Calculus of Variations Homework 5

March 6, 2012

1. Consider the area functional on the admissible set

$$
\left\{u \in C^{1}[a, b]: u(a)=r_{1}, u(b)=r_{2}\right\}
$$

obtained by rotating the graph of u about the axis containing the domain $[a, b]$.
(a) Solve the Euler-Lagrange equation. Fix a particular extremal and determine the conditions under which you can embed it in a field of extremals.
(b) Find a particular extremal which can be embedded in a field of extremals, determine the associated tangent field, and write down the Eikonal/Carathéodory equations for the field.
(c) Determine which extremals are local minima.
2. Given a smooth Lagrangian $F=F(x, z, p)$ show that the mapping $p \mapsto F(x, z, p)$ is strictly convex on \mathbb{R}^{n} (for fixed (x, z)) if F satisfies the ellipticity condition: There is some $\epsilon>0$ such that

$$
\sum_{i, j=1}^{n} F_{p_{i} p_{j}}(x, z, p) \xi_{i} \xi_{j} \geq \epsilon|\xi|^{2}
$$

for all $\xi \in \mathbb{R}^{n}$.

