Calculus of Variations Homework 4

February 13, 2012

1. Let

$$
\mathcal{F}[u]=\int_{a}^{b}\left[u^{\prime 2}+q(x) u^{2}\right] d x
$$

and consider minimization of \mathcal{F} over

$$
\left\{u \in C^{1}[a, b]: u(a)=0=u(b), \text { and } \int_{a}^{b} u^{2} d x=1\right\} .
$$

Let $u \in C^{1}[a, b]$ be a minimizer for this problem.
(a) Show that there is some constant λ such that

$$
L u=\lambda u
$$

where $L u=-u^{\prime \prime}+q u$ is the associated Sturm-Liouville operator on $C^{2}[a, b]$.
(b) There are, in fact, a sequence of eigenvalues $\lambda_{1}<\lambda_{1}<\cdots$ associated with the operator L, and the associated eigenfunctions form a complete orthonormal set in L^{2}. Show that $\lambda=\lambda_{1}$ is the least eigenvalue.
2. Assume that $t \mapsto y(t)$ for $t \in[0,1]$ parameterizes an embedded curve in $\left\{\left(x_{1}, x_{2}\right): x_{2} \geq 0\right\}$ with $y(0)=(-1,0)$ and $y(1)=(1,0)$. Embeddedness here means that the parameterization is one-to-one and smooth. The union of such a curve with the interval $\mathcal{I}=\left\{\left(x_{1}, 0\right):-1 \leq x_{1}<\right.$

1 encloses a region Ω in the upper half plane. It follows from the divergence theorem that the area enclosed by the curve is

$$
\int_{\Omega} 1=\frac{1}{3} \int_{0}^{1}\left(-y_{1} y_{2}^{\prime}+y_{2} y_{1}^{\prime}\right) /\left|y^{\prime}\right| d t
$$

What happened to the integral along the interval \mathcal{I} ?
3. 6.3.1-3 (Sagan)

