
Chapter 6

The Hanging Chain

If a chain or cable has its ends fixed at two different points and hangs under
the influence of gravity, it takes the shape of a hyperbolic cosine curve. We
now describe this shape precisely and explain how it arises as a minimizer of
potential energy among many possible shapes.
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Figure 6.1: the shape of a chain hanging from its endpoints in gravity

6.1 Analysis

6.1.1 Model

Let ℓ > 0 be the length of the chain and let ρ denote the linear density of
mass along the length of chain. Choose x, y-coordinates with the left end of
the chain fixed at (−1, 0) and the right end at (1, u1). We have made a choice
of units here so that the horizontal distance between the fixed endpoints is
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92 CHAPTER 6. THE HANGING CHAIN

2 units. This is equivalent to scaling the system given in some particular
initial units. We could also assume u1 has a specific sign, say u1 > 0, but
this is not necessary.

Given the length constraint on the chain, we must have

1 + u2
1 < ℓ2. (6.1)

There are many curves of length ℓ connecting (−1, 0) to (1, u1). Among
these consider C1 curves given by the graph of a function u : [0, 1] → R. The
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Figure 6.2: an alternative chain shape and the associated potential energy

length constraint may then be written as

∫ 1

−1

√

1 + [u′(x)]2 dx = ℓ.

Assuming a constant gravitational field ~G = −g(0, 1) and zero potential at
y = 0, we may integrate to approximate the potential energy of a portion of

the chain having mass ∆mj = ρ
√

1 + [u′(x∗
j )]

2 ∆xj :

approximate potential energy Vj =

∫ u(x∗

j )

0

ρg
√

1 + u′(x∗
j )

2 ∆xj dy.

The potential energy associated with a point mass is given by the work re-
quired to move the mass from a position of zero potential to another position,
that is, −

∫

γ
F ·T where F is the force field, γ is a path connecting a position

of zero potential to the position of the mass, and T is the unit tangent vector
along the path. In this case the force F = ∆mj

~G = −∆mjg(0, 1) is assumed
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constant, and the integral amounts to the force multiplied by the vertical
distance to equilibrium:

Vj = ρgu(x∗
j)
√

1 + u′(x∗
j )

2 ∆xj .

Summing over all model portions of chain and taking the limit as the mazi-
mum portion length tends to 0, we find an expression for the total potential
energy as a function of the chain shape determined by u:

potential energy V = lim
∑

ρgu(x∗
j)
√

1 + u′(x∗
j )

2 ∆xj =

∫ 1

−1

ρgu(x)
√

1 + u′(x)2 dx.

By the Leibniz’/Maupertuis’ principle of virtual work, or Hamilton’s action
principle, the observable shape u should be a critical point for

V [u] =

∫ 1

−1

ρgu(x)
√

1 + u′(x)2 dx

subject to the constraint

L[u] =

∫ 1

−1

√

1 + u′(x)2 dx = ℓ.

Under the assumption that ρ and g are positive constants, we may replace
the expression for V above with

V [u] =

∫ 1

−1

u(x)
√

1 + u′(x)2 dx

Introducing a Lagrange multiplier λ associated with the constraint and
assuming the existence of the model shape within the admissible class

A = {u ∈ C2[−1, 1] : u(−1) = 0, u(1) = u1},

we set F = V + λL and obtain the necessary condition

δFu[φ] =
d

dǫ

∫ 1

−1

(u + ǫφ + λ)
√

1 + (u′ + ǫφ′)2 dx∣
∣

ǫ=0

= 0

for all φ ∈ C∞
c (−1, 1). Differentiating under the integral and evaluating, we

find
∫ 1

−1

[

φ
√

1 + u′2 + (u + λ)
u′φ′

√
1 + u′2

]

dx = 0.
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We may integrate by parts in the second term to obtain

∫ 1

−1

[

−
(

(u + λ)u′

√
1 + u′2

)′

+
√

1 + u′2

]

φ = 0 for all φ ∈ C∞
c (−1, 1).

Finally, we may apply the fundamental lemma of the calculus of variations
to obtain a two point boundary value problem for a second order nonlinear
ordinary differential equation for the observed shape u:

(

(u + λ)u′

√
1 + u′2

)′

=
√

1 + u′2, u(−1) = 0, u(1) = u1.

We know this equation is satisfied even under the assumption u ∈ C1[−1, 1].

6.1.2 Extremal graphs

Using the assumed regularity of the observed shape u, we can also write

(u + λ)
u′′

(1 + u′2)3/2
+

u′2

√
1 + u′2

=
√

1 + u′2

or
(u + λ)u′′ = 1 + u′2.

Under the assumption u′′(−1) > 0, which (based on observation of the shape
of actual physical hanging chains) seems rather reasonable, we can solve for
the Lagrange multiplier and find

λ =
1 + u′(−1)2

u′′(−1)
> 0.

More generally, whenever u + λ 6= 0, we can write

u′

1 + u′2
u′′ =

1

u + λ
u′.

In particular, integrating from x = −1 to x,

∫ u′

u′(−1)

t

1 + t2
dt =

∫ u

u(−1)

1

t + λ
dt

or
1

2

[

ln(1 + u′2) − ln(1 + u′(−1)2)
]

= ln(u + λ) − ln λ.
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It follows that
1 + u′2

1 + u′(−1)2
=
(u

λ
+ 1
)2

. (6.2)

Let us pause at this point to consider the first integral equation

u′Fp(u, u′) − F (u, u′) = −c (6.3)

where c is some constant and F (z, p) = (z + λ)
√

1 + p2 is the Lagrangian
associated with F . We have used −c instead of c here to simplify things
later. After a computation, we find

u′2

√
1 + u′2

−
√

1 + u′2 = − c

u + λ
.

That is,
√

1 + u′2 =
1

c
(u + λ).

Taking the contant c = λ/
√

1 + u′(−1)2, which it must be, we see several
things. First of all, any solution of the first integral equation with c 6= 0 will
give a solution of (6.2). It is possible to get a solution of (6.3) with the choice
c = 0, but in this case, we must take u ≡ −λ = 0, and we must therefore have
u1 = 0. This is, indeed, not a solution of the Euler-Lagrange equation for
F = V +λL, but this possibility represents the exceptional case of Theorem 9
(Proposition 1.17 in BGH) in which the constraint is degenerate. In this case,
the solution u ≡ 0 gives the shortest path between (−1, 0) and (1, u1) = (1, 0)
and is, therefore, a critical point for the length functional L providing the
constraint. When c 6= 0, we obtain from the first integral equation a global
justification for our assumption

u + λ 6= 0.

This is because every solution of the Euler-Lagrange equation must be a
solution of the first integral equation. Only the solution u ≡ 0 in the case
u1 = 0 and ℓ = 2 is exceptional.

Finally, the first integral equation tells us something about the sign of
u + λ because

√
1 + u′2 =

√

1 + u′(−1)2

λ
(u + λ).
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It follows that u+λ and λ must share the same sign, and under our, seemingly
justified, assumpetion u′′(−1) > 0, that sign is positive. Thus, we may pro-
ceed to solve either the Euler-Lagrange equation or the first integral equation
under this assumption. Making the substituion v = (u + λ)

√

1 + u′(−1)2/λ,
we find

u′ = ±
√

v2 − 1 or
λ

√

1 + u′(−1)2
v′ = ±

√
v2 − 1.

It follows that

cosh−1 v − cosh−1 v(−1) = ±
√

1 + u′(−1)2

λ
(x + 1),

v =

√

1 + u′(−1)2

λ
(u+λ) = cosh

[

±
√

1 + u′(−1)2

λ
(x + 1) + cosh−1 v(−1)

]

,

or

u = −λ+
λ

√

1 + u′(−1)2
cosh

[

√

1 + u′(−1)2

λ
(x + 1) ± cosh−1

√

1 + u′(−1)2

]

.

This looks rather complicated, but it does tell us that the extremals have
the form of hyperbolic cosine curves This also confirms that the constant
c from the first integral equation should be positive with c < 0 extremals
corresponding to maximizers of the energy. Substituting the value of c from
the first integral equation and differentiating, we also see

u′ = sinh
(

(x + 1)/c ± cosh−1
√

1 + u′(−1)2
)

.

This allows us to nominally locate the vertex or lowest point on the hyperbolic
cosine curve which occurs for

x = µ = −1 ∓ c cosh−1(λ/c).

In terms of this parameter, the extremals may be written as

u = −λ + c cosh

(

x − µ

c

)

.
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There are now three unknown parameters λ, µ, and c, but the initial condition
u(−1) = 0 implies

λ = c cosh

(

1 + µ

c

)

and

u = c cosh

(

x − µ

c

)

− c cosh

(

1 + µ

c

)

.

The other endpoint condition takes the symmetric form

c cosh

(

1 − µ

c

)

− c cosh

(

1 + µ

c

)

= u1.

Another equation we can use to determine the parameters c and µ is given
by the length constraint L[u] = ℓ.

u′ = sinh

(

x − µ

c

)

and 1 + u′2 = cosh2

(

x − µ

c

)

.

Therefore,

L[u] =

∫ 1

−1

√
1 + u′2 dx =

∫ 1

−1

cosh

(

x − µ

c

)

dx,

and writing down L[u] = ℓ we are led to the fundamental symmetric system:

c cosh

(

1 − µ

c

)

− c cosh

(

1 + µ

c

)

= u1. (6.4)

and

c sinh

(

1 − µ

c

)

+ c sinh

(

1 + µ

c

)

= ℓ. (6.5)

In this symmetric form, it is possible to eliminate µ as follows: Square both
equations and subtract the first from the second, noting ℓ2 − u2

1 ≥ 4. We get

c2

[

−2 + 2 cosh

(

1 − µ

c

)

cosh

(

1 + µ

c

)

+ 2 sinh

(

1 − µ

c

)

sinh

(

1 + µ

c

)]

= ℓ2−u2
1.

That is,

−1 + cosh

(

2

c

)

= 1 + cosh2

(

1

c

)

+ sinh2

(

1

c

)

=
ℓ2 − u2

1

2c2
.



98 CHAPTER 6. THE HANGING CHAIN

That is,

c sinh

(

1

c

)

=
1

2

√

ℓ2 − u2
1 > 1. (6.6)

In this way, we obtain a single transcendental equation for c. One can show
c sinh(1/c) is monotone decreasing in c for c > 0 and takes every value
greater than 1. Let us verify the equivalent assertions for the function f(z) =
sinh z/z. First of all if z ց 0, we have by L’Hopital’s rule

lim
zց0

sinh z

z
= lim

zց0
cosh z = 1 and lim

zր∞

sinh z

z
= lim

zր∞
cosh z = ∞.

Also,

f ′(z) =
z cosh z − sinh z

z2
.

Setting f1(z) = z cosh z − sinh z we see f1(0) = 0 and f ′
1(z) = z sinh z > 0

for z > 0. In particular, f1(z) > 0 for z > 0, so f ′(z) > 0 for z > 0. Also,

lim
zց0

f ′(z) = lim
zց0

f ′
1(z)

2z
= 0.

We have shown that f takes every value on [1,∞) uniquely and has a well-
defined inverse on that interval. Thus, we have a unique solution
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Figure 6.3: sinh z/z and its inverse
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c =
1

f−1
(

1
2

√

ℓ2 − u2
1

) .

Once we know c > 0, we can expand (6.4) to see

−2c sinh

(

1

c

)

sinh
(µ

c

)

= u1.

Therefore, substituting from (6.6),

µ = −c sinh−1

(

u1√
ℓ2 − u1

2

)

Setting g = f−1, we also know

lim
vց1

g′(v) = +∞.

In order to get an accurate approximation for g = f−1 near v = 1, we
compute the next derivative of f :

f ′′(z) =
z2f ′

1 − 2zf1

z4
=

z2 sinh z − 2z cosh z + 2 sinh z

z3
.

Again, using L’Hopital’s rule

lim
zց0

f ′′(z) = lim
zց0

cosh z

3
=

1

3
.

Thus, we have to leading order v ∼ 1+g(v)2/6 or g(v) ∼ g0(v) =
√

6(v − 1).
It is less obvious how to obtain a simple approximation for g(v) when v

is large. Let us begin with an intermediate approximation obtained from the
Taylor expansion of f at z = 1. We have

f(1) = sinh(1), f ′(1) = cosh(1)−sinh(1), and f ′′(1) = 3 sinh(1)−2 cosh(1).

Thus, v ∼ sinh(1)+(cosh(1)−sinh(1))(g−1)+(3 sinh(1)−2 cosh(1))(g−1)2/2,
and we have an approximation

g(v) ∼ g1(v) = 1+
sinh(1) − cosh(1) +

√

cosh2(1) + sinh(2) − 5 sinh2(1) + 2(3 sinh(1) − 2 cosh(1))v

3 sinh(1) − 2 cosh(1)
.
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This approximation is relatively accurate on a rather small interval about
sinh(1). The average (g1(v) + g2(v))/2 is accurate for somewhat larger v.

For v > 1, we also have recourse to a recursive approximation scheme.
Picking an initial value g0, for example, we could take g0 = sinh−1(v) which
will be smaller than g(v) as long as v > sinh(1). We see the actual value
g(v) satisfies

sinh g(v)

g(v)
= v or g(v) = sinh−1(vg(v)).

This suggests setting g1 = sinh−1(vg0) and gj+1 = sinh−1(vgj) in general for
j = 0, 1, 2, . . ..

Conjecture 1. The sequence gj tends (upward) to g(v) with the estimate

g(v) − gj+1 ≤ gj+1 − gj.

For example, if we take v = 33.6189 ≈ sinh[6]/6, then

g0 = sinh−1(v) ≈ 4.20846

g1 = sinh−1(g0v) ≈ 5.64534

g2 = sinh−1(g1v) ≈ 5.93907

g3 = sinh−1(g2v) ≈ 5.98979.

6.1.3 Minimality of extremals

We have established the existence of a unique catenary extremal given by
the graph of a function u ∈ C∞[−1, 1] and satisfying

u(−1) = 0, u(1) = u1, and

∫ 1

−1

√
1 + u′2 dx = ℓ.

The function u satisfies

u(x) = c cosh

(

x − µ

c

)

− c cosh

(

1 + µ

c

)

(6.7)

where c > 0 is the unique solution of c sinh(1/c) =
√

ℓ2 − u2
1

/

2 > 0, and

µ = −c sinh−1

(

u1√
ℓ2 − u1

2

)

.

We now wish to establish the following result.
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Theorem 16. The function u given in (6.7) is the unique minimizer of

V [u] =

∫ 1

−1

u
√

1 + u′2 dx

on
A = {u ∈ C1[−1, 1] : u(−1) = 0, u(1) = u1}

subject to

L[u] =

∫ 1

−1

√
1 + u′2 dx = ℓ.

A fundamental difficulty in establishing this result is that the Lagrangian
F (z, p) = (z + λ)

√

1 + p2 associated with the augmented functional F =
V + λL where

λ = c cosh

(

1 + µ

c

)

> 0

is not (always) convex. Showing this is Problem 30 of Chapter 3 in Troutman.
Following Troutman, we take the special case u1 = 0. In this case µ = 0, and
the extremal is given by

u(x) = c cosh
(x

c

)

− λ with λ = c cosh

(

1

c

)

.

On the other hand, the function u0 ≡ 0 satisfies u0 ∈ A, and δFu[v] ≡ 0.
Taking v = −u, we have u + v = u0 and showing F is not convex amounts
to showing

F [u0] − F [u] < 0

(under some circumstances). In fact,

F [u0] −F [u] =

∫ 1

−1

λ dx −
∫ 1

−1

(u + λ)
√

1 + u′2 dx

= 2c cosh

(

1

c

)

− c

∫ 1

−1

cosh2
(x

c

)

dx

= 2c cosh

(

1

c

)

− c

2

∫ 1

−1

[

cosh

(

2x

c

)

+ 1

]

dx

= 2c cosh

(

1

c

)

− c2

2
sinh

(

2

c

)

− c

c

[

2 cosh

(

1

c

)

− c sinh

(

1

c

)

cosh

(

1

c

)

− 1

]

.
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Since x sinh x → ∞ as x ր ∞, we see that for c > 0 small enough

c sinh

(

1

c

)

> 2,

and F [u0] − F [u] < 0. Recalling that c is determined by

c sinh

(

1

c

)

=
1

2

√

ℓ2 − u2
1 =

ℓ

2
,

we find nonconvexity for chains of any length ℓ > 4.
In spite of this nonconvexity, Troutman suggests a rephrasing of the prob-

lem which leads to a much stronger result than Theorem 16 above. The
function u determines a parametric curve parameterized by arclength. This
is given by the function x ∈ C1([0, ℓ] → R

2) by x(s) = (ξ(s), η(s)) where

{

ξ(s) = µ + c sinh−1
[

s
c
− sinh

(

1+µ
c

)]

η(s) = u(ξ(s)) = c cosh
(

sinh−1
[

s
c
− sinh

(

1+µ
c

)])

− c cosh
(

1+µ
c

)

.
(6.8)

This parametric map x also satisfies

|x′| ≡ 1 and 2 =

∫ ℓ

−1

ξ′(s) ds =

∫ ℓ

0

√

1 − η′2 ds.

Now if we let x = (ξ, η) ∈ C1([0, ℓ] → R
2) be any parametric curve parame-

terized by arclength (|x′| ≡ 1) with x(0) = (−1, 0) and x(ℓ) = (1, u1), then
the potential energy expression

V [u] =

∫ 1

−1

u
√

1 + u′2 dx

generalizes to

V1[x] =

∫ ℓ

0

η ds.

To see this, we may again consider a portion of chain of mass ∆mj = ρ∆sj

located at a point x(s∗j). The potential energy of this particular section of
chain is approximately

∫ η

0

ρg∆sj dy = ρgη∆sj.
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Figure 6.4: an parametric chain shape: These shapes are also not required to

satisfy −1 ≤ ξ ≤ 1 though the one illustrated does. (Actually, this shape has

length a little longer than the original catenary chain shape.)

Summing over a partition of such portions and taking the limit as the maxi-
mum length ∆sj tends to zero (and dividing out by the constant ρg as usual),
we arrive at the expression for V1 above. The following result treats these
general parametric curves of length ℓ connecting (−1, 0) to (1, u1) and as-
serts that the catenary graph extremal is the unique minimizer among such
curves.

Theorem 17. The catenary graph satisfying (6.8) is the unique minimizer
of

V1[x] =

∫ ℓ

0

η ds

on

B = {x ∈ C1([0, ℓ] → R
2) : x(0) = (−1, 0), x(ℓ) = (1, u1), |x′| ≡ 1}

subject to

L1[x] =

∫ ℓ

0

√

1 − η′2 ds = 2.

Finally, we simplify the previous result slightly and prove something even
more general. It will be noted that the functionals appearing above only
depend on the second coordinate function of x, namely, η ∈ C1[0, ℓ]. Thus,
it makes sense to extend their domains and rename them:

V1 : C1[0, ℓ] → R by V1[η] =

∫ ℓ

0

η ds



104 CHAPTER 6. THE HANGING CHAIN

and

L1 : {η ∈ C1[0, ℓ] : |η′(s)| ≤ 1 for 0 ≤ s ≤ ℓ} → R by L1[x] =

∫ ℓ

0

√

1 − η′2 ds.

We now state the main result.

Theorem 18. The second component of the parametric map defined in (6.8)
is the unique minimizer of

V1[η] =

∫ ℓ

0

η ds

on

B = {x ∈ C1([0, ℓ] → R
2) : η(0) = 0, η(ℓ) = u1}

subject to

L1[η] =

∫ ℓ

0

√

1 − η′2 ds = 2.

Notice the absence of the condition |x′| ≡ 1 in the definition of B. Notice,
furthermore, that the functional L1 is not (even) defined on all of B, but only
on

B1 = {η ∈ B : |η′(s)| ≤ 1 for 0 ≤ s ≤ ℓ}.

Proof of Theorem 18: We show first that η from (6.8) is the unique
minimizer of

G[η] = (V1 − cL1)[η] =

∫ ℓ

0

[

η − c
√

1 − η′2
]

ds

on B1 (without constraint). This follows from two facts

1. The augmented functional G = V1 − cL1 is strictly convex on B1 in the
sense of Definition 5.

2. The function η from (6.8) is an extremal for G, that is δGη[v] = 0
whenever η + v ∈ B1.

If we can establish these two assertions, we may apply Theorem 14 on min-
imizing convex functionals. The strict convexity does not follow from our
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previous result because the augmented Lagrangian G(z, p) = z − c
√

1 − p2

is not strictly second order convex. We do have

D2G =

(

0 0
0 c

(1−p2)3/2

)

.

Therefore, for each v ∈ C1[0, ℓ] such that η + v ∈ B1, we have

G(η + v, η′ + v′) − G(η, η′) = Gz(η, η′)v + Gp(η, η′)v′ +
c

2(1 − p2
∗)

3/2
v′2

≥ Gz(η, η′)v + Gp(η, η′)v′

with equality only if v′ = 0 (pointwise). Integrating this inequality

G[η+v]−G[η] =

∫ ℓ

0

[Gz(η, η′)v+Gp(η, η′)v′] ds+
c

2

∫ ℓ

0

v′2

(1 − p2
∗)

3/2
ds ≥ δGη[v]

with equality only if v′ ≡ 0. But if η + v ∈ B1, then v(0) = v(ℓ) = 0, so
equality implies v ≡ 0. This establishes the strict convexity of G.

On the other hand, the Euler-Lagrange equation for G is

c

(

η′

√

1 + η′2

)′

= 1

where the derivatives are with respect to the arclength s. To compute this
for the function η from the arclength parameterization of the catenary we
observe first that

s =

∫ ξ

0

√
1 + u′2 dx = c sinh

(

ξ − µ

c

)

+ c sinh

(

1 + µ

c

)

.

Therefore,
dξ

ds
=

1

cosh
(

ξ−µ
c

) .

Having made this observation/calculation we have from (6.8)

η′(s) =
du

dx
(ξ)

dξ

ds
=

sinh
(

ξ−µ
c

)

cosh
(

ξ−µ
c

) .
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Therefore,

d

ds

(

η′

√

1 − η′2

)

=
d

dx

(

sinh

(

ξ − µ

c

))

∣

∣

x=ξ

dξ

ds
=

1

c
,

and η is a C2 classical extremal for G. In particular, δGη[v] ≡ 0, and G[η +
v] − G[η] ≥ 0 whenever η + v ∈ B1 with equality only if v ≡ 0.

The usual argument of Theorem 10 now applies. That is, it happens that

L1[η] =

∫ ℓ

0

√

1 − η′2 ds = 2,

so for any v ∈ C1[0, ℓ] such that η + v ∈ B and for which L1[η + v] = 2, we
have

V1[η + v] − cL1[η + v] = G[η + v] ≥ G[η] = V1[η] − cL1[η]

with equality only if v ≡ 0. Since L1[η + v] = L1[η] = 2, we have

V1[η + v] ≥ V1[η] with equality only if v ≡ 0.

This establishes Theorem 18. 2

Proof of Theorem 17: If x̃ = (ξ̃, η̃) ∈ B satisfies

∫ ℓ

0

√

1 − η̃′2 ds = 2

and x is the parametric catenary, then η̃ ∈ B1 ⊂ B and satisfies L1[η̃] = 2.
Thus, by Theorem 18

V1[x̃] = V1[η̃] ≥ V1[η] = V1[x] with equality only if η̃ ≡ η.

We have, in particular, V1[x̃] ≥ V1[x] for all x̃ ∈ B satisfying the constraint

L1[x̃] = 2.

In the case of equality we have ξ̃′ = ±
√

1 − η′2 and

2 =

∫ ℓ

0

ξ̃′ ds =

∫ ℓ

0

√

1 − η′2 ds.

Since η′(s) = 1 for at most one arclength s, we conclude ξ̃ =
√

1 − η′2 and
x̃ ≡ x. 2



6.1. ANALYSIS 107

Finally we prove the initial (and weakest) assertion.
Proof of Theorem 16: If ũ ∈ A and

L[ũ] =

∫ 1

−1

√
1 − ũ′2 dx = ℓ,

then the graph of ũ may be parameterized by arclength to give a parameter-
ized curve x̃ ∈ B satisfying the constraint

L1[x̃] =

∫ ℓ

0

√

1 − η̃′2 ds = 2.

By Theorem 17, we know V1[x̃] ≥ V1[x] with equality only if x̃ = x. Changing
variables, we find

V1[x̃] =

∫ ℓ

0

η̃ ds =

∫ 1

−1

ũ
√

1 + ũ′2 dx = V [ũ]

and

V1[x] =

∫ ℓ

0

η ds =

∫ 1

−1

u
√

1 + u′2 dx = V [u].

The result evidently follows. 2

Relations to physical parameters

If we wished to consider the right endpoint to have a general coordinate (c, d)
with c > 0 and c2 + d2 < ℓ2, we could first make a choice of units so that
the length c measures one unit in the new system. Equivalently, we consider
the problem with right endpoint at (1, d/c). If d > 0, we can reverse the
endpoints.


