Chapter 6

The Hanging Chain

If a chain or cable has its ends fixed at two different points and hangs under the influence of gravity, it takes the shape of a hyperbolic cosine curve. We now describe this shape precisely and explain how it arises as a minimizer of potential energy among many possible shapes.

Figure 6.1: the shape of a chain hanging from its endpoints in gravity

6.1 Analysis

6.1.1 Model

Let $\ell>0$ be the length of the chain and let ρ denote the linear density of mass along the length of chain. Choose x, y-coordinates with the left end of the chain fixed at $(-1,0)$ and the right end at $\left(1, u_{1}\right)$. We have made a choice of units here so that the horizontal distance between the fixed endpoints is

2 units. This is equivalent to scaling the system given in some particular initial units. We could also assume u_{1} has a specific sign, say $u_{1}>0$, but this is not necessary.

Given the length constraint on the chain, we must have

$$
\begin{equation*}
1+u_{1}^{2}<\ell^{2} \tag{6.1}
\end{equation*}
$$

There are many curves of length ℓ connecting $(-1,0)$ to $\left(1, u_{1}\right)$. Among these consider C^{1} curves given by the graph of a function $u:[0,1] \rightarrow \mathbb{R}$. The

Figure 6.2: an alternative chain shape and the associated potential energy length constraint may then be written as

$$
\int_{-1}^{1} \sqrt{1+\left[u^{\prime}(x)\right]^{2}} d x=\ell
$$

Assuming a constant gravitational field $\vec{G}=-g(0,1)$ and zero potential at $y=0$, we may integrate to approximate the potential energy of a portion of the chain having mass $\Delta m_{j}=\rho \sqrt{1+\left[u^{\prime}\left(x_{j}^{*}\right)\right]^{2}} \Delta x_{j}$:

$$
\text { approximate potential energy } V_{j}=\int_{0}^{u\left(x_{j}^{*}\right)} \rho g \sqrt{1+u^{\prime}\left(x_{j}^{*}\right)^{2}} \Delta x_{j} d y
$$

The potential energy associated with a point mass is given by the work required to move the mass from a position of zero potential to another position, that is, $-\int_{\gamma} F \cdot T$ where F is the force field, γ is a path connecting a position of zero potential to the position of the mass, and T is the unit tangent vector along the path. In this case the force $F=\Delta m_{j} \vec{G}=-\Delta m_{j} g(0,1)$ is assumed
constant, and the integral amounts to the force multiplied by the vertical distance to equilibrium:

$$
V_{j}=\rho g u\left(x_{j}^{*}\right) \sqrt{1+u^{\prime}\left(x_{j}^{*}\right)^{2}} \Delta x_{j} .
$$

Summing over all model portions of chain and taking the limit as the mazimum portion length tends to 0 , we find an expression for the total potential energy as a function of the chain shape determined by u :
potential energy $V=\lim \sum \rho g u\left(x_{j}^{*}\right) \sqrt{1+u^{\prime}\left(x_{j}^{*}\right)^{2}} \Delta x_{j}=\int_{-1}^{1} \rho g u(x) \sqrt{1+u^{\prime}(x)^{2}} d x$.
By the Leibniz'/Maupertuis' principle of virtual work, or Hamilton's action principle, the observable shape u should be a critical point for

$$
V[u]=\int_{-1}^{1} \rho g u(x) \sqrt{1+u^{\prime}(x)^{2}} d x
$$

subject to the constraint

$$
L[u]=\int_{-1}^{1} \sqrt{1+u^{\prime}(x)^{2}} d x=\ell
$$

Under the assumption that ρ and g are positive constants, we may replace the expression for V above with

$$
V[u]=\int_{-1}^{1} u(x) \sqrt{1+u^{\prime}(x)^{2}} d x
$$

Introducing a Lagrange multiplier λ associated with the constraint and assuming the existence of the model shape within the admissible class

$$
\mathcal{A}=\left\{u \in C^{2}[-1,1]: u(-1)=0, u(1)=u_{1}\right\}
$$

we set $\mathcal{F}=V+\lambda L$ and obtain the necessary condition

$$
\delta \mathcal{F}_{u}[\phi]=\left.\frac{d}{d \epsilon} \int_{-1}^{1}(u+\epsilon \phi+\lambda) \sqrt{1+\left(u^{\prime}+\epsilon \phi^{\prime}\right)^{2}} d x\right|_{\epsilon=0}=0
$$

for all $\phi \in C_{c}^{\infty}(-1,1)$. Differentiating under the integral and evaluating, we find

$$
\int_{-1}^{1}\left[\phi \sqrt{1+u^{\prime 2}}+(u+\lambda) \frac{u^{\prime} \phi^{\prime}}{\sqrt{1+u^{\prime 2}}}\right] d x=0
$$

We may integrate by parts in the second term to obtain

$$
\int_{-1}^{1}\left[-\left(\frac{(u+\lambda) u^{\prime}}{\sqrt{1+u^{\prime 2}}}\right)^{\prime}+\sqrt{1+u^{\prime 2}}\right] \phi=0 \quad \text { for all } \phi \in C_{c}^{\infty}(-1,1)
$$

Finally, we may apply the fundamental lemma of the calculus of variations to obtain a two point boundary value problem for a second order nonlinear ordinary differential equation for the observed shape u :

$$
\left(\frac{(u+\lambda) u^{\prime}}{\sqrt{1+u^{\prime 2}}}\right)^{\prime}=\sqrt{1+u^{\prime 2}}, \quad u(-1)=0, u(1)=u_{1}
$$

We know this equation is satisfied even under the assumption $u \in C^{1}[-1,1]$.

6.1.2 Extremal graphs

Using the assumed regularity of the observed shape u, we can also write

$$
(u+\lambda) \frac{u^{\prime \prime}}{\left(1+u^{\prime 2}\right)^{3 / 2}}+\frac{u^{\prime 2}}{\sqrt{1+u^{\prime 2}}}=\sqrt{1+u^{\prime 2}}
$$

or

$$
(u+\lambda) u^{\prime \prime}=1+u^{\prime 2} .
$$

Under the assumption $u^{\prime \prime}(-1)>0$, which (based on observation of the shape of actual physical hanging chains) seems rather reasonable, we can solve for the Lagrange multiplier and find

$$
\lambda=\frac{1+u^{\prime}(-1)^{2}}{u^{\prime \prime}(-1)}>0
$$

More generally, whenever $u+\lambda \neq 0$, we can write

$$
\frac{u^{\prime}}{1+u^{\prime 2}} u^{\prime \prime}=\frac{1}{u+\lambda} u^{\prime}
$$

In particular, integrating from $x=-1$ to x,

$$
\int_{u^{\prime}(-1)}^{u^{\prime}} \frac{t}{1+t^{2}} d t=\int_{u(-1)}^{u} \frac{1}{t+\lambda} d t
$$

or

$$
\frac{1}{2}\left[\ln \left(1+u^{\prime 2}\right)-\ln \left(1+u^{\prime}(-1)^{2}\right)\right]=\ln (u+\lambda)-\ln \lambda
$$

It follows that

$$
\begin{equation*}
\frac{1+u^{\prime 2}}{1+u^{\prime}(-1)^{2}}=\left(\frac{u}{\lambda}+1\right)^{2} . \tag{6.2}
\end{equation*}
$$

Let us pause at this point to consider the first integral equation

$$
\begin{equation*}
u^{\prime} F_{p}\left(u, u^{\prime}\right)-F\left(u, u^{\prime}\right)=-c \tag{6.3}
\end{equation*}
$$

where c is some constant and $F(z, p)=(z+\lambda) \sqrt{1+p^{2}}$ is the Lagrangian associated with \mathcal{F}. We have used $-c$ instead of c here to simplify things later. After a computation, we find

$$
\frac{u^{\prime 2}}{\sqrt{1+u^{\prime 2}}}-\sqrt{1+u^{\prime 2}}=-\frac{c}{u+\lambda} .
$$

That is,

$$
\sqrt{1+u^{\prime 2}}=\frac{1}{c}(u+\lambda) .
$$

Taking the contant $c=\lambda / \sqrt{1+u^{\prime}(-1)^{2}}$, which it must be, we see several things. First of all, any solution of the first integral equation with $c \neq 0$ will give a solution of (6.2). It is possible to get a solution of (6.3) with the choice $c=0$, but in this case, we must take $u \equiv-\lambda=0$, and we must therefore have $u_{1}=0$. This is, indeed, not a solution of the Euler-Lagrange equation for $\mathcal{F}=V+\lambda L$, but this possibility represents the exceptional case of Theorem 9 (Proposition 1.17 in BGH) in which the constraint is degenerate. In this case, the solution $u \equiv 0$ gives the shortest path between $(-1,0)$ and $\left(1, u_{1}\right)=(1,0)$ and is, therefore, a critical point for the length functional L providing the constraint. When $c \neq 0$, we obtain from the first integral equation a global justification for our assumption

$$
u+\lambda \neq 0 .
$$

This is because every solution of the Euler-Lagrange equation must be a solution of the first integral equation. Only the solution $u \equiv 0$ in the case $u_{1}=0$ and $\ell=2$ is exceptional.

Finally, the first integral equation tells us something about the sign of $u+\lambda$ because

$$
\sqrt{1+u^{\prime 2}}=\frac{\sqrt{1+u^{\prime}(-1)^{2}}}{\lambda}(u+\lambda) .
$$

It follows that $u+\lambda$ and λ must share the same sign, and under our, seemingly justified, assumpetion $u^{\prime \prime}(-1)>0$, that sign is positive. Thus, we may proceed to solve either the Euler-Lagrange equation or the first integral equation under this assumption. Making the substituion $v=(u+\lambda) \sqrt{1+u^{\prime}(-1)^{2}} / \lambda$, we find

$$
u^{\prime}= \pm \sqrt{v^{2}-1} \quad \text { or } \quad \frac{\lambda}{\sqrt{1+u^{\prime}(-1)^{2}}} v^{\prime}= \pm \sqrt{v^{2}-1} .
$$

It follows that

$$
\begin{gathered}
\cosh ^{-1} v-\cosh ^{-1} v(-1)= \pm \frac{\sqrt{1+u^{\prime}(-1)^{2}}}{\lambda}(x+1) \\
v=\frac{\sqrt{1+u^{\prime}(-1)^{2}}}{\lambda}(u+\lambda)=\cosh \left[\pm \frac{\sqrt{1+u^{\prime}(-1)^{2}}}{\lambda}(x+1)+\cosh ^{-1} v(-1)\right],
\end{gathered}
$$

or
$u=-\lambda+\frac{\lambda}{\sqrt{1+u^{\prime}(-1)^{2}}} \cosh \left[\frac{\sqrt{1+u^{\prime}(-1)^{2}}}{\lambda}(x+1) \pm \cosh ^{-1} \sqrt{1+u^{\prime}(-1)^{2}}\right]$.
This looks rather complicated, but it does tell us that the extremals have the form of hyperbolic cosine curves This also confirms that the constant c from the first integral equation should be positive with $c<0$ extremals corresponding to maximizers of the energy. Substituting the value of c from the first integral equation and differentiating, we also see

$$
u^{\prime}=\sinh \left((x+1) / c \pm \cosh ^{-1} \sqrt{1+u^{\prime}(-1)^{2}}\right)
$$

This allows us to nominally locate the vertex or lowest point on the hyperbolic cosine curve which occurs for

$$
x=\mu=-1 \mp c \cosh ^{-1}(\lambda / c) .
$$

In terms of this parameter, the extremals may be written as

$$
u=-\lambda+c \cosh \left(\frac{x-\mu}{c}\right) .
$$

There are now three unknown parameters λ, μ, and c, but the initial condition $u(-1)=0$ implies

$$
\lambda=c \cosh \left(\frac{1+\mu}{c}\right)
$$

and

$$
u=c \cosh \left(\frac{x-\mu}{c}\right)-c \cosh \left(\frac{1+\mu}{c}\right) .
$$

The other endpoint condition takes the symmetric form

$$
c \cosh \left(\frac{1-\mu}{c}\right)-c \cosh \left(\frac{1+\mu}{c}\right)=u_{1} .
$$

Another equation we can use to determine the parameters c and μ is given by the length constraint $L[u]=\ell$.

$$
u^{\prime}=\sinh \left(\frac{x-\mu}{c}\right) \quad \text { and } \quad 1+u^{\prime 2}=\cosh ^{2}\left(\frac{x-\mu}{c}\right) .
$$

Therefore,

$$
L[u]=\int_{-1}^{1} \sqrt{1+u^{\prime 2}} d x=\int_{-1}^{1} \cosh \left(\frac{x-\mu}{c}\right) d x
$$

and writing down $L[u]=\ell$ we are led to the fundamental symmetric system:

$$
\begin{equation*}
c \cosh \left(\frac{1-\mu}{c}\right)-c \cosh \left(\frac{1+\mu}{c}\right)=u_{1} . \tag{6.4}
\end{equation*}
$$

and

$$
\begin{equation*}
c \sinh \left(\frac{1-\mu}{c}\right)+c \sinh \left(\frac{1+\mu}{c}\right)=\ell . \tag{6.5}
\end{equation*}
$$

In this symmetric form, it is possible to eliminate μ as follows: Square both equations and subtract the first from the second, noting $\ell^{2}-u_{1}^{2} \geq 4$. We get
$c^{2}\left[-2+2 \cosh \left(\frac{1-\mu}{c}\right) \cosh \left(\frac{1+\mu}{c}\right)+2 \sinh \left(\frac{1-\mu}{c}\right) \sinh \left(\frac{1+\mu}{c}\right)\right]=\ell^{2}-u_{1}^{2}$.
That is,

$$
-1+\cosh \left(\frac{2}{c}\right)=1+\cosh ^{2}\left(\frac{1}{c}\right)+\sinh ^{2}\left(\frac{1}{c}\right)=\frac{\ell^{2}-u_{1}^{2}}{2 c^{2}} .
$$

That is,

$$
\begin{equation*}
c \sinh \left(\frac{1}{c}\right)=\frac{1}{2} \sqrt{\ell^{2}-u_{1}^{2}}>1 \tag{6.6}
\end{equation*}
$$

In this way, we obtain a single transcendental equation for c. One can show $c \sinh (1 / c)$ is monotone decreasing in c for $c>0$ and takes every value greater than 1 . Let us verify the equivalent assertions for the function $f(z)=$ $\sinh z / z$. First of all if $z \searrow 0$, we have by L'Hopital's rule

$$
\lim _{z \backslash 0} \frac{\sinh z}{z}=\lim _{z \backslash 0} \cosh z=1 \quad \text { and } \quad \lim _{z \nearrow \infty} \frac{\sinh z}{z}=\lim _{z \nearrow \infty} \cosh z=\infty .
$$

Also,

$$
f^{\prime}(z)=\frac{z \cosh z-\sinh z}{z^{2}} .
$$

Setting $f_{1}(z)=z \cosh z-\sinh z$ we see $f_{1}(0)=0$ and $f_{1}^{\prime}(z)=z \sinh z>0$ for $z>0$. In particular, $f_{1}(z)>0$ for $z>0$, so $f^{\prime}(z)>0$ for $z>0$. Also,

$$
\lim _{z \backslash 0} f^{\prime}(z)=\lim _{z \backslash 0} \frac{f_{1}^{\prime}(z)}{2 z}=0 .
$$

We have shown that f takes every value on $[1, \infty)$ uniquely and has a welldefined inverse on that interval. Thus, we have a unique solution

Figure 6.3: $\sinh z / z$ and its inverse

$$
c=\frac{1}{f^{-1}\left(\frac{1}{2} \sqrt{\ell^{2}-u_{1}^{2}}\right)} .
$$

Once we know $c>0$, we can expand (6.4) to see

$$
-2 c \sinh \left(\frac{1}{c}\right) \sinh \left(\frac{\mu}{c}\right)=u_{1} .
$$

Therefore, substituting from (6.6),

$$
\mu=-c \sinh ^{-1}\left(\frac{u_{1}}{{\sqrt{\ell^{2}-u_{1}}}^{2}}\right)
$$

Setting $g=f^{-1}$, we also know

$$
\lim _{v \backslash 1} g^{\prime}(v)=+\infty
$$

In order to get an accurate approximation for $g=f^{-1}$ near $v=1$, we compute the next derivative of f :

$$
f^{\prime \prime}(z)=\frac{z^{2} f_{1}^{\prime}-2 z f_{1}}{z^{4}}=\frac{z^{2} \sinh z-2 z \cosh z+2 \sinh z}{z^{3}} .
$$

Again, using L'Hopital's rule

$$
\lim _{z \searrow 0} f^{\prime \prime}(z)=\lim _{z \backslash 0} \frac{\cosh z}{3}=\frac{1}{3} .
$$

Thus, we have to leading order $v \sim 1+g(v)^{2} / 6$ or $g(v) \sim g_{0}(v)=\sqrt{6(v-1)}$.
It is less obvious how to obtain a simple approximation for $g(v)$ when v is large. Let us begin with an intermediate approximation obtained from the Taylor expansion of f at $z=1$. We have
$f(1)=\sinh (1), \quad f^{\prime}(1)=\cosh (1)-\sinh (1), \quad$ and $\quad f^{\prime \prime}(1)=3 \sinh (1)-2 \cosh (1)$.
Thus, $v \sim \sinh (1)+(\cosh (1)-\sinh (1))(g-1)+(3 \sinh (1)-2 \cosh (1))(g-1)^{2} / 2$, and we have an approximation
$g(v) \sim g_{1}(v)=1+\frac{\sinh (1)-\cosh (1)+\sqrt{\cosh ^{2}(1)+\sinh (2)-5 \sinh ^{2}(1)+2(3 \sinh (1)-2 \cosh (1)) v}}{3 \sinh (1)-2 \cosh (1)}$.

This approximation is relatively accurate on a rather small interval about $\sinh (1)$. The average $\left(g_{1}(v)+g_{2}(v)\right) / 2$ is accurate for somewhat larger v.

For $v>1$, we also have recourse to a recursive approximation scheme. Picking an initial value g_{0}, for example, we could take $g_{0}=\sinh ^{-1}(v)$ which will be smaller than $g(v)$ as long as $v>\sinh (1)$. We see the actual value $g(v)$ satisfies

$$
\frac{\sinh g(v)}{g(v)}=v \quad \text { or } \quad g(v)=\sinh ^{-1}(v g(v))
$$

This suggests setting $g_{1}=\sinh ^{-1}\left(v g_{0}\right)$ and $g_{j+1}=\sinh ^{-1}\left(v g_{j}\right)$ in general for $j=0,1,2, \ldots$.
Conjecture 1. The sequence g_{j} tends (upward) to $g(v)$ with the estimate

$$
g(v)-g_{j+1} \leq g_{j+1}-g_{j} .
$$

For example, if we take $v=33.6189 \approx \sinh [6] / 6$, then

$$
\begin{aligned}
& g_{0}=\sinh ^{-1}(v) \approx 4.20846 \\
& g_{1}=\sinh ^{-1}\left(g_{0} v\right) \approx 5.64534 \\
& g_{2}=\sinh ^{-1}\left(g_{1} v\right) \approx 5.93907 \\
& g_{3}=\sinh ^{-1}\left(g_{2} v\right) \approx 5.98979 .
\end{aligned}
$$

6.1.3 Minimality of extremals

We have established the existence of a unique catenary extremal given by the graph of a function $u \in C^{\infty}[-1,1]$ and satisfying

$$
u(-1)=0, \quad u(1)=u_{1}, \quad \text { and } \quad \int_{-1}^{1} \sqrt{1+u^{\prime 2}} d x=\ell
$$

The function u satisfies

$$
\begin{equation*}
u(x)=c \cosh \left(\frac{x-\mu}{c}\right)-c \cosh \left(\frac{1+\mu}{c}\right) \tag{6.7}
\end{equation*}
$$

where $c>0$ is the unique solution of $c \sinh (1 / c)=\sqrt{\ell^{2}-u_{1}^{2}} / 2>0$, and

$$
\mu=-c \sinh ^{-1}\left(\frac{u_{1}}{{\sqrt{\ell^{2}-u_{1}}}^{2}}\right)
$$

We now wish to establish the following result.

Theorem 16. The function u given in (6.7) is the unique minimizer of

$$
V[u]=\int_{-1}^{1} u \sqrt{1+u^{\prime 2}} d x
$$

on

$$
\mathcal{A}=\left\{u \in C^{1}[-1,1]: u(-1)=0, u(1)=u_{1}\right\}
$$

subject to

$$
L[u]=\int_{-1}^{1} \sqrt{1+u^{\prime 2}} d x=\ell
$$

A fundamental difficulty in establishing this result is that the Lagrangian $F(z, p)=(z+\lambda) \sqrt{1+p^{2}}$ associated with the augmented functional $\mathcal{F}=$ $V+\lambda L$ where

$$
\lambda=c \cosh \left(\frac{1+\mu}{c}\right)>0
$$

is not (always) convex. Showing this is Problem 30 of Chapter 3 in Troutman. Following Troutman, we take the special case $u_{1}=0$. In this case $\mu=0$, and the extremal is given by

$$
u(x)=c \cosh \left(\frac{x}{c}\right)-\lambda \quad \text { with } \quad \lambda=c \cosh \left(\frac{1}{c}\right) .
$$

On the other hand, the function $u_{0} \equiv 0$ satisfies $u_{0} \in \mathcal{A}$, and $\delta \mathcal{F}_{u}[v] \equiv 0$. Taking $v=-u$, we have $u+v=u_{0}$ and showing \mathcal{F} is not convex amounts to showing

$$
\mathcal{F}\left[u_{0}\right]-\mathcal{F}[u]<0
$$

(under some circumstances). In fact,

$$
\begin{aligned}
\mathcal{F}\left[u_{0}\right]-\mathcal{F}[u] & =\int_{-1}^{1} \lambda d x-\int_{-1}^{1}(u+\lambda) \sqrt{1+u^{\prime 2}} d x \\
& =2 c \cosh \left(\frac{1}{c}\right)-c \int_{-1}^{1} \cosh ^{2}\left(\frac{x}{c}\right) d x \\
& =2 c \cosh \left(\frac{1}{c}\right)-\frac{c}{2} \int_{-1}^{1}\left[\cosh \left(\frac{2 x}{c}\right)+1\right] d x \\
& =2 c \cosh \left(\frac{1}{c}\right)-\frac{c^{2}}{2} \sinh \left(\frac{2}{c}\right)-c \\
& c\left[2 \cosh \left(\frac{1}{c}\right)-c \sinh \left(\frac{1}{c}\right) \cosh \left(\frac{1}{c}\right)-1\right] .
\end{aligned}
$$

Since $x \sinh x \rightarrow \infty$ as $x \nearrow \infty$, we see that for $c>0$ small enough

$$
c \sinh \left(\frac{1}{c}\right)>2
$$

and $\mathcal{F}\left[u_{0}\right]-\mathcal{F}[u]<0$. Recalling that c is determined by

$$
c \sinh \left(\frac{1}{c}\right)=\frac{1}{2} \sqrt{\ell^{2}-u_{1}^{2}}=\frac{\ell}{2},
$$

we find nonconvexity for chains of any length $\ell>4$.
In spite of this nonconvexity, Troutman suggests a rephrasing of the problem which leads to a much stronger result than Theorem 16 above. The function u determines a parametric curve parameterized by arclength. This is given by the function $\mathbf{x} \in C^{1}\left([0, \ell] \rightarrow \mathbb{R}^{2}\right)$ by $\mathbf{x}(s)=(\xi(s), \eta(s))$ where

$$
\left\{\begin{array}{l}
\xi(s)=\mu+c \sinh ^{-1}\left[\frac{s}{c}-\sinh \left(\frac{1+\mu}{c}\right)\right] \tag{6.8}\\
\eta(s)=u(\xi(s))=c \cosh \left(\sinh ^{-1}\left[\frac{s}{c}-\sinh \left(\frac{1+\mu}{c}\right)\right]\right)-c \cosh \left(\frac{1+\mu}{c}\right)
\end{array}\right.
$$

This parametric map \mathbf{x} also satisfies

$$
\left|\mathbf{x}^{\prime}\right| \equiv 1 \quad \text { and } \quad 2=\int_{-1}^{\ell} \xi^{\prime}(s) d s=\int_{0}^{\ell} \sqrt{1-\eta^{\prime 2}} d s
$$

Now if we let $\mathbf{x}=(\xi, \eta) \in C^{1}\left([0, \ell] \rightarrow \mathbb{R}^{2}\right)$ be any parametric curve parameterized by arclength $\left(\left|\mathbf{x}^{\prime}\right| \equiv 1\right)$ with $\mathbf{x}(0)=(-1,0)$ and $\mathbf{x}(\ell)=\left(1, u_{1}\right)$, then the potential energy expression

$$
V[u]=\int_{-1}^{1} u \sqrt{1+u^{\prime 2}} d x
$$

generalizes to

$$
V_{1}[\mathbf{x}]=\int_{0}^{\ell} \eta d s
$$

To see this, we may again consider a portion of chain of mass $\Delta m_{j}=\rho \Delta s_{j}$ located at a point $\mathbf{x}\left(s_{j}^{*}\right)$. The potential energy of this particular section of chain is approximately

$$
\int_{0}^{\eta} \rho g \Delta s_{j} d y=\rho g \eta \Delta s_{j} .
$$

Figure 6.4: an parametric chain shape: These shapes are also not required to satisfy $-1 \leq \xi \leq 1$ though the one illustrated does. (Actually, this shape has length a little longer than the original catenary chain shape.)

Summing over a partition of such portions and taking the limit as the maximum length Δs_{j} tends to zero (and dividing out by the constant ρg as usual), we arrive at the expression for V_{1} above. The following result treats these general parametric curves of length ℓ connecting $(-1,0)$ to $\left(1, u_{1}\right)$ and asserts that the catenary graph extremal is the unique minimizer among such curves.

Theorem 17. The catenary graph satisfying (6.8) is the unique minimizer of

$$
V_{1}[\mathbf{x}]=\int_{0}^{\ell} \eta d s
$$

on

$$
\mathcal{B}=\left\{\mathbf{x} \in C^{1}\left([0, \ell] \rightarrow \mathbb{R}^{2}\right): \mathbf{x}(0)=(-1,0), \mathbf{x}(\ell)=\left(1, u_{1}\right),\left|\mathbf{x}^{\prime}\right| \equiv 1\right\}
$$

subject to

$$
L_{1}[\mathbf{x}]=\int_{0}^{\ell} \sqrt{1-\eta^{\prime 2}} d s=2 .
$$

Finally, we simplify the previous result slightly and prove something even more general. It will be noted that the functionals appearing above only depend on the second coordinate function of \mathbf{x}, namely, $\eta \in C^{1}[0, \ell]$. Thus, it makes sense to extend their domains and rename them:

$$
V_{1}: C^{1}[0, \ell] \rightarrow \mathbb{R} \quad \text { by } \quad V_{1}[\eta]=\int_{0}^{\ell} \eta d s
$$

and
$L_{1}:\left\{\eta \in C^{1}[0, \ell]:\left|\eta^{\prime}(s)\right| \leq 1\right.$ for $\left.0 \leq s \leq \ell\right\} \rightarrow \mathbb{R} \quad$ by $\quad L_{1}[\mathbf{x}]=\int_{0}^{\ell} \sqrt{1-\eta^{\prime 2}} d s$.
We now state the main result.
Theorem 18. The second component of the parametric map defined in (6.8) is the unique minimizer of

$$
V_{1}[\eta]=\int_{0}^{\ell} \eta d s
$$

on

$$
\mathcal{B}=\left\{\mathbf{x} \in C^{1}\left([0, \ell] \rightarrow \mathbb{R}^{2}\right): \eta(0)=0, \eta(\ell)=u_{1}\right\}
$$

subject to

$$
L_{1}[\eta]=\int_{0}^{\ell} \sqrt{1-\eta^{\prime 2}} d s=2 .
$$

Notice the absence of the condition $\left|\mathrm{x}^{\prime}\right| \equiv 1$ in the definition of \mathcal{B}. Notice, furthermore, that the functional L_{1} is not (even) defined on all of \mathcal{B}, but only on

$$
\mathcal{B}_{1}=\left\{\eta \in \mathcal{B}:\left|\eta^{\prime}(s)\right| \leq 1 \text { for } 0 \leq s \leq \ell\right\} .
$$

Proof of Theorem 18: We show first that η from (6.8) is the unique minimizer of

$$
\mathcal{G}[\eta]=\left(V_{1}-c L_{1}\right)[\eta]=\int_{0}^{\ell}\left[\eta-c \sqrt{1-\eta^{\prime 2}}\right] d s
$$

on \mathcal{B}_{1} (without constraint). This follows from two facts

1. The augmented functional $\mathcal{G}=V_{1}-c L_{1}$ is strictly convex on \mathcal{B}_{1} in the sense of Definition 5.
2. The function η from (6.8) is an extremal for \mathcal{G}, that is $\delta \mathcal{G}_{\eta}[v]=0$ whenever $\eta+v \in \mathcal{B}_{1}$.

If we can establish these two assertions, we may apply Theorem 14 on minimizing convex functionals. The strict convexity does not follow from our
previous result because the augmented Lagrangian $G(z, p)=z-c \sqrt{1-p^{2}}$ is not strictly second order convex. We do have

$$
D^{2} G=\left(\begin{array}{cc}
0 & 0 \\
0 & \frac{c}{\left(1-p^{2}\right)^{3 / 2}}
\end{array}\right) .
$$

Therefore, for each $v \in C^{1}[0, \ell]$ such that $\eta+v \in \mathcal{B}_{1}$, we have

$$
\begin{aligned}
G\left(\eta+v, \eta^{\prime}+v^{\prime}\right)-G\left(\eta, \eta^{\prime}\right) & =G_{z}\left(\eta, \eta^{\prime}\right) v+G_{p}\left(\eta, \eta^{\prime}\right) v^{\prime}+\frac{c}{2\left(1-p_{*}^{2}\right)^{3 / 2}} v^{\prime 2} \\
& \geq G_{z}\left(\eta, \eta^{\prime}\right) v+G_{p}\left(\eta, \eta^{\prime}\right) v^{\prime}
\end{aligned}
$$

with equality only if $v^{\prime}=0$ (pointwise). Integrating this inequality
$\mathcal{G}[\eta+v]-\mathcal{G}[\eta]=\int_{0}^{\ell}\left[G_{z}\left(\eta, \eta^{\prime}\right) v+G_{p}\left(\eta, \eta^{\prime}\right) v^{\prime}\right] d s+\frac{c}{2} \int_{0}^{\ell} \frac{v^{\prime 2}}{\left(1-p_{*}^{2}\right)^{3 / 2}} d s \geq \delta \mathcal{G}_{\eta}[v]$
with equality only if $v^{\prime} \equiv 0$. But if $\eta+v \in \mathcal{B}_{1}$, then $v(0)=v(\ell)=0$, so equality implies $v \equiv 0$. This establishes the strict convexity of \mathcal{G}.

On the other hand, the Euler-Lagrange equation for \mathcal{G} is

$$
c\left(\frac{\eta^{\prime}}{\sqrt{1+\eta^{\prime 2}}}\right)^{\prime}=1
$$

where the derivatives are with respect to the arclength s. To compute this for the function η from the arclength parameterization of the catenary we observe first that

$$
s=\int_{0}^{\xi} \sqrt{1+u^{\prime 2}} d x=c \sinh \left(\frac{\xi-\mu}{c}\right)+c \sinh \left(\frac{1+\mu}{c}\right) .
$$

Therefore,

$$
\frac{d \xi}{d s}=\frac{1}{\cosh \left(\frac{\xi-\mu}{c}\right)}
$$

Having made this observation/calculation we have from (6.8)

$$
\eta^{\prime}(s)=\frac{d u}{d x}(\xi) \frac{d \xi}{d s}=\frac{\sinh \left(\frac{\xi-\mu}{c}\right)}{\cosh \left(\frac{\xi-\mu}{c}\right)}
$$

Therefore,

$$
\frac{d}{d s}\left(\frac{\eta^{\prime}}{\sqrt{1-\eta^{\prime 2}}}\right)=\frac{d}{d x}\left(\sinh \left(\frac{\xi-\mu}{c}\right)\right)_{x=\xi} \frac{d \xi}{d s}=\frac{1}{c}
$$

and η is a C^{2} classical extremal for \mathcal{G}. In particular, $\delta \mathcal{G}_{\eta}[v] \equiv 0$, and $\mathcal{G}[\eta+$ $v]-\mathcal{G}[\eta] \geq 0$ whenever $\eta+v \in \mathcal{B}_{1}$ with equality only if $v \equiv 0$.

The usual argument of Theorem 10 now applies. That is, it happens that

$$
L_{1}[\eta]=\int_{0}^{\ell} \sqrt{1-\eta^{\prime 2}} d s=2
$$

so for any $v \in C^{1}[0, \ell]$ such that $\eta+v \in \mathcal{B}$ and for which $L_{1}[\eta+v]=2$, we have

$$
V_{1}[\eta+v]-c L_{1}[\eta+v]=\mathcal{G}[\eta+v] \geq \mathcal{G}[\eta]=V_{1}[\eta]-c L_{1}[\eta]
$$

with equality only if $v \equiv 0$. Since $L_{1}[\eta+v]=L_{1}[\eta]=2$, we have

$$
V_{1}[\eta+v] \geq V_{1}[\eta] \quad \text { with equality only if } v \equiv 0
$$

This establishes Theorem 18.
Proof of Theorem 17: If $\tilde{\mathbf{x}}=(\tilde{\xi}, \tilde{\eta}) \in \mathcal{B}$ satisfies

$$
\int_{0}^{\ell} \sqrt{1-\tilde{\eta}^{\prime 2}} d s=2
$$

and \mathbf{x} is the parametric catenary, then $\tilde{\eta} \in \mathcal{B}_{1} \subset \mathcal{B}$ and satisfies $L_{1}[\tilde{\eta}]=2$. Thus, by Theorem 18

$$
V_{1}[\tilde{\mathbf{x}}]=V_{1}[\tilde{\eta}] \geq V_{1}[\eta]=V_{1}[\mathbf{x}] \quad \text { with equality only if } \tilde{\eta} \equiv \eta
$$

We have, in particular, $V_{1}[\tilde{\mathbf{x}}] \geq V_{1}[\mathbf{x}]$ for all $\tilde{\mathbf{x}} \in \mathcal{B}$ satisfying the constraint

$$
L_{1}[\tilde{\mathbf{x}}]=2
$$

In the case of equality we have $\tilde{\xi}^{\prime}= \pm \sqrt{1-\eta^{\prime 2}}$ and

$$
2=\int_{0}^{\ell} \tilde{\xi}^{\prime} d s=\int_{0}^{\ell} \sqrt{1-\eta^{\prime 2}} d s
$$

Since $\eta^{\prime}(s)=1$ for at most one arclength s, we conclude $\tilde{\xi}=\sqrt{1-\eta^{\prime 2}}$ and $\tilde{\mathrm{x}} \equiv \mathrm{x}$.

Finally we prove the initial (and weakest) assertion.
Proof of Theorem 16: If $\tilde{u} \in \mathcal{A}$ and

$$
L[\tilde{u}]=\int_{-1}^{1} \sqrt{1-\tilde{u}^{\prime 2}} d x=\ell
$$

then the graph of \tilde{u} may be parameterized by arclength to give a parameterized curve $\tilde{\mathbf{x}} \in \mathcal{B}$ satisfying the constraint

$$
L_{1}[\tilde{\mathbf{x}}]=\int_{0}^{\ell} \sqrt{1-\tilde{\eta}^{\prime 2}} d s=2
$$

By Theorem 17, we know $V_{1}[\tilde{\mathbf{x}}] \geq V_{1}[\mathbf{x}]$ with equality only if $\tilde{\mathbf{x}}=\mathbf{x}$. Changing variables, we find

$$
V_{1}[\tilde{\mathbf{x}}]=\int_{0}^{\ell} \tilde{\eta} d s=\int_{-1}^{1} \tilde{u} \sqrt{1+\tilde{u}^{\prime 2}} d x=V[\tilde{u}]
$$

and

$$
V_{1}[\mathbf{x}]=\int_{0}^{\ell} \eta d s=\int_{-1}^{1} u \sqrt{1+u^{\prime 2}} d x=V[u]
$$

The result evidently follows.

Relations to physical parameters

If we wished to consider the right endpoint to have a general coordinate (c, d) with $c>0$ and $c^{2}+d^{2}<\ell^{2}$, we could first make a choice of units so that the length c measures one unit in the new system. Equivalently, we consider the problem with right endpoint at $(1, d / c)$. If $d>0$, we can reverse the endpoints.

