Calculus of Variations Homework 4

February 13, 2012

1. Let

$$\mathcal{F}[u] = \int_a^b [u'^2 + q(x)u^2] \, dx$$

and consider minimization of ${\mathcal F}$ over

$$\{u \in C^1[a,b] : u(a) = 0 = u(b), \text{ and } \int_a^b u^2 \, dx = 1\}.$$

Let $u \in C^1[a, b]$ be a minimizer for this problem.

(a) Show that there is some constant λ such that

$$Lu = \lambda u,$$

where Lu = -u'' + qu is the associated Sturm-Liouville operator on $C^{2}[a, b]$.

- (b) There are, in fact, a sequence of eigenvalues $\lambda_1 < \lambda_1 < \cdots$ associated with the operator L, and the associated eigenfunctions form a complete orthonormal set in L^2 . Show that $\lambda = \lambda_1$ is the least eigenvalue.
- 2. Assume that $t \mapsto y(t)$ for $t \in [0, 1]$ parameterizes an embedded curve in $\{(x_1, x_2) : x_2 \ge 0\}$ with y(0) = (-1, 0) and y(1) = (1, 0). Embeddedness here means that the parameterization is one-to-one and smooth. The union of such a curve with the interval $\mathcal{I} = \{(x_1, 0) : -1 \le x_1 < 0\}$

1} encloses a region Ω in the upper half plane. It follows from the divergence theorem that the area enclosed by the curve is

$$\int_{\Omega} 1 = \frac{1}{3} \int_{0}^{1} (-y_1 y_2' + y_2 y_1') / |y'| \, dt.$$

What happened to the integral along the interval \mathcal{I} ?

3. 6.3.1-3 (Sagan)