SELMA YILDIRIM-RAMAZAN TINAZTEPE

CALCULUS OF VARIATION PROJECT

05/03/2006
A Modified Version of the "Hanging Chain Problem"

Hanging a chain connected to a rope—What shape would it take?
Outline

Problem
Introduction

Outline

Problem

Plan
Outline

Problem

Plan

Mathematical Model and Derivation
Outline

Problem

Plan

Mathematical Model and Derivation

Solving the equation
Outline

Problem

Plan

Mathematical Model and Derivation

Solving the equation

Comparison with the classical problem
Problem
Let us consider a rope connected to a chain of density ρ_2.
Let the lengths be L_1 and L_2 respectively so that the total length is $L_1 + L_2$.
Assume that this rope connected to the chain is hanged from the end point (a, A) to the end point (b, B).
Let us consider a rope connected to a chain of density ρ_2. Let the lengths be L_1 and L_2 respectively so that the total length is $L_1 + L_2$. Assume that this rope connected to the chain is hanged from the end point (a, A) to the end point (b, B). Which curve will it take?
Plan
Plan

Observe the shape of chain and the curve
Plan

Observe the shape of chain and the curve

Solve the ODE of the curve and try to figure out the variables
Plan

Observe the shape of chain and the curve

Solve the ODE of the curve and try to figure out the variables

Apply the initial value conditions to obtain the curve formula
Plan

- Observe the shape of chain and the curve
- Solve the ODE of the curve and try to figure out the variables
- Apply the initial value conditions to obtain the curve formula
- Use computer software to plot the curve with the above formula
Plan

- Observe the shape of chain and the curve
- Solve the ODE of the curve and try to figure out the variables
- Apply the initial value conditions to obtain the curve formula
- Use computer software to plot the curve with the above formula
- Compare the plotted curve to the shape of the hanging chain by an experiment
Plan

Observe the shape of chain and the curve

Solve the ODE of the curve and try to figure out the variables

Apply the initial value conditions to obtain the curve formula

Use computer software to plot the curve with the above formula

Compare the plotted curve to the shape of the hanging chain by an experiment

Some interesting problems
Mathematical Model and Derivation
Mathematical Model and Derivation

The problem is

\[L(u, t) = \rho_1 \int_a^t (u - u_0) \sqrt{1 + u'^2} \, dx + \rho_2 \int_t^b (u - u_0) \sqrt{1 + u'^2} \, dx \]

which is to be minimized by an appropriate values of \(t \), and the function \(u(t) \).
Mathematical Model and Derivation

The problem is

\[L(u, t) = \rho_1 \int_a^t (u - u_0) \sqrt{1 + u'^2} \, dx + \rho_2 \int_t^b (u - u_0) \sqrt{1 + u'^2} \, dx \]

which is to be minimized by an appropriate values of \(t \), and the function \(u(t) \).

Here \(u \) is the curve, \(t \) is the connection point and the end points are \((a, A)\) and \((b, B)\). Thus, the problem can be converted into the minimization of

\[\rho_1 \int_a^t u_1 \sqrt{1 + u'^2} \, dx + \rho_2 \int_t^b u_2 \sqrt{1 + u'^2} \, dx \]

where \(u_1 \) is the minimizer of the rope hanged from \((a, A)\) to \((t, y)\) while \(u_2 \) is the minimizer of the chain from \((t, y)\) to \((b, B)\).
Since the rope has a very small density compared to the chain it will look like a line, i.e.,
\[u_1(x) = c(x - a) + A. \] So the problem turns out to be minimizing
\[
\rho_1 \left[\frac{ct^2}{2} - act + At - \frac{ca^2}{2} - a^2 c + Aa \right] \sqrt{1 + c^2} + \rho_2 \int_a^x u_2 \sqrt{1 + u_2'^2} \, dx
\]
with respect to the conditions
\[
\int_a^x \sqrt{1 + u_1'^2} \, dt = L_1 \quad \int_a^b \sqrt{1 + u_2'^2} \, dt = L_2
\]
\[
 u_1(a) = A \quad u_1(t) = y = u_2(t) \quad u_2(b) = B
\]
Since \(\rho_1 / \rho_2 = 0 \), we can neglect the term with \(\rho_1 \).
Since the rope has a very small density compared to the chain it will look like a line, i.e., $u_1(x) = c(x - a) + A$. So the problem turns out to be minimizing

$$\rho_1 \left[\frac{(ct^2)}{2} - act + At - \frac{(ca^2)}{2} - a^2 c + Aa \right] \sqrt{1 + c^2} + \rho_2 \int_a^x u_2 \sqrt{1 + u_2'^2} \, dx$$

with respect to the conditions

$$\int_a^x \sqrt{1 + u_1'^2} \, dt = L_1$$
$$u_1(a) = A \quad u_1(t) = y = u_2(t)$$
$$u_2(b) = B$$

Since $\rho_1 / \rho_2 = 0$, we can neglect the term with ρ_1. There is one more constraint: The derivatives u_1' and u_2' must be equal at t; i.e., $u_1'(t) = u_2'(t)$.
To do that we have to show that
To do that we have to show that

When we consider the shape of the curve, the fact that u_1 is a line is obvious. We will prove it though.
To do that we have to show that

When we consider the shape of the curve, the fact that u_1 is a line is obvious. We will prove it though.

Claim 1: If $(u(t) - A)^2 + (t - a)^2 \leq L^2_1$ then there is no minimizer. This will give us that u_1 must be a line.
To do that we have to show that

When we consider the shape of the curve, the fact that u_1 is a line is obvious. We will prove it though.

Claim 1: If $(u(t) - A)^2 + (t - a)^2 \leq L_1^2$ then there is no minimizer. This will give us that u_1 must be a line.

Claim 2: $u'_1(t) = u'_2(t)$ at the connection point t. We can show this result by using the tranversality conditions.
Now, let’s consider \((a, A) = (0, 30), (b, B) = (40, 30)\), and \(L_1 = L_2 = 30\). Thus, we have

\[
u_1(x) = cx + a
\]

(2) \(u_2(x) = a \cosh \left(\frac{x-b}{a}\right) - a \cosh \left(\frac{40-b}{a}\right) + 30;\)

(3) \(u_1(0) = 30, u_2(40) = 30;\)

(4) \(u_1(t) = u_2(t)\) at the connection point \(t;\)

(5) \(u'_1(t) = u'_2(t)\) at the connection point \(t.\)
Solving the equations
◊ Remember $u_1(x) = cx + a$ and $u_2(x) = acosh\left(\frac{x-b}{a}\right) - acosh\left(\frac{40-b}{a}\right) + 30$;
Remember \(u_1(x) = cx + a \) and \(u_2(x) = acosh\left(\frac{x-b}{a}\right) - acosh\left(\frac{40-b}{a}\right) + 30; \)

Length of the rope is 30 then \(\int_{0}^{t} \sqrt{1 + u'^2} \, dx = 30 \) and that implies \(\sqrt{1 + c^2t} - 30 = 0 \),
Remember $u_1(x) = cx + a$ and $u_2(x) = acosh\left(\frac{x-b}{a}\right) - acosh\left(\frac{40-b}{a}\right) + 30$;

Length of the rope is 30 then $\int_0^t \sqrt{1 + u_1'^2} \, dx = 30$ and that implies
$$\sqrt{1 + c^2t} - 30 = 0,$$

Length of the chain is 30 then $\int_t^{40} \sqrt{1 + u_2'^2} \, dx = 30$ and that implies
$$asinh\left(\frac{40-b}{a}\right) - asinh\left(\frac{t-b}{a}\right) - 30 = 0,$$
\[\text{Remember } u_1(x) = cx + a \text{ and } u_2(x) = acosh\left(\frac{x-b}{a}\right) - acosh\left(\frac{40-b}{a}\right) + 30; \]

\[\text{Length of the rope is 30 then } \int_0^t \sqrt{1 + u_1'^2} \, dx = 30 \text{ and that implies } \sqrt{1 + c^2 t} - 30 = 0, \]

\[\text{Length of the chain is 30 then } \int_t^{40} \sqrt{1 + u_2'^2} \, dx = 30 \text{ and that implies } asinh\left(\frac{40-b}{a}\right) - asinh\left(\frac{t-b}{a}\right) - 30 = 0, \]

\[u_1(t) = u_2(t) \text{ implies } acosh\left(\frac{t-b}{a}\right) - acosh\left(\frac{40-b}{a}\right) - ct = 0 \]
◊ Remember $u_1(x) = cx + a$ and $u_2(x) = acosh\left(\frac{x-b}{a}\right) - acosh\left(\frac{40-b}{a}\right) + 30$;

◊ Length of the rope is 30 then $\int_0^t \sqrt{1+u_1'^2} \, dx = 30$ and that implies $\sqrt{1+c^2t} - 30 = 0$,

◊ Length of the chain is 30 then $\int_t^{40} \sqrt{1+u_2'^2} \, dx = 30$ and that implies $asinh\left(\frac{40-b}{a}\right) - asinh\left(\frac{t-b}{a}\right) - 30 = 0$,

◊ $u_1(t) = u_2(t)$ implies $acosh\left(\frac{t-b}{a}\right) - acosh\left(\frac{40-b}{a}\right) - ct = 0$

◊ $u_1'(t) = u_2'(t)$ implies $sinh\left(\frac{t-b}{a}\right) - c = 0$,
Remember \(u_1(x) = cx + a \) and \(u_2(x) = acosh\left(\frac{x-b}{a}\right) - acosh\left(\frac{40-b}{a}\right) + 30; \)

Length of the rope is 30 then \(\int_0^t \sqrt{1 + u_1'^2} \, dx = 30 \) and that implies \(\sqrt{1 + c^2t} - 30 = 0, \)

Length of the chain is 30 then \(\int_t^{40} \sqrt{1 + u_2'^2} \, dx = 30 \) and that implies \(asinh\left(\frac{40-b}{a}\right) - asinh\left(\frac{t-b}{a}\right) - 30 = 0, \)

\(u_1(t) = u_2(t) \) implies \(acosh\left(\frac{t-b}{a}\right) - acosh\left(\frac{40-b}{a}\right) - ct = 0 \)
\(u_1'(t) = u_2'(t) \) implies \(sinh\left(\frac{t-b}{a}\right) - c = 0, \)

To solve this system of equations we used Mathematica.
For \(\{a, 4\}, \{b, 25\}, \{t, 20\}, \{c, -0.6\} \) we have
For \(\{a, 4\}, \{b, 25\}, \{t, 20\}, \{c, -0.6\} \) we have

\[
\text{FindRoot}\left\{a \sinh\left(\frac{40 - b}{a}\right) - a \sinh\left(\frac{t - b}{a}\right) - 30 == 0,
\sqrt{1 + c^2} \times t - 30 == 0,
\right. \\
\left. a \cosh\left(\frac{t - b}{a}\right) - a \cosh\left(\frac{40 - b}{a}\right) - c \times t == 0,
\sinh\left(\frac{t - b}{a}\right) - c == 0\right\},
\{a -> 5.64307, b -> 27.5197, t -> 23.3596, c -> -0.805816\}
\]
For \{a, 4\}, \{b, 25\}, \{t, 20\}, \{c, -0.6\} we have

\[\text{FindRoot}\left\{a \sinh\left(\frac{40-b}{a}\right) - a \sinh\left(\frac{t-b}{a}\right) - 30 == 0, \right.\]
\[\left.\sqrt{1+c^2} \cdot t - 30 == 0, \right.\]
\[a \cosh\left(\frac{t-b}{a}\right) - a \cosh\left(\frac{40-b}{a}\right) - c \cdot t == 0, \]
\[\sinh\left(\frac{t-b}{a}\right) - c == 0\},\]
\[\{a \rightarrow 5.64307, b \rightarrow 27.5197, t \rightarrow 23.3596, c \rightarrow -0.805816\}\]
Here is the first graph:
Here is the first graph:
Here is the second graph:
Here is the second graph:
Conclusion

I. An interesting problem is connecting two chains with different densities successively and see what shape would it take.
Conclusion

I. An interesting problem is connecting two chains with different densities successively and see what shape would it take.

II. Another interesting problem would be connecting a chain to another not from the end points as in the picture.
The End

Thank You