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Chapter 1

Introduction

If a chain or cable has its ends fixed at two different points and hangs under
the influence of gravity, it takes the shape of a hyperbolic cosine curve. We
now describe this shape precisely and explain how it arises as a minimizer of
potential energy among many possible shapes.

- 1.0 - 0.5 0.5 1.0

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

Figure 1.1: the shape of a chain hanging from its endpoints in gravity
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Chapter 2

Analysis

2.1 Model

Let ℓ > 0 be the length of the chain and let ρ denote the linear density of
mass along the length of chain. Choose x, y-coordinates with the left end of
the chain fixed at (−1, 0) and the right end at (1, u1). We have made a choice
of units here so that the horizontal distance between the fixed endpoints is
2 units. This is equivalent to scaling the system given in some particular
initial units. We could also assume u1 has a specific sign, say u1 > 0, but
this is not necessary.

Given the length constraint on the chain, we must have

1 + u2
1 < ℓ2. (2.1)

There are many curves of length ℓ connecting (−1, 0) to (1, u1). Among these
consider C1 curves given by the graph of a function u : [−1, 1] → R. The
length constraint may then be written as

∫ 1

−1

√

1 + [u′(x)]2 dx = ℓ.

Assuming a constant gravitational field ~G = −g(0, 1) and zero potential at
y = 0, we may integrate to approximate the potential energy of a portion of

the chain having mass ∆mj = ρ
√

1 + [u′(x∗
j)]

2 ∆xj :

approximate potential energy Vj =

∫ u(x∗

j )

0

ρg
√

1 + u′(x∗
j )

2 ∆xj dy.

7
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Figure 2.1: an alternative chain shape and the associated potential energy

The potential energy associated with a point mass is given by the work re-
quired to move the mass from a position of zero potential to another position,
that is, −

∫

γ
F ·T where F is the force field, γ is a path connecting a position

of zero potential to the position of the mass, and T is the unit tangent vector
along the path. In this case the force F = ∆mj

~G = −∆mjg(0, 1) is assumed
constant, and the integral amounts to the force multiplied by the vertical
distance to equilibrium:

Vj = ρgu(x∗
j)
√

1 + u′(x∗
j)

2 ∆xj .

Summing over all model portions of chain and taking the limit as the maxi-
mum portion length tends to 0, we find an expression for the total potential
energy as a function of the chain shape determined by u:

potential energy V = lim
∑

ρgu(x∗
j)
√

1 + u′(x∗
j )

2 ∆xj =

∫ 1

−1

ρgu(x)
√

1 + u′(x)2 dx.

By the Leibniz’/Maupertuis’ principle of virtual work, or Hamilton’s action
principle, the observable shape u should be a critical point for

V [u] =

∫ 1

−1

ρgu(x)
√

1 + u′(x)2 dx

subject to the constraint

L[u] =

∫ 1

−1

√

1 + u′(x)2 dx = ℓ.
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Under the assumption that ρ and g are positive constants, we may replace
the expression for V above with

V [u] =

∫ 1

−1

u(x)
√

1 + u′(x)2 dx

Introducing a Lagrange multiplier λ associated with the constraint and
assuming the existence of the model shape within the admissible class

A = {u ∈ C2[−1, 1] : u(−1) = 0, u(1) = u1},

we set F = V + λL and obtain the necessary condition

δFu[φ] =
d

dǫ

∫ 1

−1

(u + ǫφ + λ)
√

1 + (u′ + ǫφ′)2 dx∣
∣

ǫ=0

= 0

for all φ ∈ C∞
c (−1, 1). Differentiating under the integral and evaluating, we

find
∫ 1

−1

[

φ
√

1 + u′2 + (u + λ)
u′φ′

√
1 + u′2

]

dx = 0.

We may integrate by parts in the second term to obtain

∫ 1

−1

[

−
(

(u + λ)u′

√
1 + u′2

)′

+
√

1 + u′2

]

φ = 0 for all φ ∈ C∞
c (−1, 1).

Finally, we may apply the fundamental lemma of the calculus of variations
to obtain a two point boundary value problem for a second order nonlinear
ordinary differential equation for the observed shape u:

(

(u + λ)u′

√
1 + u′2

)′

=
√

1 + u′2, u(−1) = 0, u(1) = u1.

We know this equation is satisfied even under the assumption u ∈ C1[−1, 1].

2.2 Extremal graphs

Using the assumed regularity of the observed shape u, we can also write

(u + λ)
u′′

(1 + u′2)3/2
+

u′2

√
1 + u′2

=
√

1 + u′2



10 CHAPTER 2. ANALYSIS

or
(u + λ)u′′ = 1 + u′2.

Under the assumption u′′(−1) > 0, which (based on observation of the shape
of actual physical hanging chains) seems rather reasonable, we can solve for
the Lagrange multiplier and find

λ =
1 + u′(−1)2

u′′(−1)
> 0.

More generally, whenever u + λ 6= 0, we can write

u′

1 + u′2
u′′ =

1

u + λ
u′.

In particular, integrating from x = −1 to x,

∫ u′

u′(−1)

t

1 + t2
dt =

∫ u

u(−1)

1

t + λ
dt

or
1

2

[

ln(1 + u′2) − ln(1 + u′(−1)2)
]

= ln(u + λ) − ln λ.

It follows that
1 + u′2

1 + u′(−1)2
=
(u

λ
+ 1
)2

. (2.2)

Let us pause at this point to consider the first integral equation

u′Fp(u, u′) − F (u, u′) = −c (2.3)

where c is some constant and F (z, p) = (z + λ)
√

1 + p2 is the Lagrangian
associated with F . We have used −c instead of c here to simplify things
later. After a computation, we find

u′2

√
1 + u′2

−
√

1 + u′2 = − c

u + λ
.

That is, √
1 + u′2 =

1

c
(u + λ).

Taking the constant c = λ/
√

1 + u′(−1)2, which it must be, we see several
things. First of all, any solution of the first integral equation with c 6= 0
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will give a solution of (2.2). It is possible to get a solution of (2.3) with the
choice c = 0, but in this case, we must take u ≡ −λ = 0, and we must
therefore have u1 = 0. This is, indeed, not a solution of the Euler-Lagrange
equation for F = V +λL, but this possibility represents the exceptional case
of Proposition 1.17 in the book of Buttazzo, Giaquinta, and Hildebrandt [1]
in which the constraint is degenerate. In this case, the solution u ≡ 0 gives
the shortest path between (−1, 0) and (1, u1) = (1, 0) and is, therefore, a
critical point for the length functional L providing the constraint. When
c 6= 0, we obtain from the first integral equation a global justification for our
assumption

u + λ 6= 0.

This is because every solution of the Euler-Lagrange equation must be a
solution of the first integral equation. Only the solution u ≡ 0 in the case
u1 = 0 and ℓ = 2 is exceptional.

Finally, the first integral equation tells us something about the sign of
u + λ because

√
1 + u′2 =

√

1 + u′(−1)2

λ
(u + λ).

It follows that u+λ and λ must share the same sign, and under our, seemingly
justified, assumption u′′(−1) > 0, that sign is positive. Thus, we may proceed
to solve either the Euler-Lagrange equation or the first integral equation
under this assumption. Making the substitution v = (u+λ)

√

1 + u′(−1)2/λ,
we find

u′ = ±
√

v2 − 1 or
λ

√

1 + u′(−1)2
v′ = ±

√
v2 − 1.

It follows that

cosh−1 v − cosh−1 v(−1) = ±
√

1 + u′(−1)2

λ
(x + 1),

v =

√

1 + u′(−1)2

λ
(u+λ) = cosh

[

±
√

1 + u′(−1)2

λ
(x + 1) + cosh−1 v(−1)

]

,

or

u = −λ+
λ

√

1 + u′(−1)2
cosh

[

√

1 + u′(−1)2

λ
(x + 1) ± cosh−1

√

1 + u′(−1)2

]

.
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This looks rather complicated, but it does tell us that the extremals have
the form of hyperbolic cosine curves. This also confirms that the constant
c from the first integral equation should be positive with c < 0 extremals
corresponding to maximizers of the energy. Substituting the value of c from
the first integral equation and differentiating, we also see

u′ = sinh
(

(x + 1)/c ± cosh−1
√

1 + u′(−1)2
)

.

This allows us to nominally locate the vertex or lowest point on the hyperbolic
cosine curve which occurs for

x = µ = −1 ∓ c cosh−1(λ/c).

In terms of this parameter, the extremals may be written as

u = −λ + c cosh

(

x − µ

c

)

.

There are now three unknown parameters λ, µ, and c, but the initial condition
u(−1) = 0 implies

λ = c cosh

(

1 + µ

c

)

and

u = c cosh

(

x − µ

c

)

− c cosh

(

1 + µ

c

)

.

The other endpoint condition takes the symmetric form

c cosh

(

1 − µ

c

)

− c cosh

(

1 + µ

c

)

= u1.

Another equation we can use to determine the parameters c and µ is given
by the length constraint L[u] = ℓ.

u′ = sinh

(

x − µ

c

)

and 1 + u′2 = cosh2

(

x − µ

c

)

.

Therefore,

L[u] =

∫ 1

−1

√
1 + u′2 dx =

∫ 1

−1

cosh

(

x − µ

c

)

dx,
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and writing down L[u] = ℓ we are led to the fundamental symmetric system:

c cosh

(

1 − µ

c

)

− c cosh

(

1 + µ

c

)

= u1. (2.4)

and

c sinh

(

1 − µ

c

)

+ c sinh

(

1 + µ

c

)

= ℓ. (2.5)

In this symmetric form, it is possible to eliminate µ as follows: Square both
equations and subtract the first from the second, noting ℓ2 − u2

1 ≥ 4. We get

c2

[

−2 + 2 cosh

(

1 − µ

c

)

cosh

(

1 + µ

c

)

+ 2 sinh

(

1 − µ

c

)

sinh

(

1 + µ

c

)]

= ℓ2−u2
1.

That is,

−1 + cosh

(

2

c

)

= 1 + cosh2

(

1

c

)

+ sinh2

(

1

c

)

=
ℓ2 − u2

1

2c2
.

That is,

c sinh

(

1

c

)

=
1

2

√

ℓ2 − u2
1 > 1. (2.6)

In this way, we obtain a single transcendental equation for c. One can show
c sinh(1/c) is monotone decreasing in c for c > 0 and takes every value
greater than 1. Let us verify the equivalent assertions for the function f(z) =
sinh z/z. First of all if z ց 0, we have by L’Hopital’s rule

lim
zց0

sinh z

z
= lim

zց0
cosh z = 1 and lim

zր∞

sinh z

z
= lim

zր∞
cosh z = ∞.

Also,

f ′(z) =
z cosh z − sinh z

z2
.

Setting f1(z) = z cosh z − sinh z we see f1(0) = 0 and f ′
1(z) = z sinh z > 0

for z > 0. In particular, f1(z) > 0 for z > 0, so f ′(z) > 0 for z > 0. Also,

lim
zց0

f ′(z) = lim
zց0

f ′
1(z)

2z
= 0.

We have shown that f takes every value on [1,∞) uniquely and has a well-
defined inverse on that interval. Thus, we have a unique solution
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Figure 2.2: sinh z/z and its inverse

c =
1

f−1
(

1
2

√

ℓ2 − u2
1

) .

Once we know c > 0, we can expand (2.4) to see

−2c sinh

(

1

c

)

sinh
(µ

c

)

= u1.

Therefore, substituting from (2.6),

µ = −c sinh−1

(

u1√
ℓ2 − u1

2

)

(2.7)

This completes our initial analysis of the extremals for the problem of
determining the shape of a hanging chain. We summarize our discussion as
follows:

Theorem 1. For each length ℓ > 2 and each value u1 ∈ R with u2
1 < ℓ2 − 4,

there are unique values c > 0 and µ satisfying

c sinh

(

1

c

)

=
1

2

√

ℓ2 − u2
1 and µ = −c sinh−1

(

u1√
ℓ2 − u1

2

)
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such that

u(x) = c cosh

(

x − µ

c

)

− c cosh

(

1 + µ

c

)

, −1 ≤ x ≤ 1

is the unique convex extremal for the functional

F [u] =

∫ 1

−1

[u(x) + λ]
√

1 + u′(x)2 dx

in A = {u ∈ C1[−1, 1] : u(−1) = 0, u(1) = u1} subject to the constraint

L[u] =

∫ 1

−1

√

1 + u′(x)2 dx = ℓ

and with

λ = c cosh

(

1 + µ

c

)

.

The uniqueness extends generally to the functional F (or more precisely to
λ) in the sense that for other values of λ, there is no extremal of the resulting
functional for the constrained problem.

In practice, some analysis is required to set up the computation approxi-
mating solutions of the transcendental equation for c. We include this anal-
ysis in the section on computation and now address the minimality of these
extremals.

Note 1. If c and λ are allowed to be negative negative, one finds concave
extremals (satisfying u′′ < 0) whose gravitational potential energy is greater
than the convex solutions.

2.3 Minimality of extremals

We have established the existence of a unique (convex) catenary extremal
given by the graph of a function u ∈ C∞[−1, 1] and satisfying

u(−1) = 0, u(1) = u1, and

∫ 1

−1

√
1 + u′2 dx = ℓ.



16 CHAPTER 2. ANALYSIS

The function u satisfies

u(x) = c cosh

(

x − µ

c

)

− c cosh

(

1 + µ

c

)

(2.8)

where c > 0 is the unique solution of c sinh(1/c) =
√

ℓ2 − u2
1

/

2 > 0, and

µ = −c sinh−1

(

u1√
ℓ2 − u1

2

)

.

We now wish to establish the following result.

Theorem 2. The function u given in (2.8) is the unique minimizer of

V [u] =

∫ 1

−1

u
√

1 + u′2 dx

on
A = {u ∈ C1[−1, 1] : u(−1) = 0, u(1) = u1}

subject to

L[u] =

∫ 1

−1

√
1 + u′2 dx = ℓ.

A fundamental difficulty in establishing this result is that the Lagrangian
F (z, p) = (z + λ)

√

1 + p2 associated with the augmented functional F =
V + λL where

λ = c cosh

(

1 + µ

c

)

> 0

is not (always) convex. Showing this is Problem 30 of Chapter 3 in the
book [2] of Troutman. Following Troutman, we take the special case u1 = 0.
In this case µ = 0, and the extremal is given by

u(x) = c cosh
(x

c

)

− λ with λ = c cosh

(

1

c

)

.

On the other hand, the function u0 ≡ 0 satisfies u0 ∈ A, and δFu[v] ≡ 0.
Taking v = −u, we have u + v = u0 and showing F is not convex amounts
to showing

F [u0] −F [u] < 0
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(under some circumstances). In fact,

F [u0] −F [u] =

∫ 1

−1

λ dx −
∫ 1

−1

(u + λ)
√

1 + u′2 dx

= 2c cosh

(

1

c

)

− c

∫ 1

−1

cosh2
(x

c

)

dx

= 2c cosh

(

1

c

)

− c

2

∫ 1

−1

[

cosh

(

2x

c

)

+ 1

]

dx

= 2c cosh

(

1

c

)

− c2

2
sinh

(

2

c

)

− c

c

[

2 cosh

(

1

c

)

− c sinh

(

1

c

)

cosh

(

1

c

)

− 1

]

.

Since x sinh x → ∞ as x ր ∞, we see that for c > 0 small enough

c sinh

(

1

c

)

> 2,

and F [u0] −F [u] < 0. Recalling that c is determined by

c sinh

(

1

c

)

=
1

2

√

ℓ2 − u2
1 =

ℓ

2
,

we find nonconvexity for chains of any length ℓ > 4.
In spite of this nonconvexity, Troutman suggests a rephrasing of the prob-

lem which leads to a much stronger result than Theorem 2 above. The func-
tion u determines a parametric curve parameterized by arclength. This is
given by the function x ∈ C1([0, ℓ] → R

2) by x(s) = (ξ(s), η(s)) where
{

ξ(s) = µ + c sinh−1
[

s
c
− sinh

(

1+µ
c

)]

η(s) = u(ξ(s)) = c cosh
(

sinh−1
[

s
c
− sinh

(

1+µ
c

)])

− c cosh
(

1+µ
c

)

.
(2.9)

This parametric map x also satisfies

|x′| ≡ 1 and 2 =

∫ ℓ

−1

ξ′(s) ds =

∫ ℓ

0

√

1 − η′2 ds.

Now if we let x = (ξ, η) ∈ C1([0, ℓ] → R2) be any parametric curve parame-
terized by arclength (|x′| ≡ 1) with x(0) = (−1, 0) and x(ℓ) = (1, u1), then
the potential energy expression

V [u] =

∫ 1

−1

u
√

1 + u′2 dx
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generalizes to

V1[x] =

∫ ℓ

0

η ds.

To see this, we may again consider a portion of chain of mass ∆mj = ρ∆sj

located at a point x(s∗j). The potential energy of this particular section of
chain is approximately

∫ η

0

ρg∆sj dy = ρgη∆sj.

Summing over a partition of such portions and taking the limit as the maxi-
mum length ∆sj tends to zero (and dividing out by the constant ρg as usual),
we arrive at the expression for V1 above. The following result treats these
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Figure 2.3: parametric chain shape: These shapes are also not required to satisfy

−1 ≤ ξ ≤ 1 though the one illustrated does. (Actually, this shape has length a

little longer than the original catenary chain shape.)

general parametric curves of length ℓ connecting (−1, 0) to (1, u1) and as-
serts that the catenary graph extremal is the unique minimizer among such
curves.

Theorem 3. The catenary graph satisfying (2.9) is the unique minimizer of

V1[x] =

∫ ℓ

0

η ds

on

B = {x ∈ C1([0, ℓ] → R
2) : x(0) = (−1, 0), x(ℓ) = (1, u1), |x′| ≡ 1}
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subject to

L1[x] =

∫ ℓ

0

√

1 − η′2 ds = 2.

Finally, we simplify the previous result slightly and prove something even
more general. It will be noted that the functionals appearing above only
depend on the second coordinate function of x, namely, η ∈ C1[0, ℓ]. Thus,
it makes sense to extend their domains and rename them:

V1 : C1[0, ℓ] → R by V1[η] =

∫ ℓ

0

η ds

and

L1 : {η ∈ C1[0, ℓ] : |η′(s)| ≤ 1 for 0 ≤ s ≤ ℓ} → R by L1[x] =

∫ ℓ

0

√

1 − η′2 ds.

We now state the main result.

Theorem 4. The second component of the parametric map defined in (2.9)
is the unique minimizer of

V1[η] =

∫ ℓ

0

η ds

on
B = {x ∈ C1([0, ℓ] → R

2) : η(0) = 0, η(ℓ) = u1}
subject to

L1[η] =

∫ ℓ

0

√

1 − η′2 ds = 2.

Notice the absence of the condition |x′| ≡ 1 in the definition of B. Notice,
furthermore, that the functional L1 is not (even) defined on all of B, but only
on

B1 = {η ∈ B : |η′(s)| ≤ 1 for 0 ≤ s ≤ ℓ}.
Proof of Theorem 4: We show first that η from (2.9) is the unique mini-
mizer of

G[η] = (V1 − cL1)[η] =

∫ ℓ

0

[

η − c
√

1 − η′2
]

ds

on B1 (without constraint). This follows from two facts
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1. The augmented functional G = V1 − cL1 is strictly convex on B1 in the
sense that G[η+v]−G[η] ≥ δGη[v] whenever η, η+v ∈ B1 with equality
only if v ≡ 0.

2. The function η from (2.9) is an extremal for G, that is δGη[v] = 0
whenever η + v ∈ B1.

If we can establish these two assertions, we may apply the following (easy)
theorem on minimizing convex functionals:

Theorem 5. If G is strictly convex on B1 and for every v ∈ C1[−1, 1] such
that η0 + v ∈ B1 we have

δGη0
[v] = 0

then we have G[η0] ≤ G[η] for all η ∈ B1.

The strict convexity does not follow immediately because the augmented
Lagrangian G(z, p) = z − c

√

1 − p2 is not strictly second order convex. We
do have

D2G =

(

0 0
0 c

(1−p2)3/2

)

.

Therefore, for each v ∈ C1[0, ℓ] such that η + v ∈ B1, we have

G(η + v, η′ + v′) − G(η, η′) = Gz(η, η′)v + Gp(η, η′)v′ +
c

2(1 − p2
∗)

3/2
v′2

≥ Gz(η, η′)v + Gp(η, η′)v′

with equality only if v′ = 0 (pointwise). Integrating this inequality

G[η+v]−G[η] =

∫ ℓ

0

[Gz(η, η′)v+Gp(η, η′)v′] ds+
c

2

∫ ℓ

0

v′2

(1 − p2
∗)

3/2
ds ≥ δGη[v]

with equality only if v′ ≡ 0. But if η + v ∈ B1, then v(0) = v(ℓ) = 0, so
equality implies v ≡ 0. This establishes the strict convexity of G.

On the other hand, the Euler-Lagrange equation for G is

c

(

η′

√

1 + η′2

)′

= 1
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where the derivatives are with respect to the arclength s. To compute this
for the function η from the arclength parameterization of the catenary we
observe first that

s =

∫ ξ

0

√
1 + u′2 dx = c sinh

(

ξ − µ

c

)

+ c sinh

(

1 + µ

c

)

.

Therefore,
dξ

ds
=

1

cosh
(

ξ−µ
c

) .

Having made this observation/calculation we have from (2.9)

η′(s) =
du

dx
(ξ)

dξ

ds
=

sinh
(

ξ−µ
c

)

cosh
(

ξ−µ
c

) .

Therefore,

d

ds

(

η′

√

1 − η′2

)

=
d

dx

(

sinh

(

ξ − µ

c

))

∣

∣

x=ξ

dξ

ds
=

1

c
,

and η is a C2 classical extremal for G. In particular, δGη[v] ≡ 0, and G[η +
v] − G[η] ≥ 0 whenever η + v ∈ B1 with equality only if v ≡ 0.

The usual argument of Theorem 5 now applies. That is, it happens that

L1[η] =

∫ ℓ

0

√

1 − η′2 ds = 2,

so for any v ∈ C1[0, ℓ] such that η + v ∈ B and for which L1[η + v] = 2, we
have

V1[η + v] − cL1[η + v] = G[η + v] ≥ G[η] = V1[η] − cL1[η]

with equality only if v ≡ 0. Since L1[η + v] = L1[η] = 2, we have

V1[η + v] ≥ V1[η] with equality only if v ≡ 0.

This establishes Theorem 4. 2

Proof of Theorem 3: If x̃ = (ξ̃, η̃) ∈ B satisfies

∫ ℓ

0

√

1 − η̃′2 ds = 2
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and x is the parametric catenary, then η̃ ∈ B1 ⊂ B and satisfies L1[η̃] = 2.
Thus, by Theorem 4

V1[x̃] = V1[η̃] ≥ V1[η] = V1[x] with equality only if η̃ ≡ η.

We have, in particular, V1[x̃] ≥ V1[x] for all x̃ ∈ B satisfying the constraint

L1[x̃] = 2.

In the case of equality we have ξ̃′ = ±
√

1 − η′2 and

2 =

∫ ℓ

0

ξ̃′ ds =

∫ ℓ

0

√

1 − η′2 ds.

Since η′(s) = 1 for at most one arclength s, we conclude ξ̃ =
√

1 − η′2 and
x̃ ≡ x. 2

Finally we prove the initial (and weakest) assertion.
Proof of Theorem 2: If ũ ∈ A and

L[ũ] =

∫ 1

−1

√
1 − ũ′2 dx = ℓ,

then the graph of ũ may be parameterized by arclength to give a parameter-
ized curve x̃ ∈ B satisfying the constraint

L1[x̃] =

∫ ℓ

0

√

1 − η̃′2 ds = 2.

By Theorem 3, we know V1[x̃] ≥ V1[x] with equality only if x̃ = x. Changing
variables, we find

V1[x̃] =

∫ ℓ

0

η̃ ds =

∫ 1

−1

ũ
√

1 + ũ′2 dx = V [ũ]

and

V1[x] =

∫ ℓ

0

η ds =

∫ 1

−1

u
√

1 + u′2 dx = V [u].

The result evidently follows. 2

Note 2. The concave extremals are local maximizers.
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Computation

3.1 Approximating the constant c

The key practical difficulty remaining in determining the shape of a hanging
chain is finding an approximation for the solution of

c sinh

(

1

c

)

=
1

2

√

ℓ2
1 − u2

1.

We recall the function f(z) = sinh z/z restricted to z > 0 has a well defined
inverse as indicated in Figure 2.2, and if we can obtain a simple (and ade-
quately accurate) approximation for the function g(v) = f−1(v) defined for
0 ≤ v < ∞, then a root find algorithm may be used to quickly determine the
value of c. Let us briefly clarify the meaning of and need for a “simple and
adequately accurate” approximation. A standard root find algorithm, like
Newton’s method or (to be more specific) Mathematica’s FindRoot requires
an initial guess. In order for the algorithm to return a value quickly and,
in the presence of multiple solutions, a correct value, it is required that the
initial guess be “simple” that is easy to calculate based on the value of v in
terms of standard functions and “adequately accurate” so that one does not
find extraneous roots. In the case at hand, in fact, the command

FindRoot[ Sinh[x]/x == v, {x, startingx(v)}] (3.1)

where {x, startingx(v)} represents the directive to solve for x using the
initial approximation startingx(v), could produce a negative value if some
care is not taken with the value of startingx(v); this is because f(x) =

23
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sinh x/x is an even function. We now describe how to obtain a simple and
adequately accurate approximation for the value g(v) where g = f−1. We
will use the following notation to distinguish among decimal approximation
values. We write f(a) ∼ b to mean b is a rough approximation for f(a),
usually a simple and adequately accurate approximation. We use f(z) ≈ b
to mean b is a numerically generated approximation accurate to a large (at
least 5) decimal places.

We start with the observation that

lim
vց1

g′(v) = +∞.

In order to get an accurate approximation for g = f−1 near v0 = 1, we
compute the next derivative of f :

f ′′(z) =
z2f ′

1 − 2zf1

z4
=

z2 sinh z − 2z cosh z + 2 sinh z

z3
.

Again, using L’Hopital’s rule

lim
zց0

f ′′(z) = lim
zց0

cosh z

3
=

1

3
.

Thus, we have to leading order v ∼ 1+g(v)2/6 or g(v) ∼ g0(v) =
√

6(v − 1).
This provides an approximation with tolerance decaying to 0.01 around v =
1.1. See Figure 3.1.

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

2.5

Figure 3.1: an initial approximation of f−1(v): The vertical line near v = 1.1

gives a tolerance for the approximation around 0.01.

This approach may be applied with center of expansion any z > 0 for
a sequence of such values z1, z2,. . . . In this way, we obtain a collection



3.2. THE LAMBERT “W” FUNCTION 25

of approximations gj each adequately accurate on some interval containing
sinh(zj)/zj. The Taylor approximation for f at z = zj gives

v = f(z) ∼ f(zj) + f ′(zj)(z − zj) +
f ′′(zj)

2
(z − zj)

2.

Solving for z ∼ g(v) we have

g(v) ∼ zj +
−f ′(zj) +

√

f ′(zj)2 − 2f ′′(zj)(f(zj) − v)

f ′′(zj)
. (3.2)

Taking the first such approximation centered at v1 = 1.1 with z1 = sinh(1.1)/1.1 ≈
1.21422, we obtain an approximation g1(v) accurate to within 0.01 for 1.1 <
v ≤ v2 = 1.57; see Figure 3.2.

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

Figure 3.2: a second approximation of f−1(v): The vertical line near v = 1.57

gives a tolerance for the approximation around 0.01.

Before proceeding to further approximations in our sequence, we consider
approximation of g(v) when v is large.

3.2 The Lambert “W” function

There is a “standard” special function we can use to approximate g(v) =
f−1(v) for large v. This is Lambert’s “W” function known as “ProductLog”
in Mathematica. Roughly speaking, W is the inverse of the complex valued
function h(z) = zez defined on C. More precisely, W is defined on the
Riemann surface W of h which we now partially describe. The basic formula
for h(z) is

h(x + iy) = ex[x cos y − y sin y + i(y cos y + x sin y)].
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The function ξ(y) = −y cot y is even and smooth when restricted to −π <
y < π (or any interval kπ < y < (k + 1)π). Also, ξ is increasing when re-
stricted to 0 ≤ y < π and has an increasing inverse η0 : [0,∞) → [0, π) whose
graph gives the upper boundary of the region Ω0 on the left in Figure 3.3.
The region

- 0 0 0.4 0

.4

.2

0

.6

- 2 -

- 3

- 2

2

3

Figure 3.3: a fundamental domain for zez and its Riemann surface (initial
sheet)

Ω0 = {z = x + iy : −η0(x) < y ≤ η0(x)}

is a fundamental domain for h with image W0 indicated on the right with
a branch cut extending from −1/e along the negative real axis. The inverse
mapping W0 : W0 → C is the primary branch of the Lambert function. In
particular, the function W0 restricted to the real interval [−1/e,∞) gives the
inverse of h(x) = xex for x ≥ −1. The graph of the restriction of h to the
real line is indicated in Figure 3.4 Unfortunately, we need the inverse on the
complementary interval (−∞,−1] which is not given by W0. If we exit W0

along the image of the graph of η0, which is the top of the branch cut along
the negative real axis, we enter the region W−1 of the Riemann surface on
which the inverse W−1 is defined. A convenient curve for reference within
W−1 is obtained by considering again the function ξ(y) = −y cot y restricted
to π < y < 2π. Since

ξ′(y) = − cot y + y csc2 y = − 1

sin y

(

cos y − y

sin y

)

,
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Figure 3.4: The restrictions to the intervals (−∞,−1] and [−1,∞) are in-
vertible.

and −1 < sin y < 1 while y > π > 1 on the interval π < y < 2π, we see
ξ is increasing and takes all values in R. Thus, this function has in inverse
η : R → (π, 2π) whose graph is indicated above the graph of η0 in Figure 3.5.
The region

- 0.6 - 0.4 - 0.2 0.2 0.4 0.6

- 0.6

- 0.4

- 0.2

0.2

0 6

- 4 - 2 2 4

2

3

4

5

6

Figure 3.5: a portion of the fundamental region associated with W−1

Ω = {z = x + iy : 0 < y ≤ η(x)} ∪ {x ∈ R : x ≤ −1/e}

again covers the plane. The upper half plane in the image is part of W0 as
before, but the lower half plane is now part of W−1. The image of the segment
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−∞ < x ≤ −1 along the negative real axis is the segment −1/e ≤ w < 0 in
W−1. Thus, the inverse of the restriction of h(x) = xex to (−∞,−1] is given
by h−1(ξ) = W−1(ξ) for −1/e ≤ ξ < 0.

Recall our function g(v) = f−1(v) where f(z) = sinh z/z. When z is real
and significantly greater than z = 0, the value of f(z) is approximated by
ez/(2z). Setting ξ = −z, this becomes

f(z) ∼ − 1

2ξeξ
= − 1

2h(ξ)
.

That is, if v = f(z), then

ξ ∼ h−1

(

− 1

2v

)

= W−1

(

− 1

2v

)

,

and

g(v) = z ∼ −h−1

(

− 1

2v

)

= −W−1

(

− 1

2v

)

.

The approximation

g∞(v) = −W−1

(

− 1

2v

)

gives an approximation of g(v) within 0.01 for v ≥ 2.5; see Figure 3.6.
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Figure 3.6: approximation of f−1(v) for v large: The vertical line near v = 2.5

gives a tolerance for the approximation around 0.01.

Thus, we see our sequence of approximations gj(v) has a termination
point when we can approximate on the interval [0, 2.5], or (given the approx-
imations g0 and g1, when we can approximate for 1.57 < v < 2.5). In fact, It
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is adequate to obtain approximations g2, . . . , g6 corresponding to v2 = 1.57,
v3 = 1.78, v4 = 1.93, v5 = 2.07, and v6 = 2.24.

With the eight approximations, g0, . . . , g∞, we obtain a fast and reliable
implementation of (3.1).

3.3 Alternative recursive approximation

The following was not used in our numerical solution of the equation sinh z/z =
v, but it may be of independent interest.

For v > 1, we also have recourse to a recursive approximation scheme.
Picking an initial value g0, for example, we could take g0 = sinh−1(v) which
will be smaller than g(v) as long as v > sinh(1). We see the actual value
g(v) satisfies

sinh g(v)

g(v)
= v or g(v) = sinh−1(vg(v)).

This suggests setting g1 = sinh−1(vg0) and gj+1 = sinh−1(vgj) in general for
j = 0, 1, 2, . . ..

Conjecture 1. The sequence gj tends (upward) to g(v) with the estimate

g(v) − gj+1 ≤ gj+1 − gj.

For example, if we take v = 33.6189 ≈ sinh[6]/6, then

g0 = sinh−1(v) ≈ 4.20846

g1 = sinh−1(g0v) ≈ 5.64534

g2 = sinh−1(g1v) ≈ 5.93907

g3 = sinh−1(g2v) ≈ 5.98979.

3.4 Numerical Code(s)

We begin with a first section in Mathematica obtaining a reliable numerical
representation of the function g. As indicated in (3.2), expressions for f , f ′,
and f ′′ are used in our initial approximations of g. With this in mind, we
define
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f[z ] = Sinh[z]/z;

fp[z ] = D[Sinh[z]/z, z];

fpp[z ] = D[Sinh[z]/z, z, 2];

The underscore appearing in z indicates the declaration of a variable in
Mathematica.

As suggested in (3.1) we begin with a general form of the function which
remains unevaluted:

gGeneral[vinput , vguess ] :=

FindRoot[Sinh[findz]/findz == vinput, {findz, vguess}][[1, 2]]

The cryptic [[1,2]] is required to extract the numerical value of the
Mathematica output from FindRoot which has the form { findz → value}.
Literally, “Take the first object within the vector (curly brackets) and take
the second entry value.”

We define our initial approximation near v = 1:

g0[w ] = Sqrt[6 (v-1)];

Setting our requirement for deviation from the actual inverse function g
at ∆g = 0.01, we determine the first of six approximation points as described
in connection with Figure 3.1 above. The first value at which a new approx-
imation is required is v1 = 1.1. The others are determined iteratively and
are given by v2 = 1.57, v3 = 1.78, v4 = 1.93, v5 = 2.07, and v6 = 2.24 as
mentioned above. The code determining v1 is

maxvalidity0 =

FindRoot[

Sqrt[6(wfind - 1)] - gGeneral[wfind,Sqrt[6(wfind-1)]] == 0.01,

{wfind, 1.2}][[1, 2]]

> 1.09258

where we have indicated output by “>.” It may also be noted that we have
taken the initial guess in gGeneral to be the value of the first approximation
g0. The guess for wfind in this evaluation is made from the plot in Figure 3.1.

We then have six short subsections in which we determine the next six
local approximations. These have the following form:

v1 = maxvalidity0

z1 = Sinh[1.1]/1.1

> 1.21422

g1[v ] =

z1 + (-fp[z1] + Sqrt[fp[z1]2̂ - 2 fpp[z1] (f[z1] - v)])/fpp[z1]
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maxvalidity1 =

FindRoot[g1[wfind] - gGeneral[wfind,g1[wfind]] == 0.01, {wfind,1.5}][[1,
2]]

> 1.57264

In each case, a plot similar to the one appearing in Figure 3.2 is required
to make a rough guess for the last implementation of RootFind to determine
the interval of validity (and the next point of evaluation). When these six
subsections are complete, we define

gInfinity[v ] = -ProductLog[-1, -1/(2 v)]

from which we obtained
minvalidity =

FindRoot[gGeneral[wfind,g6[wfind]] - gInfinity[wfind] == 0.01,

{wfind, 2.3}][[1, 2]]

> 2.50092

Finally, we define a global approximation using the Mathematica function
Piecewise used to define piecewise functions:

gGlobal[v ] = Piecewise[

Sqrt[6 (v - 1)], 1 < v < 1.1,

g1[v], 1.1 - 0.001 < v < 1.57,

g2[v], 1.57 - 0.001 < v < 1.78,

g3[v], 1.78 - 0.001 < v < 1.93,

g4[v], 1.93 - 0.001 < v < 2.07,

g5[v], 2.07 - 0.001 < v < 2.24,

g6[v], 2.24 - 0.001 < v < 2.5,

ginf[v], v > 2.5 - 0.001 ]

Finally, we complete this (main) section by setting

g[v ] := gGeneral[ v, gGlobal[v] ]

This completes the numerical approximation of f(z) = sinh(z)/z.

When we have done this, equation (2.6) can be solved numerically and
the relations (2.7) and (2.8) may be implemented to obtain a normalized
chain shape defined for −1 ≤ x ≤ 1:

c = 1/g[Sqrt[ell2̂ - u12̂]/2];

mu = -c ArcSinh[u1/Sqrt[ell2̂ - u12̂]];

uNormalized[x ]=

c Cosh[(x - mu)/c] - c Cosh[(1 + mu)/c])
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It remains to take specific physical coordinates, scale them to determine
an appropriate ℓ and u1, and then scale the shape determined above to fit
the physical problem. We include the coding for this in the discussion of the
experiment below.
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Experiment

4.1 Relation to physical parameters

Let us say we are given a chain of length L > 0 and two points (A, B) and
(C, D) in the plane with

C > A and L2 > (C − A)2 + (D − B)2.

In our code, we implement a test:

The following numbers should be positive:

C - A

L2̂ - (C - A)2̂ - (D - B)2̂

In normalized coordinates we obtain

ℓ =
2

C − A
L and u1 =

2

C − A
(D − B).

Thus, if the test returns a positive result, we define

u1 = 2 (D - B)/(C - A);

ell = 2 L/(c - a);

We use these values to determine the parameters c and µ according to
the analysis above. We have also the relation

X = A +
C − A

2
(x + 1) or x = −1 +

2

C − A
(X − A).

33
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Substituting into the solution above, we obtain the physical chain shape is
modeled by the graph of

U(X) = B+
C − A

2

[

c cosh
1

c

(

2

C − A
(X − A) − 1 − µ

)

− c cosh

(

1 + µ

c

)]

.

with the obvious implementation.

4.2 Some specific shapes

On the next page we produce several chain shapes (produced for a chain of
length 2 feet) which are scaled down to fit the page. One can take any small
piece of chain and test the results by comparing to the shapes on this page.
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Figure 4.1: several chain shapes to test with physical chains
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4.3 Error

Normally, we would include a section on error analysis here, but the physical
chains agree with the predicted shapes so closely, that it is not clear how to
measure any error.

4.4 Generalizations

There are at least three obvious generalizations for this problem and two
more that I will list as well. Some have been done as projects before. I will
list them in (roughly) the order of increasing difficulty. Each has something
to do with changing the density of the chain or the flexibility of the chain.

1. If two lengths of chain of different densities are joined and the resulting
single chain with a piecewise constant density hangs from two fixed
points, then one can model the shape with a straightforward modifica-
tion of the discussion above.

2. One could consider finitely many links, assumed to be straight line seg-
ments, hinged at the endpoints, and having prescribed lengths ℓ1, ℓ2, . . . , ℓk.
This leads to a very interesting discrete minimization. Questions con-
cerning approximation of shapes for the other problems is an obvious
related question.

3. A direct generalization of the first problem above is to consider a general
density ρ = ρ(s) as a smooth function of arclength. This is a much more
difficult problem. It is also somewhat difficult to easily obtain a large
variety of subject chains for experimentation and modeling, though the
next two problems suggest some possibilities.

4. One can consider attaching weights to various points on a hanging
chain. If there are many links and the weights vary continuously, this
can approximate some chains of chains of variable density.

5. One can include an elastic energy, which is an essentially different kind
of problem. Nevertheless, a thin beam supported at both sides and
supporting its own weight in gravity will sag/hang in an interesting
shape which can be modeled.
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