Calculus of Variations Homework 6

March 7, 2012

1. Give a derivation of Newton's expression for the drag on a rotationally symmetric profile given by $u=u(r)$ moving through a fluid:

$$
\mathcal{D}[u]=\int_{0}^{R} \frac{r}{1+u^{\prime}(r)^{2}} d r
$$

2. Numerically render some rotationally symmetric profiles determined by

$$
u(r)=M \sin ^{2}(h r)
$$

and show that for these profiles

$$
\lim _{h \rightarrow+\infty} \mathcal{D}[u]=0
$$

3. Investigate numerically the family of catenoids determined as candidates for minimal area surfaces of rotation.
4. Verify the sufficient conditions for at least some catenoid to be a local minimum including the condition that there are no Jacobi fields.
