
Notes on the calculus of variations

John McCuan

January 9, 2018



2



Chapter 1

Introduction

These are some notes for a graduate course in the calculus of variations given
at Georgia Tech in the Spring semester 2018. The primary text for the course
is that of Buttazzo, Giaqinta, and Hildebrandt entitled One-dimensional
Variational Problems (Oxford 1998). The text is at once more expansive
than many texts on the calculus of variations, in that it covers topics in the
direct methods and the requisite Sobolev and BV spaces, and is also limited
in some ways omitting higher dimensional problems as well as some standard
topics of practical importance; of particular note is the absence of exercises in
the text. These notes aim to augment, supplement, (and in a certain sense)
modify the presentation of the text.

The biggest additional component in the course is the detailed treatment
of some specific applications of the calculus of variations to practical prob-
lems involving physical experiments as an integral part. In addition, we will
mention higher dimensional variational problems briefly.

Finally, the text Variational Calculus and Optimal Control by John Trout-
man (Springer) will be used as a supplementary text. Some additional topics
may be found there.

1.1 The basic problem

The basic problem of the course may be expressed in simple terms:

We wish to minimize the value of an integral
∫ b

a

F (x, u(x), u′(x)) dx

3
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over some subset A ⊂ C1[a, b]. That is, we wish to find a function
u0 ∈ A such that

∫ b

a

F (x, u0(x), u′
0
(x)) dx ≤

∫ b

a

F (x, u(x), u′(x)) dx

for every u ∈ A.

While we will wish to consider various modifications or generalizations of
this basic problem, we can start by thinking −∞ < a < b < ∞ and
F = F (x, z, p) : [a, b] × R × R → R is a smooth function. This function,
or sometimes the integrand F (x, u(x), u′(x)) obtained by plugging in a par-
ticular function u ∈ C1[a, b] into F , is called the Lagrangian or variational
integrand.

Under these conditions, we have a well-defined function

F : C1[a, b] → R by F [u] =

∫ b

a

F (x, u(x), u′(x)) dx

where C1[a, b] denotes the collection of all continuously differentiable func-
tions defined on the interval [a, b].1 A function like F (whose argument is a
function and which takes real values) is sometimes called a functional. One
that is defined in terms of an integral like F is called a variational integral or
an integral functional. This course, roughly speaking, is about minimizing
integral functionals.

The set C1[a, b] appearing in our formulation above may be considered as
a superset or “universe” in which the minimization will take place. We may
use different supersets, but this set will usually be a linear space. It should
be noted, however, that the problem is not to minimize F with respect to all
functions in the universe C1[a, b] but rather on some admissible class A.
The conditions imposed by A which define the restriction

F : A → R by F [u] =

∫ b

a

F (x, u(x), u′(x)) dx

are usually of major importance when it comes to the minimization problem
posed above. For example, if we consider the Poisson integral

F [u] =

∫

1

0

[u + (u′)2] dx

1See Exercise 1.
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over all of C1[0, 1], then it is easy to check that the constant functions un(x) ≡
−n satisfy F [un] = −n, so there is no minimum. We shall see later that F
has a finite minimum on A = {u ∈ C1[a, b] : u(a) = 0 = u(b)}.

One should not expect to solve the basic problem for any given La-
grangian. That is to say, some conditions should be satisfied. One can
see this by simply negating the integrand in F above. Notice that each of
the functions

un(x) = n

[

(

x −
1

2

)2

−
1

4

]

belongs to A = {u ∈ C1[a, b] : u(a) = 0 = u(b)}, but if

G[u] =

∫

1

0

[−u − (u′)2] dx,

then

G[un] = −
n(2n − 1)

2
→ −∞ as n → ∞.

A general principle which is worth remembering is the following:

Any difficulty which can arise in finite dimensional calculus can
also arise in the calculus of variations.

In making this comparison, the functional F : C1[a, b] → R may be compared
to a real valued function f : R

n → R with A playing the analogue of a
particular subset Ω ⊂ R

n on which the minimization is to take place.
The behavior we have observed for the Poisson integral is roughly anal-

ogous to the fact from one-dimensional calclulus that a continuous function
f : R → R should not be expected to have a minimum on the entire real
line, but will have a minimum on any compact interval [a, b]. The functions
un = −n may be thought of as “running off” to ∞.

The second example, with the negative of the Poisson integral, may be
interpreted to demonstrate that there are multiple ways in which sets of func-
tions can fail to be compact. Fixing the boundary values does not necessarily
imply compactness. A sequence of functions can still “run off.” Generally
speaking, these functions can also be viewed as tending to the “boundary”
of the universal set C1 since the derivatives at the endpoints tend to ∞.
(Though this example doesn’t show it, this kind of phenomenon can also
happen when the sequence of functions stays bounded.)
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1.2 Standard examples; some generalizations

The following example may be considered as a simplification of the Poisson
integral minimization mentioned above.

Example 1 The Dirichlet Integral is given by

D[u] =
1

2

∫ b

a

|u′|2 dx.

This functional is defined on all of C1[a, b]; a typical admissible class over
which one may wish to minimize is

A0 = {u ∈ C1[a, b] : u(a) = u0, u(b) = u1}

where u0 and u1 are fixed numbers specifying a so called Dirichlet boundary
condition.

A generalization one may wish to consider is minimization of the Dirichlet
energy over the class

A1 = {u ∈ C0[a, b] ∩ C1(a, b) : u(a) = u0, u(b) = u1}.

Notice that A1 6⊂ C1[a, b], however, the reverse inclusion holds, and it may
be the case that a minimizer is, in fact, regular at the endpoints and in the
space of higher regularity. It should also be observed that our concept of
the values of D must be modified, for there are functions u in A1 for which
D[u] = +∞. See Exercise 2.

Example 2 The total variation of a function u ∈ C1[a, b] is given by

T [u] =

∫ b

a

|u′| dx.

This functional may also be minimized on A0 or A1.

Using T to construct a norm:

‖u‖ =

∫ b

a

|u| dx + T [u]

(called the “BV norm”), it is possible to extend the domain of T from C1[a, b]
to the functions of bounded variation.
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Example 3 The length of the graph of u is given by

L[u] =

∫ b

a

√

1 + (u′)2 dx.

Again, A0 and A1 are natural admissible classes for minimization.

Other admissible classes which are often convenient to consider are those
of piecewise continuous or piecewise differentiable functions. Let us denote
by <

0[a, b] the set of all functions u for which there is a partition a = x0 <

x1 < · · · < xk = b such that u ∈ C0[xj−1, xj ] for j = 1, . . . , k. By <
1[a, b] we

mean the functions u ∈ C0[a, b] with derivatives u′ ∈ <
0[a, b].

Other generalizations

Any of the standard examples above may be extended to vector valued func-
tions of a single variable, that is to functions u : [a, b] → R

m, provided the
vector valued function is in the appropriate space. In this case, the quantity
(u′)2 should be replaced with the square of the norm of the velocity vector
|u′|2. The simplest space within which to find admissible classes is denoted
by C1([a, b] → R

m).
A final obvious generalization involves real valued functions u = u(x) of

several variables x = (x1, . . . , xn) and multiple integrals. In this case, the
derivative should be interpreted as the gradient vector of partial derivatives
Du = (ux1

, . . . , uxn
). For example, if Ω is a smooth bounded domain in R

2,
then minimizing

A[u] =

∫

ω

√

1 + |Du|2 over A = {u ∈ C1(Ω̄) : u∣

∣

Ω

= u0},

where Ω̄ denotes the closure of Ω and u0 are some fixed specified bound-
ary values, leads to the classical problem of finding nonparametric minimal
surfaces, i.e., the shapes of certain soap films that project simply onto a
plane.

It is also possible to generalize the functionals above in both regards
and consider admissible classes of functions u : Ω → R

m with Ω ⊂ R
n.

Minimization of Dirichlet energy in this case leads to the subject of harmonic
maps. These are also related to finding parametric minimal surfaces because
the Dirichlet energy is equal to the area (or geometric mass) of the parametric
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image of the map u : Ω → R
m in special coordinates. But I’m getting ahead

of myself...

Exercise 1 Remember that a function is continuous at x ∈ [a, b] if for any
ǫ > 0, there is some δ > 0 such that |u(x + h) − u(x)| < ǫ whenever |h| < δ

and x + h ∈ [a, b]. A derivative, on the other hand, is usually defined at
points x in an open interval so that

u′(x) = lim
h→0

u(x + h) − u(x)

h
;

the value of h can be either positive or negative. The function u is then
continuously differentiable, or C1(a, b), if the derivative is continuous at
each x in the open interval (a, b). Technically, when we consider C1[a, b] on
a closed interval, we should specify whether we mean functions which have
an extension to a larger open interval (a− ǫ, b + ǫ) and are C1 there or if we
mean functions in C0[a, b] ∩ C1(a, b) which also have one-sided derivatives

lim
hց0

u(a + h) − u(x)

h
and lim

hր0

u(b + h) − u(x)

h

at a and b and the function u′(x) defined as the right derivative of u and
x = a, the left derivative of u at x = b and the two-sided derivative everywhere
else, is continuous on [a, b]. Show these two notions of C1[a, b] are equivalent
and show, in fact, any function in C1[a, b] has an extension to a function in
C1(R).

Exercise 2 Consider the Dirichlet integral as a functional on the class A1

given above. Show that D : A1 → R ∪ {+∞}. Assuming there is a function
in A1 which minimizes D, can you find (or guess) which one? If you have a
guess, can you prove your guess is correct?


