
Chapter 1

Indirect Methods

1.1 The first variation

Here we describe the main tool in the indirect methods of the calculus of
variations. The basic strategy is to use what we know about interior mini-
mization of functions of a single variable considered in elementary calculus,
namely that the derivative must vanish at a minimum.

Before we get started we introduce a useful and interesting class of func-
tions which play an important role in the calculus of variations—those which
are smooth and have compact support. By smooth, we mean having deriva-
tives of all orders which are also differentiable (and continuous). The term
“compact support” is shorthand for “support compactly contained in the in-
terior.” In order to understand what we mean by this, let us first consider
the notion of support. Roughly speaking, the support of a function is the set
where the function is nonzero. More precisely, by support, we shall mean
the closure of that set:

supp u = {x ∈ [a, b] : u(x) 6= 0}.

To say that the function u is compactly supported means supp u ⊂ (a, b).1

We will denote this class with the suggestive symbolism C∞
c (a, b) or simply

C∞
c if the domain is understood. See Exercise 3.

Here is one more preperatory observation: The supersets, or universal
sets, we have used in our discussion above, for example C1[a, b] or <

1[a, b]

1More generally, we write suppu⊂⊂A, where A is any set, to mean supp u is compact
and contained in the interior of A. This is read “u has support compactly contained in
(the interior of) A.”
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are linear spaces, but the admissible class A should not be expected to be a
linear space. To be a linear space, in this context, means au + bv is in the
space whenever u and v are in the space and a and b are constants.

Let us assume we have an admissible class which shares the linear struc-
ture of the superset to the extent that

u + ǫφ ∈ A for all φ ∈ C∞
c (a, b) and |ǫ| small enough.

In this case, the function f(ǫ) = F(u + ǫφ), assuming u and φ are fixed, is a
smooth function of the single variable ǫ. One-dimensional calculus thus gives
us a necessary condition for the function u to minimize F .

Proposition 1 (Proposition 1.2 of BGH). Assume F : A → R, u ∈ A ⊂
C1[a, b], and F = F (x, z, p) satisfy the following

1. For each φ ∈ C∞
c (a, b), there is some epsilon0 > 0 such that

Uφ = {u + ǫφ : |ǫ| < ǫ0} ⊂ A,

2. F [u] ≤ F [ũ] for all ũ ∈ A, and

3. F ∈ C1((a, b) × R × R),

then
∫ b

a

[Fz(x, u, u′)φ + Fp(x, u, u′)φ′] dx = 0 for all φ ∈ C∞
c (a, b). (1.1)

Definition 1. Any function u ∈ C1(a, b) satisfying (1.1) is called a weak
extremal for F .

Note the Lagrangian F is a function of three real variables, and Fz and Fp

denote partial derivatives of this function. Remember directional derivatives
of a smooth function F : Rn → R may be defined by

∂F

∂v
(x) = D

v
F (x) = lim

h→0

F (x + hv) − F (x)

h
.

Sometimes this definition is restricted to unit vectors. Partial derivatives are
the special case when the unit vector is a standard coordinate vector; in the
case of F , the second standard coordinate vector is e2 = (0, 1, 0) and points
along the positive z-axis resulting in the partial Fz.
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With this definition of directional derivatives we have

D
v
F (x) = DF (x) · v

where DF is the gradient vector consisting of the partial derivatives. See
Exercise 4. In the proof of Proposition 1, we will compute a derivative of the
function f(ǫ) = F(u + ǫφ) with respect to ǫ to get the expression appearing
in (1.1). Notice this derivative has the form

lim
h→0

F [u + ǫφ + hφ] − F [u + ǫφ]

h

which bears a striking resemblance to the definition of a partial derivative
with φ playing the role of the vector direction in which the derivative is taken.
In fact, it will be shown that when we evaluate at ǫ = 0, we are calculating

δFu[φ] = lim
h→0

F [u + hφ] −F [u]

h
.

This is called the first variation. Recall that dF
x

: T
x
Rn → R. We have

δFu : C∞
c (a, b) → R. In this sense, C∞

c (a, b) represents the tangent space to
C1[a, b] at u.
Proof that a minimizer is a weak extremal: If ǫ is small enough, say
|ǫ| < ǫ0, then u0 + ǫφ ∈ A. Thus, we can define the real valued function
f : (−ǫ0, ǫ0) → R of the single variable ǫ by

f(ǫ) = F [u0 + ǫφ],

and (for φ fixed) we have f(0) ≤ f(ǫ). It follows from one-dimensional
calculus that f ′(0) = 0. That is,

d

dǫ

∫ b

a

F (x, u0 + ǫφ, u′
0 + ǫφ′) dx∣

∣

ǫ=0

= 0.

Differentiating under the integral sign, we get

∫ b

a

d

dǫ
F (x, u0 + ǫφ, u′

0 + ǫφ′) dx∣

∣

ǫ=0

= 0.

Thus, we can obtain (1.1) from the chain rule. It will also be noted that the
same expression is obtained using the mean value theorem for functions of
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several variables and taking the limit directly. That is,

lim
h→0

F [u + hφ] − F [u]

h
= lim

h→0

∫ b

a

F (x, u + hφ, u′ + hφ′) − f(x, u, u′)

h
dx

= lim
h→0

∫ b

a

[Fz(x, u + h∗φ, u′ + h∗φ′)φ

− Fp(x, u + h∗φ, u′ + h∗φ′)φ′] dx

where h∗ is some number between 0 and h. Therefore, h∗ tends to zero with
h, and

δFu[φ] = lim
h→0

F [u + hφ] −F [u]

h

as claimed above. 2

We conclude our discussion of Proposition 1 with a formal summary of
our discussion of the first variation:

Definition 2. Given a C1 Lagrangian, the first variation of

F [u] =

∫ b

a

F (x, u, u′) dx

at u ∈ C1[a, b] is the functional δFu : C∞
c (a, b) → R by

δFu[φ] =
d

dǫ
F(u + ǫφ)∣

∣

ǫ=0

= lim
h→0

F [u + hφ] − F [u]

h
.

This should be interpreted as the derivative of F at u in the direction φ.

The fundamental lemma

In order better understand the properties of certain weak extremals, we need
to know what integral information like (1.1) implies about the function u.
We begin with a relatively simple observation:

Lemma 1 (Lemma 1.3 in BGH). (fundamental lemma of the calculus of
variations) If f ∈ C0(a, b) satisfies

∫ b

a

f(x)η(x) dx = 0 for all η ∈ C∞
c (a, b), (1.2)

then f(x) ≡ 0 on (a, b).
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Proof: Let x0 ∈ (a, b). It is enough to show f(x0) = 0.
Let φ ∈ C∞

c (−1, 1) with φ ≥ 0 and

∫ 1

−1

φ(x) dx = 1.

By extension, we can consider φ ∈ C∞
c (R) with supp φ⊂⊂ (−1, 1) and

∫

R
φ =

1. Next, we define a family of C∞
c functions indexed by δ > 0:

µ = µδ(x) =
1

δ
φ

(x

δ

)

. (1.3)

One can check that µ ∈ C∞
c (−δ, δ) is nonnegative and has

∫

µ ≡ 1. See
Exercise 6. The family {µ = µδ} is called the “standard” mollifier sequence
or an approximate identity. We claim

f(x0) = lim
δ→0

∫ b

a

f(x)µδ(x − x0) dx. (1.4)

To see this, let ǫ > 0 and note that by continuity there is some δ > 0 such
that

|x − x0| < δ implies |f(x) − f(x0)| < ǫ.

In particular, we have

f(x0) − ǫ < f(x) < f(x0) + ǫ,

so

[f(x0) − ǫ]

∫

η ≤

∫

fη ≤ [f(x0) + ǫ]

∫

η

where η(x) = µ(x − x0). On the other hand, when δ is small, one can check
that η ∈ C∞

c (x0 − δ, x0 + δ) ⊂ C∞
c (a, b) with

∫

η = 1. Thus, if δ is small
enough

f(x0) − ǫ ≤

∫

fη =

∫ b

a

f(x)µδ(x − x0) dx ≤ f(x0) + ǫ,

and (1.4) is established. But this also means

f(x0) = lim
δ→0

∫ b

a

f(x)µδ(x − x0) dx = lim
δ→0

∫

fη = 0. 2
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Another proof of the fundamental lemma

In BGH the authors make, essentially, a specific choice of approximate iden-
tity:

µ̄(x) =
1

2δ
χ(−δ,δ)

where

χA(x) =

{

1, x ∈ A
0, x /∈ A

represents the characteristic function of the set A. It will be noted that this
function is not in the class C∞

c used in (1.2) and used, in general, to define
an approximate identity. In fact, the characteristic function is not even
continuous. Nevertheless, it is possible to approximate χ(−δ,δ) with smooth
functions in order to conclude

∫ b

a

f(x)µ̄(x − x0) dx = 0. (1.5)

The authors express this approximation process by saying C∞
c (a, b) is “dense”

in L2(a, b). Let us briefly describe the approximation and how one arrives at
(1.5). We begin with the smooth approximate identity

µǫ(x) =
1

ǫ
φ

(x

ǫ

)

from (1.3) and form the convolution integral or molification

µǫ ∗ µ̄(x) =

∫ ∞

−∞

µ(ξ)µ̄(ξ − x) dξ.

The function µ̄, though not continuous, is in Lp for every p > 0. It may be
recalled that Lp for 0 < p < ∞ is the set of measurable functions f for which
the integral

∫

|f |p < ∞,

i.e., the set of functions, the absolute value of which has p-th power integrable.
Each of the function spaces Lp is a vector space with a norm given by

|f |L2 =

(
∫

|f |p
)1/p

.
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Figure 1.1: Here we indicate the approximation of a characteristic function
by convolution with a standard mollifier. This process is called mollification
and may be applied to a variety of functions.

Each of these spaces is complete under the norm, and in the special case
p = 2, the norm is given by an inner product

〈f, g〉 =

∫

fg

satisfying the Cauchy-Schwarz inequality:

|〈f, g〉| ≤ |f |L2|g|L2.

It can be shown, see Exercise 8, that µǫ ∗ µ̄ approximates µ̄ as indicated in
Figure 1.1. In particular,

lim
ǫ→0

|µǫ ∗ µ̄ − µ̄|Lp = 0. (1.6)

Thus, given any f ∈ L2(a, b)

∣

∣

∣

∣

∫

x∈(a,b)

f(x)µǫ ∗ µ̄(x − x0) −

∫

x∈(a,b)

f(x)µ̄(x − x0)

∣

∣

∣

∣

≤

∫

x∈(a,b)

|f(x)||µǫ ∗ µ̄(x − x0) − µ̄(x − x0)|

= 〈|f |, |shiftx0
[µǫ ∗ µ̄ − µ̄]|〉L2(a,b)

≤ |f |L2|µǫ ∗ µ̄ − µ̄]|L2

where shiftx0
[g](x) = g(x − x0). In view of (1.6) we have

lim
ǫ→0

∫

x∈(a,b)

f(x)µǫ ∗ µ̄(x − x0) =

∫

x∈(a,b)

f(x)µ̄(x − x0).
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In the context of the fundamental lemma, we have not only f ∈ L2(a, b) but
f ∈ C0[a, b], and we know

∫ b

a

f(x)η(x) dx = 0 for all η ∈ C∞
c (a, b).

According to Exercise 8 we also have µǫ ∗ µ̄ ∈ C∞
c (−δ, δ) when ǫ is small, so

when x0 ∈ (a, b) and ǫ is small, shiftx0
[µǫ ∗ µ̄] ∈ C∞

c (a, b) and we can write

1

2δ

∫ x0+δ

x0−δ

f(x) dx =

∫ b

a

f(x)µ̄(x − x0) dx

= lim
ǫ→0

∫ b

a

f(x)µǫ ∗ µ̄(x − x0) dx

= 0.

This establishes assertion (1.10) of BGH that

1

2δ

∫ x0+δ

x0−δ

f(x) dx = 0,

and one can proceed with a simplified version of the reasoning given in the
first proof:

f(x0) − ǫ ≤
1

2δ

∫ x0+δ

x0−δ

f(x) dx = 0 ≤ f(x0) + ǫ

whence
−ǫ ≤ f(x0) ≤ ǫ. 2

Finally, we may note
1

2δ

∫

(x0−δ,x0+δ)

g

for a general integrable function g is the average value of g over the interval
(x0 − δ, x0 + δ). This interpretation leads to a more general result:

Lemma 2 (Lemma 1.4 in BGH). (fundamental lemma with weaker regular-
ity) If f ∈ L1

loc(a, b) satisfies
∫

(a,b)

fη = 0 for all η ∈ C∞
c (a, b), (1.7)

then f ≡ 0, i.e., f = 0 almost everywhere, or more precisely f(x) = 0 for
each Lebesgue point in (a, b).
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Before we give the proof, let us give some account of the space L1
loc and

Lebesgue points. A measurable function f is said to be in L1
loc(a, b) if

∫

(a′,b′)

|f | < ∞

whenever (a′, b′)⊂⊂ (a, b). Measurable “functions” are not defined pointwise
but rather as equivalence classes in terms of integration (or more properly
measure). Nevertheless, each such class of functions determines a kind of
continuity:

Theorem 1 (Lebesgue’s continuity theorem2). If f ∈ [f0] ∈ L1
loc(a, b), then

for almost every x ∈ (a, b),

lim
δց0

1

2δ

∫

(x−δ,x+δ)

f = f0(x).

The assertion includes the fact that the limit exists. In fact, the stronger
assertion

lim
δց0

1

2δ

∫

ξ∈(x−δ,x+δ)

|f(ξ)− f(x)| = 0 for almost every x ∈ (a, b) (1.8)

also holds. A point x for which (1.8) holds is called a Lebesgue point of f .

Lebesgue’s functions

We’ve mentioned that “functions” in Lp are considered as “equivalence classes”
of functions rather than individual functions defined pointwise. Since this
point of view may be unfamiliar to some, let me at least try to give some
heuristic explanation to indicate what this means.

Let’s start with the simplest function in C0[0, 1], namely f(x) ≡ 0. There
is a “different” function defined by

f1(x) =

{

1, x = 0
0, x 6= 0.

This function is not very different from f . It is not continuous, but from the
point of view of integration, all intgrals of the form

∫ 1

0

g(x)f1(x) dx,

2Sometimes this result is called Lebesgue’s differentiation theorem.
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Figure 1.2: Here is a plot of the first seven rational numbers represented as
ordered pairs of positive integers.

where g is some function we can integrate, are well defined and have the same
value if we use f or f1, namely zero. In fact, the rational numbers between 0
and 1 can be listed off, and if we change the value of f on the first k of them
to obtain a function fk, then we obtain a function which, from the point of
view of integration, are just like (i.e., essentially indistinguishable) from f1

or f . Let’s carry out this construction so we can see how it looks visually.
The listing of the rationals in [0, 1] is

Q ∩ [0, 1] =

{

1, 0,
1

2
,
1

3
,
2

3
,
1

4
,
3

4
,
1

5
,
2

5
,
3

5
,
4

5
,
1

6
,
5

6
, . . .

}

.

That is, there is a one-to-one correspondence between Q ∩ [0, 1] and the
ordered pairs of integers (m, n) with the ordered pair corresponding to n/m
so that m > 0, m ≥ n ≥ 0, and each point (m, n) produces a line of deleted
multiples (km, kn) for k = 2, 3, 4, . . .. After deletions, we use a dictionary
style ordering with (p, q) < (m, n) if p < m (or if p = m and q < n). See
Figure 1.2. Then we just list off the rational numbers in order q1, q2, q3, . . ..
We define for each k = 1, 2, 3, . . .

fk(x) =

{

1, x = q1, q2, . . . , qk

0, x 6= q1, q2, . . . , qk,
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and the function fk has

∫ 1

0

g(x)fk(x) dx =

∫ 1

0

g(x)f(x) dx = 0 for all g ∈ C0[0, 1].

It occured to Lebesgue that there was nothing particularly special about the
rational numbers. You could change the values of f to anything you like
on any finite set, and you still get the same integrals. This tells you that,
from the point of view of integration, the value of f at any particular point,
doesn’t really matter. But this sounds like nonsense. Obviously, the value
of the function must matter. In view of this paradox, Lebesgue changed
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Figure 1.3: Here are plots of f11 which is the zero function with the value at the

first 11 rational numbers changed to 1 and f23 which is the zero function with the

value at the first 23 rational numbers changed to 1. From the point of view of

integration, these functions are indistinguishable from the zero function.

his notion of a function. Instead of considering pointwise values alone, he
decided to let

[0] = {f :

∫

gf = 0 for all g}.

This is the equivalence class of all functions which are indistinguishable from
the zero function in the sense of integration. Lebesgue went on to make
a careful study of all the kinds of sets upon which it might make sense to
change the values of any one representative in the class but get the same
integrals. That property became known as having measure 0.
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Proof of the fundamental lemma with weaker regularity:

The basic strategy of this proof is similar to the one used in BGH to prove
the fundamental lemma when f is continuous. That is, we wish to show

∫

(a,b)

fχ(x0−δ,x0+δ) = 0 (1.9)

when (x0 − δ, x0 + δ)⊂⊂ (a, b). This is essentially (1.5). Our previous esti-
mation of

∣

∣

∣

∣

∫

(a,b)

fµǫ ∗ χ(x0−δ,x0+δ) −

∫

(a,b)

fχ(x0−δ,x0+δ)

∣

∣

∣

∣

(1.10)

using the Cauchy-Schwarz inequality does not go through as it stands because
we no longer necessarily have f ∈ L2. Following BGH we let δ > 0 be fixed
so that [x0 − δ, x0 + δ]⊂⊂ (a, b) and consider µ̄ = µ̄δ̄ ∈ <

1
c(a, b) given by

µ̄(x) =

{

− 1
2δ̄

(|x − x0| − δ − δ̄) if δ − δ̄ ≤ |x − x0| ≤ δ + δ̄, and
χ(x0−δ,x0+δ) otherwise.

where δ̄ < δ is small enough so supp(µ̄)⊂⊂ (a, b). The function µ̄ is a
piecewise affine function as indicated in Figure 1.4. It is now argued that
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Figure 1.4: a piecewise continuous approximation of a characteristic function and

its mollification

C∞
c (a, b) is dense in C0[a, b] so that

∫

(a,b)

fµ̄ =

∫

(a,b)

fµ̄δ̄ = 0. (1.11)
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The norm on C0 is the sup norm

‖u‖ = sup
x∈[a,b]

|u(x)|

so that the distance between continuous functions u and v is sup |u−v|. The
sup norm is also called the uniform norm or the L∞ norm, and the associated
metric is called the metric of uniform convergence. Let us consider carefully
this approximation procedure. Again, we use the approximate identity µǫ

from (1.3) and molify µ̄:

µǫ ∗ µ̄(x) =

∫

ξ

µǫ(ξ)µ̄(x − ξ).

It follows from the reasoning of Exercise 8 that when ǫ is small enough,
we have µǫ ∗ µ̄ ∈ C∞

c (a, b). Let us be specific about this by choosing a fixed
ǫ0 so that

supp(µǫ ∗ µ̄) ⊂ supp(µǫ0 ∗ µ̄)⊂⊂ (a, b) for 0 < ǫ < ǫ0.

Also, it is easy to check that for any x and x̃

|µ̄(x̃) − µ̄(x)| <
1

2δ̄
|x̃ − x|. (1.12)

This is a statement of Lipschitz continuity, and it can be shown that any
function in <

1[a, b] is Lipschitz continuous. See Exercise 9. In particular, we
may take α = ǫ so that

|x̃ − x| < ǫ ⇒ |µ̄(x̃) − µ̄(x)| <
ǫ

2δ̄
. (1.13)

We can then estimate as follows:

‖µǫ ∗ µ̄ − µ̄‖C0[a,b] = sup
x∈R

∣

∣

∣

∣

∫

ξ∈(−ǫ,ǫ)

µǫ(ξ)[µ̄(x − ξ) − µ̄(x)]

∣

∣

∣

∣

≤ sup
x∈R

∫

ξ∈(−ǫ,ǫ)

µǫ(ξ)|µ̄(x − ξ) − µ̄(x)|

≤
ǫ

2δ̄
.
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It follows that
∣

∣

∣

∣

∫

(a,b)

fµǫ ∗ µ̄ −

∫

(a,b)

fµ̄

∣

∣

∣

∣

≤

∫

supp(µǫ0
∗µ̄)

|f ||µǫ ∗ µ̄ − µ̄|

≤
ǫ

2δ̄
‖f‖L1(supp(µǫ0

∗µ̄))

→ 0 as ǫ ց 0.

Since µǫ ∗ µ̄ ∈ C∞
c (a, b), we have shown

∫

(a,b)

fµ̄ = lim
ǫց0

∫

(a,b)

fµǫ ∗ µ̄ = 0.

This is (1.11). We do not have µ̄ = µ̄δ̄ converging uniformly to χ(x0−δ,x0+δ) as
δ̄ ց 0. For this reason we need another device to show the integral in (1.11)
approximates that in (1.9) and conclude

lim
δ̄ց0

∫

fµ̄δ̄ =

∫

(x0−δ,x0+δ)

f.

The appropriate result is the Lebesgue dominated convergence theorem3 (DCT):

Theorem 2. If

1. A sequence of functions g1, g2, g3, . . . in L1(A) converges pointwise at
almost every point in A to a measureable function g, i.e., the set of
points where the sequence does not converge to g has measure zero, and

2. There is a function G ∈ L1(A) such that |gj| ≤ G for j = 1, 2, 3, . . .,

then g ∈ L1(A) and

lim
j→∞

∫

A

gj =

∫

A

g.

It is required, then, that we have a pointwise limit (almost everywhere)
and a dominating function.

The reasoning of Exercise 8 gives |µ̄| ≤ 1 for all δ̄. To be explicit, let us
fix δ and δ̄0 so that

supp(µ̄δ̄) ⊂ supp(µ̄δ̄0)⊂⊂ (a, b) for 0 < δ̄ < δ̄0.

3Lebesgue’s dominated convergence theorem is Theorem 4.4.15 in Royden’s Real Anal-

ysis and is Theorem 1.34 in Rudin’s Real and Complex Analysis.
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Then we can take the dominating function to be

G = |fχsupp(µ̄δ̄0
)|

so that

|fµ̄| = |fµ̄δ̄| ≤ G and ‖G‖L1(a,b) = ‖f‖L1(supp(µ̄δ̄0
)) < ∞.

Finally, fµ̄ = fµ̄δ̄ converges pointwise to fχ(x0−δ,x0+δ) at every point in (a, b)
except the two points x0 ± δ. Therefore, by the DCT

∫

(x0−δ,x0+δ)

f = lim
δ̄ց0

∫

(a,b)

fµ̄δ̄ = 0.

This is (1.9). Now we can take x0 to be a Lebesgue point, and we have

f(x0) = lim
δց0

∫

(x0−δ,x0+δ)

f = 0. 2

Exercises

Exercise 3. Consider a function φ ∈ C∞
c (a, b).

1. Let x0 ∈ ∂ supp(φ). Find the Taylor series for φ at x0.

2. Find a function φ ∈ C∞
c (−1, 1) with φ(0) = 1.

Exercise 4. What is T
x
Rn? Show that if one restricts the linear map

du
x

: T
x
Rn → R to unit vectors v, then the maximum value occurs for

v = Du(x)/|Du(x)|. What is the maximum value?

Exercise 5. The natural domain for integrals
∫

fφ, like the one appearing
in (1.2), is the collection of locally integrable functions. The function
f(x) = 1/(x − a) has f ∈ C0(a, b) but

∫ b

a

f(x) dx = +∞.

Why does the integral
∫

fφ for φ ∈ C∞
c (a, b) still make sense for such a func-

tion? What is the definition of L1
loc(a, b)? Notice that the same considerations

apply to (1.1).
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Exercise 6. Recall that the standard mollifier is defined by

µ(x) =
1

δ
φ

(x

δ

)

,

where φ ∈ C∞
c (−1, 1) is nonnegative, fixed, and

∫

φ = 1.

1. Show µ ∈ C∞
c (−δ, δ) with

∫

µ ≡ 1.

2. Show η(x) = µ(x − x0) has η ∈ C∞
c (x0 − δ, x0 + δ) with

∫

η = 1.

Exercise 7. Find a nonnegative function φ ∈ C∞
c (−1, 1) with

∫

φ = 1. Can
you also make φ even and strictly positive on the interior of its support?

Exercise 8. Let

f(x) = χ(−δ,δ)

(

x − x0

δ

)

and consider the convolution integral

µǫ ∗ f(x) =

∫

ξ∈R

µ(ξ)f(ξ − x).

Show the following:

(a) µǫ ∗ f = f ∗ µǫ.

(b) µǫ ∗ f ∈ C∞
c (R).

(c) 0 ≤ µǫ ∗ f(x) ≤ 1 for all x ∈ R.

(d) When ǫ < δ

µǫ ∗ f(x) =

{

0, |x| ≥ δ + ǫ
1, |x| ≤ δ − ǫ.

(e) Verify (1.6).

Exercise 9. If g ∈ <
1[a, b], show that for each x̃ and x in [a, b] one has

|g(x̃) − g(x)| < λ|x̃ − x|

where
λ = sup

ξ∈[a,b]

|g′(ξ)|.

What happens if g ∈ <
1
c(R)?
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Exercise 10. Let µ̄ ∈ <
1
c(R) be given by

µ̄(x) =

{

− 1
2δ̄

(|x| − 1 − δ) if 1 − δ ≤ |x| ≤ 1 + δ, and
χ(−1,1) otherwise

as indicated in Figure 1.4. Compute the explicit pointwise values of the mol-
lification µǫ ∗ µ̄.

1.2 The Euler-Lagrange Equation

Theorem 3 (Proposition 1.5 in BGH). (The Euler-Lagrange Equation) If

u ∈ C2(a, b)

is a weak extremal for the functional

F [u] =

∫ b

a

F (x, u(x), u′(x)) dx

with Lagrangian F ∈ C2((a, b) × R × R), then

d

dx
Fp(x, u, u′) − Fz(x, u, u′) = 0 on (a, b). (1.14)

Proof: We know
∫ b

a

[Fz(x, u, u′)φ + Fp(x, u, u′)φ′] dx = 0 for all φ ∈ C∞
c (a, b). (1.15)

Integrating the second term by parts we get

∫ b

a

Fp(x, u, u′)φ′ dx = Fp(x, u, u′)φ∣

∣

b

a

−

∫ b

a

d

dx
Fp(x, u, u′)φ dx

= −

∫ b

a

d

dx
Fp(x, u, u′)φ dx.

Replacing this expression in (1.15), we get

∫ b

a

[

Fz(x, u, u′) −
d

dx
Fp(x, u, u′)

]

φ dx = 0 for all φ ∈ C∞
c (a, b).

Thus, the result follows from the fundamental lemma. 2


