Calculus of Variations Homework 2

January 30, 2012

1. Find the potential function for an inverse square gravitational field.
2. Formulate the variational problem associated with Newton's second law for a path of motion $\mathbf{x}:[0, T] \rightarrow \mathbb{R}^{3}$. (And derive Newton's law.)
3. Find the Euler-Lagrange ODE for the following functionals:
(a) $\int_{0}^{1} y^{\prime} d x$.
(b) $\int_{0}^{1} y y^{\prime} d x$.
(c) $\int_{0}^{1} x y y^{\prime} d x$.
(d) $\int_{0}^{1} y^{\prime 2} / x^{3} d x$.
(e) $\int_{0}^{1}\left(y^{2}+y^{\prime 2}+2 y e^{x}\right) d x$.
(f) $\int_{0}^{1} \sin y^{\prime} d x$.
(g) $\int_{0}^{1} \sqrt{1+y^{\prime 2}} / x d x$.
(h) There are more in problem 4 of section 2.3 of Sagan. There is also a discussion of the Euler-Lagrange equation in section 2.5.
4. How would your answer in the previous problems change if the integral were taken over a different interval?
5. See if you can solve the Euler-Lagrange equations you found above in $\mathcal{A}=\left\{y \in C^{2}[0,1]: y(0)=0, y(1)=1\right\}$.
