pointed
out is that the model does not, strictly speaking, accord with experimental observations. On the
other hand, assuming a given relation σ = σ(x, t, u) does lead to a nominally reasonable model
equation, though one that has not received as much attention as the standard heat equation. Similar
comments apply to the “constant” of conductivity in Fourier’s law.
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All of these equations are called forced heat equations due to the inhomogeneity
f , assuming f is nonzero. Note that the heat operator L : C2(U × (0, T )) → C0(U ×
(0, T )) by

Lu = (σu)t − div(kDu)

is linear. Assuming σ = σ(x, t) is independent of u and differentiable, we may write

(σu)t = σut + σtu.

Similarly, if k = k(x, t) is independent of u and differentiable, we can write

div(kDu) = k∆u+Dk ·Du.

These assumptions lead to various expanded forms of (3.28):

ut =
1

σ
div(kDu) + τu+ f (τ = −σt/σ, and f = ρ/σ)

(σu)t = k∆u+Dk ·Du+ ρ

ut = κ∆u+
1

σ
Dk ·Du+ τu+ f (κ = k/σ)

The assumption that σ and k are strictly constant gives the standard forced heat
equation

ut = κ∆u+ f.

Either scaling in space, scaling in time, or simply the assumption κ = 1 leads to
consideration of the PDE

ut = ∆u+ f

and the homogeneous equation ut = ∆u we have called “the” heat equation above.
Assuming σ is given and the law of specific heat, the general initial condition

Θ(x, 0) = θ(x) gives the standard initial condition

u(x, 0) = u0(x) for x ∈ U

where u0 = θ/σ. Similarly, assuming the conductivity k is given and Fourier’s law,
the general boundary condition Φ(x, t) = φ(x) becomes

Du(x, t) = v(x) for x ∈ ∂U

where v = −φ/k. It is more common to use the boundary flux condition (3.25) so
that

Du · n = h for x ∈ ∂U and t > 0.
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In this case we have of course h = −φ · n/k. The case h ≡ 0 is of special note: It
is a homogeneous boundary condition, and it models an insulated boundary. It
will be noted that this is, essentially, a Neumann boundary condition much like that
encountered in connection with Laplace’s equation.

With the temperature u in hand as part of the model, it is also natural to introduce
a fixed temperature boundary condition

u∣
∣

∂U

= g

where “fixed” means possibly dependent on both space and time so that g : ∂U ×
(0, T ) → R and g = g(x, t), but it is (simply) the temperature that is fixed. This is
a Dirichlet condition for the heat equation.

3.2.2 separated variables solutions

Sticking with the one-dimensional heat equation which models heat conduction along
a thin rod or wire, let’s consider a relatively simple but somewhat interesting problem:
Say we have some initial temperature distribution u0 : (0, L) → R and for positive
times we impose the fixed temperature boundary conditions

u(0, t) = 0 = u(L, t), t > 0.

What is the evolution u = u(x, t) satisfying these conditions and ut = ∆u? We
already know how the sinusoidal separated variables solutions decay to zero:

uj(x, t) = e−j
2L2t/π2

sin

(

jL

π
x

)

.

You should be able to derive these solutions from the Sturm-Liouville problem result-
ing from assuming uj = Aj(x)Bj(t). We seek a superposition

u =
∞
∑

j=1

aje
−j2L2t/π2

sin

(

jL

π
x

)

.

Given good convergence of the series, the heat equation and the boundary conditions
should be satisfied. The only thing we need to (be able to) do is choose the coefficients
so that the initial condition

∞
∑

j=1

aj sin

(

jL

π
x

)

= u0(x)
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holds. But this is just expanding u0(x) as a Fourier sine series. In Chapter 13 Section 3
Boas gives the example where u0(x) = ax which illustrates an interesting property
of the heat equation, namely instantaneous or infinite speed propagation. The
initial condition has u0(L) = aL 6= 0, but for all positive times u(L, t) ≡ 0. That
is to say, immediately after time t = 0 the temperature drops instantaneously to
u(L, t) = 0. This is a characteristic property of solutions of the heat equation and
manifests in various different ways.

Another interesting manifestation of infinite speed propagation is that even if u0
satisfies u0 ∈ C0[0, L]\C1(0, L), it can be shown that the corresponding evolution sat-
isfies u ∈ C∞((0, L)× (0,∞)). Thus the initial temperature distribution is smoothed
infinitely quickly.

3.2.3 integral identities

The first natural quantity is the (spatially) total temperature by which we mean
the integral

∫

U

u.

This is a function of time, and if the specific heat capacity is assumed constant, the
value is proportional to the total thermal energy within U as a function of time:

intUu =
1

σ

∫

U

Θ.

We have already differentiated
∫

U
Θ with respect to t, and now, in terms of the

temperature we find

d

dt

∫

U

u =

∫

U

ut =

∫

U

∆u =

∫

U

div(Du) =

∫

∂U

Du · n.

In particular, if the zero flux condition Du · n = 0 holds on ∂U , i.e., we have an
insulated boundary condition, then the total temperature (and the total thermal
energy) remain constant:

∫

U

u ≡
∫

U

u0.

This is particularly interesting in cases where the initial temperature profile u0 is not a
smooth function, and so some kind of discontinuous jump takes place in the evolution
of u0 at time t = 0. The value of the integral

∫

U
u should not jump discontinuously.
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A second quantity of interest is the L2 norm (squared)
∫

U

u2

of the solution (temperature) u. Again, this is a function of time.

d

dt

∫

U

u2 = 2

∫

U

uut = 2

∫

U

u∆u.

The product rule div(uDu) = |Du|2 + u∆u gives

1

2

d

dt

∫

U

u2 =

∫

U

div(uDu)−
∫

U

|Du|2 =
∫

∂U

uDu · n−
∫

U

|Du|2.

This identity has several interesting consequences. First of all, if for any reason the
boundary integral

∫

∂U

uDu · n

vanishes, then ‖u‖2L2 =
∫

U
u2 must be non-increasing, and strictly decreasing unless u

is constant. Vanishing of the boundary integral follows from any combination of zero
temperature u = 0 and zero flux Du · n = 0, i.e., points with an insulated boundary
condition, at all points on the boundary.

A striking consequence of this non-decreasing conclusion is the uniqueness for
boundary value problems of prescribed temperature or flux. Specifically, if u and v
are solutions of ut = ∆u + f for a given forcing function f = f(x, t) and satisfying
the same initial

u(x, 0) = v(x, 0), x ∈ U

and boundary conditions (either Dirichlet or Neumann) along ∂U , then the compu-
tation above applied to w = u− v, which satisfies wt = ∆w and

(wDw · n)∣
∣

∂U

≡ 0,

gives
d

dt

∫

U

w2 = −
∫

U

|Dw|2 ≤ 0.

Since

m(t) =

∫

U

w2 ≥ 0

with m(0) = 0 and m′(0) ≤ 0, we conclude m(t) ≡ 0, and w ≡ 0. Thus, u ≡ v.
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3.3 The wave equation

utt = ∆u

3.3.1 derivation

Here we consider an idealized model for the dynamics (time dependent motion) of
a compressible/extendable continuum (like a slinky) subject to a elastic constitutive
relation10

T = ǫ(ux − 1)

where u : [0, L0]× (0, T ) → [0, L] models a deformation of the continuum assumed to
satisfy ux ≥ 1 and a fixed endpoint boundary condition

u(0, t) = 0 and u(L0, t) = L for all t ≥ 0.

We assume further a constant linear density ρ, so the mass corresponding to the
interval I = (a, b) ⊂ [0, L0] is

(b− a)ρ =

∫

I

ρ =

∫

u(I,t)

ρ

ux
. (3.29)

Note that ux = ux(ξ, t) on the right in (3.29) where ξ = ξ(v, t) is the time dependent
spatial inverse of u, that is, u(ξ(v, t), t) = v for each v ∈ [0, L] and v is the variable of
integration. Crucial to this derivation is the continuum acceleration assumption
that

d

dt

∫

u(I)

ut
ρ

ux
= T (b)− T (a) = ǫ[ux(b, t)− ux(a, t)]. (3.30)

The quantity
∫

u(I)

ut
ρ

ux
= ρ

∫

I

ut

may be considered as the total momentum corresponding to the interval I, and the
relation above may be compared to Newton’s second law

d

dt

(

m
dx

dt

)

= F

10This assumption may be compared to the assumption F = −ǫ(u′ − 1) in the time-independent
model for an inhomogeneously deformed slinky.
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for the motion of a point mass, but it is a continuum modeling generalization of this
momentum/acceleration law. Changing variables on the left in (3.30) and differenti-
ating under the integral sign, we get

d

dt

∫

u(I)

ut
ρ

ux
=

d

dt

∫

I

ρ ut =

∫

I

ρ utt.

Applying the fundamental theorem of calculus on the right in (3.30) we have

ux(b, t)− ux(a, t) =

∫

I

uxx.

Putting these manipulations together we obtain
∫

I

[ρ utt − ǫ uxx] = 0

which is assumed to hold for every I ⊂ [0, L0]. It follows as usual that

ρutt = ǫuxx. (3.31)

This is essentially the wave equation.

Note: It may seem that the changes of variables and the constant density ρ are
unnecessary in this derivation. However, the presentation is made in this way for
easy adaptation for a linear density ρ = ρ(x, t) which is non-constant or even time
dependent (and for other natural generalizations as well).

Exercise 3.5 As mentioned in the first chapter above, it is possible to apply the
method of characteristics to find particular solutions in the form of d’Alembert’s
solution to the initial value problem







utt = uxx for (x, t) ∈ R× [0,∞)
u(x, 0) = u0(x), x ∈ R

ut(x, 0) = v0(x), x ∈ R,
(3.32)

and the situation is more difficult/complicated if one considers the one-dimensional
wave equation on a finite spatial interval [a, b] ⊂ R with additional boundary condi-
tions at x = a and x = b.

Starting with the initial value problem






wtt = αwxx for (x, t) ∈ R× [0,∞)
w(x, 0) = w0(x), x ∈ R

wt(x, 0) = p0(x), x ∈ R,
(3.33)

for the equation in (3.31) where α > 0,
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(a) Scale the spatial independent variable to determine specific values of the initial
functions u0 : R → R and v0 : R → R in (3.32) so that the solution w of (3.33)
can be expressed in terms of the solution u of (3.32).

(b) Use a scaling in the time variable t to determine specific values of the initial
functions u0 : R → R and v0 : R → R in (3.32) so that the solution w of (3.33)
can be expressed in terms of the solution u of (3.32).

(c) Given a scaling σ(x) = βx in the spatial variable so that the solution of (3.33) is
assumed to be given/obtained in the form

w(x, t) = u(βx, γt)

where u is a solution of (3.32) and β and γ are positive real numbers, determine
the required values of the initial functions u0 : R → R and v0 : R → R in (3.32).

3.3.2 separated variables solutions

Here we observe that the technique of separation of variables and Fourier series ex-
pansion may be used to solve a simple initial/boundary value problem for the
one-dimensional wave equation on the entire real line. This is (essentially) Problem 5
in Chapter 13 Section 4 of Boas. I will leave to you as an exercise the problem Boas
considers as an example in Chapter 13 Section 4 itself.

Taking the model for the (internal) deformation11 of a one-dimensional continuum
derived in the previous section with elasticity ǫ = 1 and linear mass density ρ = 1,
natural boundary conditions on the spatial interval [0, L] for L > 0 are given by

u(0, t) = 0 and u(L, t) = L.

Thus, we consider for h > 0 the initial/boundary value problem























utt = uxx for (x, t) ∈ (0, L)× [0,∞)
u(x, 0) = x, x ∈ [0, L]
ut(x, 0) = h− 2h|x− L/2|/L, x ∈ [0, L]
u(0, t) = 0, t ≥ 0
u(L, t) = L, t ≥ 0.

(3.34)

11Along with many authors Boas presents the wave equation as a model for the transverse motion
of a stretched vibrating elastic string—like a guitar string. We are working with the wave equation
as a model for a fundamentally different physical system.
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As a preliminary step, which may be viewed simply as a natural normalization or
an attempt to reduce the initial and boundary values to homogeneous conditions, we
introduce the function

w(x, t) = u(x, t)− x

and observe that w should satisfy























wtt = wxx for (x, t) ∈ (0, L)× [0,∞)
w(x, 0) = 0, x ∈ [0, L]
wt(x, 0) = h− 2h|x− L/2|/L, x ∈ [0, L]
w(0, t) = 0, t ≥ 0
w(L, t) = 0, t ≥ 0.

(3.35)

We seek first separated variables solutions of the PDE: w(x, t) = A(x)B(t). This
leads to

A(x) B′′(t) = A′′(x) B(t) or
B′′(t)

B(t)
=
A′′(x)

A(x)

at points where A(x)B(t) 6= 0. Since the left side quotient only depends on time t
and the right side quotient only depends on the spatial variable x, we obtain

B′′(t)

B(t)
=
A′′(x)

A(x)
= λ

for some separation constant λ ∈ R. (To formally prove this, differentiate both sides
with respect to either x or t.)

We consider next the boundary conditions for w(x, t) = A(x)B(t):

A(0)B(t) = 0 = A(L)B(t) for t ≥ 0.

These conditions suggest, assuming B ≡ 0, A(0) = 0 = A(L) and direct our attention
to the ODE A′′ = λA. We should be familiar with the cases for such a Sturm-Liouville
problem by now, but I review: If λ < 0, we obtain a sequence of separation constants

λj = −j
2π2

L2

and corresponding (basis) solutions

Aj(x) = sin

(

jπ

L
x

)

for j = 1, 2, 3, . . ..
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From the time dependent ODE we obtain

Bj(t) = aj cos

(

jπ

L
t

)

+ bj sin

(

jπ

L
t

)

so that we have a sequence of separated variables solutions

wj(x, t) = Aj(x)Bj(t)

satisfying the incomplete initial/boundary valued problem






wtt = wxx for (x, t) ∈ (0, L)× [0,∞)
w(0, t) = 0, t ≥ 0
w(L, t) = 0, t ≥ 0

(3.36)

for the wave equation where the initial conditions are omitted. Naturally, for each of
these separated variables solutions, the initial conditions

wj(x, 0) = Aj(x)Bj(0) = aj sin

(

jπ

L
x

)

and
∂wj
∂t

(x, 0) =
jπ

L
bj sin

(

jπ

L
x

)

may be appended to the problem (3.36), though these do not match the initial con-
ditions for the original problem.

We briefly turn to the vacuous cases: If λ = 0, the equation for A becomes A′′ = 0,
and hence A(x) = ax+ b. Taking the boundary values into account

b = 0 and aL+ b = 0,

so that a = 0 as well, and we obtain no nontrivial separated variables solution.
Similarly, if λ > 0, the general solution of A′′ = λA is

A(x) = a cosh
(√

λ x
)

+ b sinh
(√

λ x
)

.

Taking the boundary conditions into account gives

a = 0 and a cosh
(√

λL
)

+ bsinh
(√

λL
)

= 0,

so that a = b = 0.
With this (review) out of the way, we seek a solution as a superposition

w(x, y) =
∞
∑

j=1

Aj(x)Bj(t) =
∞
∑

j=1

sin

(

jπ

L
x

)[

aj cos

(

jπ

L
t

)

+ bj sin

(

jπ

L
t

)]
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of separated variables solutions. Assuming adequate convergence of such a series, we
should have that w satisfies the incomplete boundary value problem (3.36) with the
initial conditions

w(x, 0) =
∞
∑

j=1

aj sin

(

jπ

L
x

)

and

wt(x, 0) =

∞
∑

j=1

bj
jπ

L
sin

(

jπ

L
x

)

.

In view of the desired initial condition w(x, 0) = 0 of (3.35), we take aj = 0 for
j = 1, 2, 3, . . .. Similarly, we want

∞
∑

j=1

bj
jπ

L
sin

(

jπ

L
x

)

= h− 2h|x− L/2|/L

for which we find a Fourier sine series determined by

bj
jπ

L

1

2L
= h

∫ L

0

(

1− 2

L

∣

∣

∣

∣

x− L

2

∣

∣

∣

∣

)

sin

(

jπ

L
x

)

dx. (3.37)

We compute:

∫ L

0

sin

(

jπ

L
x

)

dx = − L

jπ
cos

(

jπ

L
x

)

∣

∣

L

x=0

=
L

jπ
[1− (−1)j ].

∫ L

0

∣

∣

∣

∣

1− L

2

∣

∣

∣

∣

sin

(

jπ

L
x

)

dx =

∫ L/2

0

(

L

2
− x

)

sin

(

jπ

L
x

)

dx

+

∫ L

L/2

(

x− L

2

)

sin

(

jπ

L
x

)

dx.

Thus, when j = 2k + 1 is odd,

∫ L

0

∣

∣

∣

∣

1− L

2

∣

∣

∣

∣

sin

(

jπ

L
x

)

dx =
L2

jπ
− (−1)k

2L2

j2π2
,

and
∫ L

0

∣

∣

∣

∣

1− L

2

∣

∣

∣

∣

sin

(

jπ

L
x

)

dx = 0
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when j is even. Thus, we find

h− 2h|x− L/2|/L =
∞
∑

k=0

b2k+1
(2k + 1)π

L
sin

(

(2k + 1)π

L
x

)

with

b2k+1 =
2L2h

(2k + 1)π

[

2L

(2k + 1)π
− 2

L

(

L2

(2k + 1)π
− (−1)k

2L2

(2k + 1)2π2

)]

= (−1)k
8L3h

(2k + 1)3π3
.

This gives the solution

w(x, t) =
∞
∑

k=0

(−1)k
8L3h

(2k + 1)3π3
sin

(

(2k + 1)π

L
t

)

sin

(

(2k + 1)π

L
x

)

. (3.38)

From this, one can plot, animate, and otherwise graphically illustrate the solution
u(x, t) = x+ w(x, t).

Exercise 3.6 Determine the frequency and maximum displacement of the solution
given in (3.38). Hint: Use the method of characteristics.

3.3.3 integral identities

Let us consider the quantity

E(t) =
1

2

∫

U

[

w2
t + |Du|2

]

associated with a function u ∈ C2(U × [0,∞)) with respect to an open bounded set
U ⊂ Rn with C1 boundary and satisfying

utt = ∆u.

Diffeentiating with respect to time t we have

dE

dt
=

∫

U

[

wtwtt +
n
∑

j=1

∂u

∂xj

∂2u

∂xj∂t

]

.
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The first term/integral is clearly
∫

U

wt∆u

by the equation. Each of the other n terms/integrals can be written as
∫

U

∂u

∂xj

∂ut
∂xj

.

For each such term and for fixed t, we consider the field

v = ut
∂u

∂xj
ej.

The divergence of this field is

divv =
∂ut
∂xj

∂u

∂xj
+ ut

∂2u

∂x2j
.

Thus, integrating and applying the divergence theorem, we obtain
∫

∂U

ut
∂u

∂xj
ej · n =

∫

U

∂ut
∂xj

∂u

∂xj
+

∫

U

ut
∂2u

∂x2j

where n is the outward unit conormal to ∂Ω. Summing from j = 1 to j = n and
using these substitutions we see

dE

dt
=

∫

U

ut∆u+

∫

∂U

utDu · n−
∫

U

ut∆u =

∫

∂U

utDu · n.

This identity has a number of interesting consequences. First of all, if the function
ut Du ·n vanishes on ∂U , then this energy is conserved. In particular for the fixed
boundary condition

u(x, t) = u0(x) for x ∈ ∂U and t > 0

this is the case because in this case

ut(x, t) =
d

dt
[u0(x)] ≡ 0 for x ∈ ∂U .

Evidently, roughly the same integral technique used above for showing uniqueness for
the heat equation (or for Laplace’s equation) may be used here to obtain uniqueness
of solutions for certain boundary/initial value problems for the wave equation.
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Chapter 4

Appendix 1: Partial Derivatives

Note: The following exposition was extracted from my MATH 6702 course notes on
differentiation from spring 2020. These notes may be found in their entirety on the
course page for MATH 6702 in spring 2023 (along with associated second assignments
from 2020 and 2021 mentioned below). This material appears in some form in the
third assignment from 2023—I guess I’m getting old and slowing down. Generally,
there is a lot of good material in the notes from spring 2020 and on the assignments;
you might want to have a look if you have time and interest. What is below can serve
you, I think, as a pretty good review of a lot of the material in Chapter 1 above.
There is a touch of additional material included as well beyond multi-index notation
and multivariable power series.

The simplest case in which partial derivatives arise is that in which one has a
function of two variables. Say u = u(x, y) is a function of two variables defined in an
open set U with p = (p1, p2) ∈ U . We defined the first partial derivative of u in
the x-direction at p to be

∂u

∂x
(p) = lim

h→0

u(p1 + h, p2)− u(p1, p2)

h

when this limit exists. We can also call this the first partial of u in the e1 direction
in honor of the standard basis vector e1 = (1, 0). Notice that the limit above may
also be written

lim
h→0

u(p+ he1)− u(p)

h
. (4.1)

Exercise 4.1 Sketch the graph of u(x, y) = x2 + y2. Let p be a point in the first
quadrant of the domain of u.
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1. Along with your graph, sketch the curve

α(t) = p+ te1 for t ∈ R

where where we interpret p as (p1, p2, 0) ∈ R3 and e1 = (1, 0, 0).

2. Also sketch the curve

γ(t) = (p+ te1, u(p+ te1))

where here we interpret p and e1 as points in the domain of u.

3. Realize the second curve as the intersection of a vertical plane through the first
curve.

Your solution should look something like what you see in Figure 4.1.

Figure 4.1: A curve in the plane y = p2 on the graph of u.

The difference quotient appearing in (4.1) is the slope of a secant line in the plane
y = p2. Thus, the limit (the x-partial derivative of u) is the slope, in this plane, of
the line tangent to the curve of intersection of the graph of u

G = {(x, y, u(x, y)) : (x, y) ∈ U}

with the vertical plane y = p2. A similar interpretation applies to the other partial
derivative

∂u

∂y
(p) = lim

h→0

u(p+ he2)− u(p)

h
.
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More generally, we can take a curve α(t) = p + tv in any direction v, and attempt
to compute the derivative:

Dvu(p) = lim
h→0

u(p+ hv)− u(p)

h
. (4.2)

If this limit exists, it is called the directional derivative of u at p in the direction
v.

Exercise 4.2 If v is a unit vector in (4.2), then the value of Dvu(p) is the rate of
change of u in the direction v. What does Dvu(p) measure when v is a nonzero
vector but does not have unit length?

Returning to the special case where the direction of differentiation is v = e1 or e2,
the values

∂u

∂x
(p) and

∂u

∂y
(p)

defined above are called the first partial derivatives of u at p. There are various
notations for these partial derivatives. Among them are

ux and uy,

D1u and D2u,

u1 and u2,

and
D(1,0)u and D(0,1)u. (4.3)

And of course, we can interpret these partials as special directional derivatives

De1u and De2u.

The notation in (4.3) can be especially useful in certain contexts and we will discuss
it carefully below, though it is rather cumbersome in this simple case.

Notice that the construction of taking a path in the direction of any standard
unit basis vector and attempting the form the limit of a difference quotient works the
same way in any dimension. More precisely, given u : U → R with U and open subset
of Rn and p ∈ U , the partial derivative of u at p = (p1, p2, . . . , pn) is given by

∂u

∂xj
(bp) = lim

h→0

u(p+ hej)− u(p)

h

when this limit exists. The picture is harder to draw in higher dimensions. The
construction for general directional derivatives (4.2) may also be applied with
only a dimensional change.
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Exercise 4.3 How do each of the notations for the first partial derivatives above
change when the dimension is greater than two?

If first partials exist at every point in an open set U on which the function u is
defined, then they also define functions on U . Here is an important point:

For functions of one variable, if the derivative of f exists on an open
interval (a, b), then we say the function f is differentiable and write
f ∈ Diff(a, b), but...

In more than one dimension, we do not (usually) identify
the existence of partial derivatives with differentiability.

Let us say that if the first partial derivatives of a function of several variables all exist
on an open set U , then u is partially differentiable on U . The following results
illustrate why partially differentiable and differentiable are different things in higher
dimensions.

Theorem 17 If f : (a, b) → R is differentiable at a point x0 ∈ (a, b), then f is
continuous at x0. But the first partial derivatives of u : R2 → R by

u(x, y) =

{

0, xy 6= 0
1, xy = 0

(4.4)

both exist at the point (0, 0) ∈ R2, but u is not continuous at (0, 0). Therefore, partial
differentiability at a point does not imply continuity.

Exercise 4.4 Compute the first partials ux and uy at (x, y) = (0, 0) where u : R2 → R

is given by (4.4), and show that u is not continuous at (0, 0).

Theorem 18 If f : (a, b) → R is differentiable at every point in (a, b), then f ∈
C0(a, b). But the first partial derivatives of u : R2 → R by

u(x, y) =

{

xy/(x2 + y2), (x, y) 6= (0, 0)
0, (x, y) = (0, 0)

(4.5)

both exist at all points of R2, but u /∈ C0(R2). Therefore, partial differentiability at
all points does not imply continuity.

Exercise 4.5 Compute the first partials ux and uy at all points in the plane where
u : R2 → R is given by (4.5), and show that u is not continuous at (0, 0).
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The following result is about differential approximation:

Theorem 19 If f : (a, b) → R is differentiable at x0 ∈ (a, b), then

lim
h→0

f(x0 + h)− f(x0)− hf ′(x0)

h
= 0,

but for either of the functions u : R2 → R given by (4.4) or (4.5), one does not have

lim
w→0

u(p+w)− u(p)− (ux(p), uy(p)) ·w
|w| = 0 (4.6)

where p = (0, 0) and

v ·w = (v1, v2) · (w1, w2) = v1w1 + v2w2

is the dot product.

Exercise 4.6 Verify the assertion of this theorem.

Notice that the limit in (4.6) is a somewhat different kind of limit than we have
encountered before. The vector valued increment w can approach p in a much greater
variety of ways than a number x0 + h can approach x0 as h → 0. And this makes a
significant difference.

Definition 10 A function u : U → R with U an open subset of Rn and p ∈ U is
differentiable at p if there is a linear function L : Rn → R such that

lim
w→0

u(p+w)− u(p)− L(w)

|w| = 0. (4.7)

The function u is differentiable on U if u is differentiable at every point p ∈ U .

Theorem 20 If u : U → R with U an open subset of Rn has first order partial
derivatives defined at all points in some open ball Br(p) ⊂ U , and Dju is continuous
at p for j = 1, . . . , n, then u is differentiable at p.

Exercise 4.7 If u : U → R is differentiable at p ∈ U , then show the first partial
derivatives Dju(p) exist for j = 1, 2, . . . , n, and express the linear function L : Rn →
R for which (4.7) holds in terms of the gradient vector

Du(p) = (D1u(p), D2u(p), . . . , Dnu(p)).

Hint: Compare (4.7) to (4.6).
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Theorem 21 If u : U → R with U an open subset of Rn has first order partial
derivatives which are continuous, i.e., u ∈ C1(U), then u is differentiable and u is
continuous.

We are now in a position to define the differentiability classes Ck(U) for U ⊂ Rn.
Some aspects of these definitions formalize and extend our discussion even in R1.
First of all, if U is open,

C1(U) = {u ∈ C0(U) : Dju(p) exists for every p ∈ U and

Dju ∈ C0(U) for j = 1, . . . , n }.

For k = 2, 3, 4, . . .,

Ck(U) = {u : Dβu ∈ C1(U) for |β| = k − 1}.

Notice that this definition implies the partial derivatives Dβu(p) with |β| = k − 1
and p ∈ U exist as well as the derivatives Dβu with |β| = k.

For a general set E ⊂ R
n,

Ck(E) = {u ∈ C0(E) : there exists an open set U ⊂ R
n such that E ⊂ U

and there exists u ∈ Ck(U) with u∣
∣

E

= u}.

The spaces Ck(U) and Ck(E) as we have defined them, will not be normed spaces in
general. Following the constructions above, we define

[u]C1 = sup
j

sup
x

|Dju(x)|

which is a seminorm, called the C1 seminorm, on the set of all C1 functions for which
the value is finite. We also define for an open set U ⊂ Rn

C1
b (U) = {u ∈ C1(U) : ‖u‖C0(U) <∞ and [u]C1(U) <∞}

which is a normed space with

‖u‖C1(U) = ‖u‖C0(U) + [u]C1(U).

For k = 2, 3, . . ., we define the seminorm

[u]Ck = sup
|β|=k

sup
x

|Dβu(x)|
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and

Ck
b (U) = {u ∈ Ck−1

b (U) : [u]Ck(U) <∞}.
The Ck norm is given in general by

‖u‖Ck =
k
∑

j=0

[u]Cj

where we take [u]C0 = ‖u‖C0.

Taylor Expansion and Power Series

As an application of the multi-index notation for partial derivatives, we mention some
useful facts about multivariable Taylor expansions and power series. This material
is also covered in Assignment 2 (spring 2020 and spring 2021) and relates to Boas
section 4.2. As in the assignment, we start with recalling how Taylor expansion works
in one dimension. The Taylor expansion of a function

f ∈ C∞(R) = ∩∞
k=0C

k(R)

at x0 ∈ R is given by
∞
∑

j=0

f (j)(x0)

j!
(x− x0)

j . (4.8)

Here f (j) denotes the j-th (ordinary) derivative of f as usual:

f (j) =
djf

dxj
.

A function f ∈ C∞(R) is said to be real analytic in the interval I = (x0 − r, x0 + r)
if the series in (4.8) converges for each x ∈ I and

f(x) =

∞
∑

j=0

f (j)(x0)

j!
(x− x0)

j.

The set of real analytic functions is denoted by Cω. Even for a function which is only
in Ck(a, b), the Taylor approximation theorem always holds. It is very useful and
powerful.
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Theorem 22 If f ∈ Ck+1(a, b) and x0 ∈ (a, b), then for any x ∈ (a, b)

f(x) =
k
∑

j=0

f (j)(x0)

j!
(x− x0)

j + Rk(x)

where Rk = Rk(x, x
∗) is the k-th order Taylor remainder given by

Rk(x) =
f (k+1)(x∗)

(k + 1)!
(x− x0)

k+1

and x∗ is some (unknown) point between x and x0. Generally, one can say x∗ depends
(in some complicated unknown way) on x, but it is often useful to consder Rn as a
function of both x and x∗ (and x0 as well) since the dependence on each of these
“variables” is explicitly known.

The question of whether a C∞ function is real analytic is precisely the question of
whether or not one has

lim
k→∞

Rk(x) = 0.

This will generally be true in some open interval Br(x0) = (x0 − r, x0 + r), though
for actual convergence, one can only ensure r ≥ 0. If r = 0, then this (open) interval
is empty. You still get trivial convergence for x = x0, but of course that tells you
nothing. More generally, using the Taylor approximation formula effectively boils
down to getting an estimate (a uniform estimate on some interval) for the k+1 order
derivative.

The basic outline of these results holds in any dimension, though the set of conver-
gence becomes a general ball Br(x0) and you need estimates for all partial derivatives
of order k + 1. I will not state the results in detail.

The Taylor expansion of a function u ∈ C∞(U) at x0 ∈ U ⊂ Rn is given by

∞
∑

j=0

∑

|β|=j

Dβu(x0)

β!
(x− x0)

β. (4.9)

In this expansion formula β = (β1, β2, . . . , βn) is a multi-index, which simply means

β ∈ N
n = {(m1, . . . , mn) : m1, . . . , mn ∈ N} where N = {0, 1, 2, 3, . . .}.

The derivative Dβu denotes the partial derivative taken βj times with respect to xj
for each j = 1, 2, . . . , n:

Dβu =
∂|β|u

∂xβ11 ∂x
β2
2 · · ·∂xβnn

.
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The “length” of a multi-index β is defined by

|β| =
n
∑

j=1

βj.

The factorial of a multi-index β is given by

β! = β1!β2! · · ·βn!.

The multi-index power of a vector variable x = (x1, . . . , xn) ∈ Rn is

xβ = xβ11 x
β2
2 · · ·xβnn .

A function u ∈ C∞(Rn) is said to be real analytic in the ball Br(p) = {x ∈ Rn :
|x− p| < r} if the series in (4.9) converges for each x ∈ Br(p) and

u(x) =
∞
∑

j=0

∑

|β|=j

Dβu(x0)

β!
(x− x0)

β.

The set of real analytic functions denoted by Cω(U) where U is an open subset of
Rn consists of those functions u for which u is real analytic on some ball centered at
each point x0 ∈ U .


