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Recall that we have derived D’Alembert’s solution u : R× [0,∞) → R for the wave equation utt = uxx

with Cauchy data u(x, 0) = u0(x) and ut(x, 0) = v0(x) using the method of characteristics as follows:
First we write the 1-D wave equation as

(ut − ux)t + (ut − ux)x = 0

and set w = ut − ux. Then w satisfies the first order linear PDE wt + wx = 0 with Cauchy data w(x, 0) =
v0(x)− u′

0(x). Along the characteristic γ(t) = (x0 + t, t) we have

d

dt
w(x0 + t, t) = wx + wt = 0,

so choosing x0 with γ(t) = (x0 + t, t) = (x, t), we have

w(x, t) ≡ w(x0, 0) = v0(x− t)− u′

0(x− t).

Having determined w, we consider the non-homogeneous first order linear PDE ut − ux = w with Cauchy
data u(x, 0) = u0(x). On the characteristic γ(t) = (x0 − t, t) we have

d

dt
u(x0 − t, t) = −ux + ut = w(x0 − t, t),

so choosing x0 with γ(t) = (x0 − t, t) = (x, t), we have

u(x0 − t, t) = u(x0, 0) +

∫ t

0

w(x0 − τ, τ) dτ

= u0(x0) +

∫ t

0

[v0(x0 − 2τ)− u′

0(x0 − 2τ)] dτ

= u0(x+ t) +

∫ t

0

[v0(x+ t− 2τ)− u′

0(x+ t− 2τ)] dτ

= u0(x+ t) +
1

2
u0(x+ t− 2τ)∣

∣

t

τ=0

+

∫ t

0

v0(x+ t− 2τ) dτ

= u0(x+ t) +
1

2
[u0(x− t)− u0(x+ t)] +

∫ t

0

v0(x+ t− 2τ) dτ

=
1

2
[u0(x− t) + u0(x+ t)] +

1

2

∫ x+t

x−t

v0(ξ) dξ.

In the last equality we have used the change of variables ξ = x+ t− 2τ . Thus, the d’Alembert formula is

u(x, t) =
1

2
[u0(x− t) + u0(x+ t)] +

1

2

∫ x+t

x−t

v0(ξ) dξ.

It follows from this formula that if u0 ∈ C2(R) and v0 ∈ C1(R), then the solution u of the wave equation
satisfies u ∈ C2(R× (0,∞)).

1



Exercise 1 Prove the solution given by d’Alembert’s formula when u0 ∈ C2(R) and v0 ∈ C1(R) is the

unique solution of the problem

{

utt = uxx on R× (0,∞)
u(x, 0) = u0(x) and ut(x, 0) = v0(x).

Regularity

Recall that every solution of Laplace’s equation ∆u = 0 on an open domain U satisfies u ∈ C∞(U). Recall
also that every solution u ∈ C2(U × (0, T )) of the heat equation ut = ∆u satisfies u ∈ C∞(U × (0, T )).
We wish to show that no similar higher regularity of solutions can be expected for solutions of the wave
equation. We first observe that the function

u0(x) =

{

x2 + x3/6, x ≤ 0
x2, x ≥ 0

satisfies u ∈ C2(R)\C3(R). In particular, u′′′(0−) = 1 while u′′′(0+) = 0. Thus, taking as Cauchy data
u(x, 0) = u0(x) and ut(x, 0) ≡ 0, we obtain a solution

u(x, t) =
1

2
[u0(x− t) + u0(x+ t)]

=







[(x− t)2 + (x− t)3/6 + (x+ t)2 + (x+ t)3/6]/2, x ≤ −t
[(x− t)2 + (x− t)3/6 + (x+ t)2] /2, −t ≤ x ≤ t
[(x− t)2 + (x+ t)2] /2, x ≤ −t

of the wave equation. For positive times t and x = t, we see

uxxx(t
−, t) = 1 and uxxx(t

+, t) = 0.

Thus, u /∈ C3(R× (0,∞)).

There are similar solution formulas for u satisfying utt = ∆u in all spatial dimensions,1 but we will not
discuss those formulas this semester.

Finally, we wish to consider the domain of dependence and the finite propogation speed asso-
ciated with solutions of the wave equation. Since there is nothing particularly special about having one
space dimension in this discussion, we will consider the general case of utt = ∆u on R × (0, T ). The
computation we will make uses an identity which is a special case of what is called a kinematical iden-

tity. Kinematical identities, in general, give a formula for the derivative of an integral with respect to a
parameter associated with change in the domain of integration. That is, if Vt is a domain which changes
with respect to a parameter t, say within a larger domain W so that Vt ⊂ W for all t, and f : W → R,
then a kinematical identity tells you how to compute

d

dt

∫

Vt

f.

In our case, we will consider an integral of a function over a ball of varying radius and fixed center:
∫

Br(p)

f.

1A good reference on this topic and all of the PDE material covered in these notes is Chapter 2 of Craig Evans’ book

Partial Differential Equations AMS.
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More precisely, say f : Rn → R with f ∈ C0(Rn) and we wish to compute

d

dr

∫

Br(p)

f.

By the generalized polar coordinates/fubini theorem we can write

d

dr

∫

Br(p)

f =
d

dr

∫ r

0

(
∫

∂Bt(p)

f

)

dt.

Then the simple 1-D fundamental theorem of calculus gives us the remarkable formula:

d

dr

∫

Br(p)

f =

∫

∂Br(p)

f.

We will now use this in conjunction with the chain rule in a manner which is a little more complicated.
As usual, we denote by Du the spatial gradient of u. For r > 0 and 0 < t ≤ r,

d

dt

(

1

2

∫

Br−t(p)

(u2
t + |Du|2)

)

=

∫

Br−t(p)

(ututt +Du ·Dut) +
1

2

∫

∂Br−t(p)

(u2
t + |Du|2)

d

dt
(r − t).

Notice that we have t dependence in both the domain (ball) of integration and in the integrand. The first
term differentiates the dependence in the integrand while the second term uses the kinematical identity
and the chain rule to differentiate the dependence in Br−t(p). Simplifying and using the PDE etc., we
obtain

d

dt

(

1

2

∫

Br−t(p)

(u2
t + |Du|2)

)

=

∫

Br−t(p)

(ut∆u+Du ·Dut)−
1

2

∫

∂Br−t(p)

(u2
t + |Du|2)

=

∫

Br−t(p)

div(utDu)−
1

2

∫

∂Br−t(p)

(u2
t + |Du|2)

=

∫

∂Br−t(p)

[

utDu · n−
1

2
(u2

t + |Du|2)

]

≤

∫

∂Br−t(p)

[

|utDu · n| −
1

2
(u2

t + |Du|2)

]

.

Now consider the value |utDu · n|. By the inequality ab ≤ (a2 + b2)/2, we can write

|utDu · n| ≤
1

2
[u2

t + (Du · n)2] ≤
1

2
[u2

t + |Du|2].

The last inequality is a consequence of the Cauchy-Schwarz inequality. Returning to our main calculation
we have

d

dt

(

1

2

∫

Br−t(p)

(u2
t + |Du|2)

)

≤
1

2

∫

∂Br−t(p)

[(u2
t + (Du · n)2)− (u2

t + |Du|2)] ≤ 0.

This means that given initial Cauchy data u(x, 0) = u0(x) and ut(x, 0) = v0(x) satisfying

u0 = v0 ≡ 0 on Br(p)

we must have
u(x, t) ≡ 0 for 0 ≤ t ≤ r and x ∈ Br−t(p). (1)

In particular, no values of u0 and v0 at points x ∈ R
n\Br−t(p), or change in those values, can alter or

effect in any way the conclusion (1). In particular, the value u(p, t) ≡ 0 at all times 0 ≤ t ≤ r. Nothing
can move the value at x = p before time t = r.
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Here is a streamlined/simpler presentation of the main calculation above:

d

dt

(

1

2

∫

Br−t(p)

(u2
t + |Du|2)

)

=
d

dt

(

1

2

∫ r−t

0

[
∫

∂Bτ (p)

(u2
t + |Du|2)

]

dτ

)

= −
1

2

∫

∂Br−t(p)

(u2
t + |Du|2) +

∫ r−t

0

[
∫

∂Bτ (p)

(ut∆u+Du ·Dut)

]

dτ

= −
1

2

∫

∂Br−t(p)

(u2
t + |Du|2) +

∫

Br−t(p)

div(utDu)

=

∫

∂Br−t(p)

[

utDu · n−
1

2
(u2

t + |Du|2)

]

≤

∫

∂Br−t(p)

[

|utDu · n| −
1

2
(u2

t + |Du|2)

]

≤
1

2

∫

∂Br−t(p)

(|Du · n|2 − |Du|2)

≤ 0.

Lower Regularity

Notice, finally, that d’Alembert’s formula makes sense for any Cauchy data u0, v0 ∈ L1
loc(R).

Exercise 2 Use mathematical software to plot d’Alembert’s formula for various choices of nonsmooth

Cauchy data. For example, try u0(x) = hx0
(x) = χ[x0,∞)(x) given by a Heaviside function which turns on

at x = x0. Another interesting choice might be to take the Heaviside function as the initial velocity v0.
Another choice might be to take u0 to be a “tent function” which is something like −|x−x0|+ r for |x| ≤ r
and zero elsewhere.

The wave equation is the prototypical example of a hyperbolic second order linear partial differential
equation. If you have a second order linear partial differential operator

Lu =
∑

i,j

aijDiDju

with leading order (constant, symmetric) coefficient matrix A = (aij) having one negative eigenvalue and
the rest positive, you can expect similar properties for the solutions.
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