1.3 The Lemma of DuBois-Reymond

We needed extra regularity to integrate by parts and obtain the EulerLagrange equation. The following result shows that, at least sometimes, the extra regularity in such a situation need not be assumed.

Lemma 3 (cf. Lemma 1.8 in BGH). (The lemma of DuBois-Reymond) If $f \in C^{0}(a, b)$ and

$$
\begin{equation*}
\int_{a}^{b} f(x) \eta^{\prime}(x) d x=0 \quad \text { for every } \eta \in C_{c}^{\infty}(a, b) \tag{1.16}
\end{equation*}
$$

then $f \equiv c$ (constant).
Proof: Let $\zeta \in C_{c}^{\infty}(a, b)$ be arbitrary and take $\mu \in C_{c}^{\infty}(a, b)$ with $\int \mu=1$. Consider

$$
\phi=\zeta-\left(\int \zeta\right) \mu=\zeta-c \mu
$$

where $c=\int \zeta$. Note that $\phi \in C_{c}^{\infty}(a, b)$. Also,

$$
\eta(x)=\int_{a}^{x} \phi(\xi) d \xi
$$

has $\eta^{\prime}(x)=\phi(x)$ and (for $\epsilon>0$ small)
$\eta(a+\epsilon)=\int_{a}^{a+\epsilon} \phi(\xi) d \xi=0 \quad$ and $\quad \eta(b-\epsilon)=\int_{a}^{b}(\zeta-c \mu) d x=c-c \int_{a}^{b} \mu d x=0$.
Thus, $\eta \in C_{c}^{\infty}(a, b)$ with $\phi=\eta^{\prime}$. According to (1.16) we have

$$
0=\int f \phi=\int f(\zeta-c \mu)=\int f \zeta-c \int f \mu=\int f \zeta-\left(\int \zeta\right) c_{1}
$$

where

$$
c_{1}=\int f \mu
$$

Therefore,

$$
0=\int\left(f-c_{1}\right) \zeta \quad \text { for every } \zeta \in C_{c}^{\infty}(a, b)
$$

The fundamental lemma implies $f \equiv c_{1}$.

Figure 1.5: For the lemma of DuBois-Reymond, we mollify a piecewise smooth function.

Another proof of the lemma of DuBois-Raymond

Again the authors of BGH give a different argument and a more general result.

Lemma 4 (Lemma 1.8 in BGH$)$. If $f \in L_{\mathrm{loc}}^{1}(a, b)$ and

$$
\begin{equation*}
\int_{(a, b)} f \eta^{\prime}=0 \quad \text { for every } \eta \in C_{c}^{\infty}(a, b) \tag{1.17}
\end{equation*}
$$

then $f \equiv c$ (constant), i.e., there is some constant c such that $f(x)=c$ for almost every x.

Proof: Let x and \tilde{x} be Lebesgue points for $f \in\left[f_{0}\right]$. We might as well assume $a<x<\tilde{x}<b$. As suggested in BGH, let us also take $\delta>0$ small and fixed so that

$$
\bar{\eta}(\xi)=2 \chi_{I}(\xi)+\left[1+\frac{1}{\delta}(\xi-x)\right] \chi_{T}(\xi)-\left[1-\frac{1}{\delta}(\xi-\tilde{x})\right] \chi_{\tilde{T}}(\xi)
$$

with $I=(x+\delta, \tilde{x}-\delta), T=(x-\delta, x+\delta)$ and $\tilde{T}=(\tilde{x}-\delta, \tilde{x}+\delta)$ gives the function with graph indicated in Figure 1.5. The reasoning of Exercise 8 shows $\mu_{\epsilon} * \bar{\eta} \in C_{c}^{\infty}(a, b)$ with

$$
\mu_{\epsilon} * \bar{\eta}(\xi)= \begin{cases}0, & \xi \in(a, b) \backslash(x-\delta-\epsilon, \tilde{x}+\delta+\epsilon) \\ 2, & \xi \in[x+\delta+\epsilon, \tilde{x}-\delta-\epsilon]\end{cases}
$$

where μ_{ϵ} is a standard mollifier with $\epsilon<\delta$. Also,

$$
\frac{d}{d x}\left(\mu_{\epsilon} * \bar{\eta}\right)=\mu_{\epsilon} * \bar{\eta}^{\prime}=0
$$

on the interiors

$$
(a, b) \backslash[x-\delta-\epsilon, \tilde{x}+\delta+\epsilon] \quad \text { and } \quad(x+\delta+\epsilon, \tilde{x}-\delta-\epsilon)
$$

with

$$
-\frac{1}{\delta} \leq \frac{d}{d x}\left(\mu_{\epsilon} * \bar{\eta}\right) \leq \frac{1}{\delta} \quad \text { for all } x \in(a, b)
$$

Let us compute what happens in the portions

$$
(x-\delta+\epsilon, x+\delta-\epsilon) \quad \text { and } \quad(\tilde{x}-\delta+\epsilon, \tilde{x}+\delta-\epsilon)
$$

of the transition intervals T and \tilde{T}. For ξ in the first interval

$$
\begin{aligned}
\mu_{\epsilon} * \bar{\eta}(\xi) & =\int_{t} \mu_{\epsilon}(t) \bar{\eta}(\xi-t) \\
& =\int_{t} \mu_{\epsilon}(t)\left[1+\frac{1}{\delta}(\xi-t-x)\right] \\
& =1+\frac{1}{\delta}(\xi-x)-\frac{1}{\delta} \int_{t} t \mu_{\epsilon}(t) \\
& =\bar{\eta}(\xi)-m(\epsilon)
\end{aligned}
$$

where

$$
m(\epsilon)=\frac{1}{\delta} \int_{t} t \mu_{\epsilon}(t)=\frac{1}{\delta} \int_{-\epsilon}^{\epsilon} t \mu_{\epsilon}(t) d t \quad \text { satisfies } \quad|m(\epsilon)|<\frac{\epsilon}{\delta}
$$

Similarly for ξ in the interval around \tilde{x} we have $\mu_{\epsilon} * \bar{\eta}(\xi)=\bar{\eta}(\xi)+m(\epsilon)$.
The hypothesis (1.17) clearly applies to give

$$
\int f\left(\mu_{\epsilon} * \bar{\eta}\right)^{\prime}=0
$$

We wish to take a limit and conclude

$$
\begin{equation*}
\int f \bar{\eta}^{\prime}=0 . \tag{1.18}
\end{equation*}
$$

To this end, let us estimate

$$
\begin{align*}
\left|\int f\left(\mu_{\epsilon} * \bar{\eta}\right)^{\prime}-\int f \bar{\eta}^{\prime}\right| & =\left|\int f\left[\left(\mu_{\epsilon} * \bar{\eta}\right)^{\prime}-\bar{\eta}^{\prime}\right]\right| \\
& \leq \int|f|\left|\left(\mu_{\epsilon} * \bar{\eta}\right)^{\prime}-\bar{\eta}^{\prime}\right| \\
& =\int_{(x-\delta-\epsilon, \tilde{x}+\delta+\epsilon)}|f|\left|\left(\mu_{\epsilon} * \bar{\eta}\right)^{\prime}-\bar{\eta}^{\prime}\right| . \tag{1.19}
\end{align*}
$$

In this case, we do not know $f \in L^{2}$, so the Cauchy-Schwarz inequality does not help us. We do know, howevever, that for ϵ small the interval $J=(x-\delta-\epsilon, \tilde{x}+\delta+\epsilon) \subset \subset(a, b)$ so $f \in L^{1}(J)$. Furthermore, we have shown the function $\left|\left(\mu_{\epsilon} * \bar{\eta}\right)^{\prime}(\xi)-\bar{\eta}^{\prime}(\xi)\right|$ is bounded on all of (a, b) and satisfies

$$
\lim _{\epsilon \rightarrow 0}\left|\left(\mu_{\epsilon} * \bar{\eta}\right)^{\prime}(\xi)-\bar{\eta}^{\prime}(\xi)\right|=0
$$

for every $\xi \in(a, b)$. It follows that the integrand in (1.19) is bounded independent of ϵ in $L^{1}(J)$ and limits pointwise to zero almost everywhere. By the Lebesgue dominated convergence theorem, the expression in (1.19) tends to zero, and we have established (1.18).

Since $\bar{\eta}^{\prime}(\xi)=(1 / \delta) \chi_{T}(\xi)+(1 / \delta) \chi_{\tilde{T}}(\xi)$ almost everywhere (i.e., except at the four corner points), we can rewrite (1.18) as

$$
\frac{1}{\delta} \int_{(x-\delta, x+\delta)} f-\frac{1}{\delta} \int_{(x-\delta, x+\delta)} f=0
$$

Taking the limit as $\delta \searrow 0$ and recalling that x and \tilde{x} were Lebesgue points, we get $2 f(x)-2 f(\tilde{x})=0$. That is, $f(x)=f(\tilde{x})$, and it follows that f is constant, taking a single value on its Lebesgue points.

Exercises

Exercise 11. Show that if the mollifier μ_{ϵ} is chosen to be even, then the quantity

$$
m(\epsilon)=\int_{t} t \mu_{\epsilon}(t)
$$

vanishes. Show why this quantity need not be zero when μ_{ϵ} is not even.
Exercise 12. Show that when g has compact support in (a, b), then for ϵ small enough $\mu_{\epsilon} * g$ also has compact support in (a, b) and may therefore be defined on all of \mathbb{R}.

Exercise 13. Show directly that

$$
\frac{d}{d x}\left(\mu_{\epsilon} * g\right)(x)=\mu_{\epsilon} * g^{\prime}(x) \quad \text { for all } x \in \mathbb{R}
$$

when $g \in \sqsubset_{c}^{1}(a, b)$ is any piecewise C^{1} function with compact support. Use this calculation to give a (new and different) direct proof that

$$
\int f \bar{\eta}^{\prime}=0
$$

where f satisfies the hypothesis (1.17) or (1.16) and $\bar{\eta}$ is the function defined in the proof of the DuBois-Reymond lemma from BGH.

1.4 The Euler-Lagrange Equation (revisited)

Theorem 4 (Corollary 1.10 in BGH). (The Euler-Lagrange Equation for weak extremals) If

$$
u \in C^{1}(a, b)
$$

is a weak extremal for the functional

$$
\mathcal{F}[u]=\int_{a}^{b} F\left(x, u(x), u^{\prime}(x)\right) d x
$$

with Lagrangian $F \in C^{1}((a, b) \times \mathbb{R} \times \mathbb{R})$, then

$$
\begin{equation*}
\frac{d}{d x} F_{p}\left(x, u, u^{\prime}\right)-F_{z}\left(x, u, u^{\prime}\right)=0 \quad \text { on } \quad(a, b) \tag{1.20}
\end{equation*}
$$

Proof: This result follows, essentially, from integrating by parts in the condition for weak extremals (1.1) in the reverse direction: By the fundamental theorem of calculus

$$
\psi(x)=\int_{a}^{x} F_{z}\left(t, u(t), u^{\prime}(t)\right) d t
$$

is a C^{1} function with derivative $F_{z}\left(x, u(x), u^{\prime}(x)\right)$. Thus,

$$
\int_{a}^{b} F_{z}\left(x, u, u^{\prime}\right) \phi d x=\left.\psi \phi\right|_{a} ^{b}-\int_{a}^{b} \psi \phi^{\prime} d x=-\int_{a}^{b} \psi \phi^{\prime} d x
$$

Combining this expression with the other integral from (1.1), we get

$$
\int_{a}^{b}\left[F_{p}\left(x, u, u^{\prime}\right)-\psi\right] \phi^{\prime} d x=0 \quad \text { for all } \phi \in C_{c}^{\infty}(a, b)
$$

By the lemma of DuBois-Raymond, there is some constant c such that

$$
F_{p}\left(x, u, u^{\prime}\right)-\psi=c .
$$

That is,

$$
\begin{equation*}
F_{p}\left(x, u, u^{\prime}\right)=\int_{a}^{x} F_{z}\left(t, u(t), u^{\prime}(t)\right) d t+c . \tag{1.21}
\end{equation*}
$$

While it may not be true that F_{p} has any higher partial derivatives and it may not be true that u^{\prime} has any higher partial derivatives, we have shown that the composition $F_{p}\left(x, u, u^{\prime}\right)$ does have a derivative:

$$
\frac{d}{d x} F_{p}\left(x, u, u^{\prime}\right)=F_{z}\left(x, u, u^{\prime}\right) .
$$

It is important to realize that the Euler-Lagrange equation, under these hypotheses, may not allow expansion of the left side by the chain rule. The equation (1.21) is called the DuBois-Raymond equation or the Euler-Lagrange equation in integrated form.

The following example (Example 4 on page 14 of BGH) shows the weaker regularity allowed by Theorem 4 is sometimes needed. Consider the functional

$$
\mathcal{F}[u]=\int_{-1}^{1} u^{2}\left(2 x-u^{\prime}\right)^{2} d x
$$

on

$$
\mathcal{A}=\left\{u \in C^{1}[-1,1]: u(-1)=0, u(1)=1\right\} .
$$

Notice that \mathcal{F} is non-negative and $\mathcal{F}\left[u_{0}\right]=0$ where $u_{0} \in C^{1}[-1,1] \backslash C^{2}(-1,1)$ is given by

$$
u_{0}(x)= \begin{cases}0, & -1 \leq x \leq 0 \\ x^{2}, & 0 \leq x \leq 1\end{cases}
$$

We wish to show u_{0} is the unique minimizer in \mathcal{A}. If $u \in \mathcal{A}$ is any minimizer, then we must have

$$
\mathcal{F}[u]=\int_{-1}^{1} u^{2}\left(2 x-u^{\prime}\right)^{2} d x=0
$$

This means that on any interval where $u \neq 0$, we must have $u^{\prime}=2 x$ and $u(x)=x^{2}+c$ for some constant c. In particular, integrating from $x=1$, we must have

$$
u(x)=1+\int_{1}^{x}(2 \xi) d \xi=x^{2} \quad \text { for } 0 \leq x \leq 1
$$

If we assume there is some x_{0} with $-1<x_{0}<0$ for which $u\left(x_{0}\right) \neq 0$, then there is a maximal interval (a, b) with $-1 \leq a<x_{0}<b \leq 0$ such that

$$
u(x)=u\left(x_{0}\right)+x^{2}-x_{0}^{2} \neq 0 \quad \text { for } a<x<b, \quad \text { but } \quad u(a)=u(b)=0
$$

Evaluating $u(x)$ at $x=a$ and $x=b$ we conclude $a^{2}=b^{2}=x_{0}^{2}-u\left(x_{0}\right)$. This contradicts the fact that $a<b \leq 0$. Consequently, there is no such point x_{0}, we have $u(x) \equiv 0$ for $-1 \leq x \leq 0$, and $u \equiv u_{0}$.

Exercise 14. (a) Find the Euler-Lagrange equation for

$$
\mathcal{F}[u]=\int_{-1}^{1} u^{2}\left(2 x-u^{\prime}\right)^{2} d x
$$

and show that u_{0} given above is a solution of the equation.
(b) Assume $u \in C^{2}[-1,1]$ is a classical extremal for \mathcal{F}, and use the chain rule (product rule etc.) to write the Euler-Lagrange equation as a second order quasilinear ODE. Is u_{0} also a solution of this equation?
(c) What can you say about $C^{2}[-1,1]$ classical extremals for this functional?

1.5 Examples

We now return to some examples from the introduction and write down the associated Euler-Lagrange equations. We also make some elementary observations about those examples and introduce some additional examples.

1.5.1 Dirichlet energy

Recall that $\mathcal{D}[u]=0$ if $u \equiv c$ (constant), and these are absolute minimizers in $C^{1}[a, b]$, but they may not be admissible.

For the Dirichlet energy, the Lagrangian is $F(p)=p^{2}$ and the EulerLagrange equation is

$$
\begin{equation*}
u^{\prime \prime}=0 . \tag{1.22}
\end{equation*}
$$

Notice the argument of DuBois-Raymond now implies added regularity: Any C^{1} (weak) extremal must be a C^{2} (classical) extremal. Given the admissible
class $\mathcal{A}_{0}=\left\{u \in C^{1}[a, b]: u(a)=u_{a}, u(b)=u_{b}\right\}$, it is easy to integrate (1.22) to obtain the unique admissible extremal:

$$
u_{0}(x)=\frac{u_{b}-a_{a}}{b-a}(x-a)+u_{a} .
$$

Let's try to show u_{0} is the minimizer. Say u is some other admissible competitor. Then

$$
\begin{aligned}
\mathcal{D}[u]-\mathcal{D}\left[u_{0}\right] & =\int_{a}^{b}\left\{\left[u_{0}^{\prime}+\left(u^{\prime}-u_{0}^{\prime}\right)\right]^{2}-u_{0}^{\prime 2}\right\} d x \\
& =\int_{a}^{b}\left\{\left(u^{\prime}-u_{0}^{\prime}\right)^{2}+2 u_{0}^{\prime}\left(u^{\prime}-u_{0}^{\prime}\right)\right\} d x \\
& \geq 2 \int_{a}^{b} u_{0}^{\prime}\left(u^{\prime}-u_{0}^{\prime}\right) d x \\
& =2 u_{0}^{\prime} \int_{a}^{b}\left(u^{\prime}-u_{0}^{\prime}\right) d x \\
& =2 u_{0}^{\prime}\left[u_{b}-u_{b}-\left(u_{a}-u_{a}\right)\right] \\
& =0
\end{aligned}
$$

This shows $\mathcal{D}[u] \geq \mathcal{D}\left[u_{0}\right]$ with equality if and only if $u^{\prime} \equiv u_{0}^{\prime}$, which means $u \equiv u_{0}$. That is, u_{0} is the unique minimizer.

This approach suggests the following simple rephrasing of the condition for minimizers:

Lemma 5 (Lemma 2.1 in Troutman). If the universal set \mathcal{U} is a linear space (e.g., $C^{1}[a, b]$ or $\sqsubset^{1}[a, b]$, etc.) and $u_{0} \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\mathcal{F}\left[u_{0}+v\right]-\mathcal{F}\left[u_{0}\right] \geq 0 \quad \text { whenver } v \in \mathcal{U} \text { and } u_{0}+v \in \mathcal{A} \tag{1.23}
\end{equation*}
$$

then u_{0} is a minimizer. Conversely, if $u_{0} \in \mathcal{A}$ is a minimizer, then (1.23) holds.

Furthermore, if equality holds in (1.23) only for $v=0$, then u_{0} is the unique minimizer (and conversely, if u_{0} is the unique minimzer, then equality in (1.23) can only hold when $v=0$.)

1.5.2 Poisson's functional

Here we consider

$$
\mathcal{F}[u]=\int_{0}^{1}\left(u+u^{\prime 2}\right) d x
$$

on

$$
\mathcal{A}_{0}=\left\{u \in C^{1}[a, b]: u(0)=0=u(1)\right\} .
$$

Here the function $u \equiv 0$ is admissible and gives $\mathcal{F}[u]=0$, but this is not the minimizer. The Lagrangian is $F(z, p)=z+p^{2}$ and the Euler-Lagrange equation is

$$
2 u^{\prime \prime}-1=0
$$

Again, we have extra regularity for extremals, and the unique extremal is

$$
u_{0}=\frac{1}{4} x(x-1) .
$$

Computing $\mathcal{F}\left[u_{0}\right]$ we get

$$
\int_{0}^{1}\left[\frac{1}{4} x^{2}-\frac{1}{4} x+\frac{1}{4}\left(x-\frac{1}{2}\right)^{2}\right] d x=\frac{1}{4}\left(\frac{1}{3}-\frac{1}{2}+\frac{1}{24}+\frac{1}{24}\right)=-\frac{1}{24}
$$

Thus, $\mathcal{F}\left[u_{0}\right]<0$. See Exercise 16 .

1.5.3 Arclength functional

Here is an instance where C^{2} regularity is not immediate from the EulerLagrange equation. The Lagrangian is $\sqrt{1+p^{2}}$, and the Euler-Lagrange equation is

$$
\frac{d}{d x}\left(\frac{u^{\prime}}{\sqrt{1+u^{\prime 2}}}\right)=0
$$

With additional regularity, the differentiation may be carried out so that the left side is immediately recognizable as the curvature of the graph of u :

$$
k=\frac{u^{\prime \prime}}{\left(1+u^{\prime 2}\right)^{3 / 2}} .
$$

Of course, if the curvature vanishes, the graph is a straight line. See Exercise 17 .

1.5.4 Potential equation

An ordinary differential equation (ODE) central to the study of many physical phenomena is the second order linear potential equation

$$
-u^{\prime \prime}+c(x) u=0
$$

associated with the variational integral

$$
\mathcal{F}[u]=\int_{a}^{b}\left[u^{\prime 2}+c(x) u^{2}\right] d x .
$$

The function $c=c(x)$ is called the potential. See Exercise 19. This is Example 2 on page 14 of BGH.

1.6 Exercises

Exercise 15. Compute the Dirichlet energy of the sequence of functions $u_{j} \in \mathcal{A}_{0}=\left\{u \in C^{1}[0,1]: u(0)=0, u(1)=1\right\}$ which converge in $L^{1}(0,1)$ to the constant zero function.

Exercise 16. Show $u_{0}=x(x-1) / 4$ is the unique minimizer of Poisson's functional

$$
\mathcal{F}[u]=\int_{0}^{1}\left(u+u^{\prime 2}\right) d x
$$

on

$$
\mathcal{A}_{0}=\left\{u \in C^{1}[0,0]: u(0)=0=u(1)\right\} .
$$

Exercise 17. Explicitly integrate the Euler-Lagrange equation for the arclength functional to verify all extremal solutions must be affine, having the form $u(x)=\alpha x+\beta$ for some constants α and β.

Exercise 18. Find the extremals for the total variation functional.
Exercise 19. Show the potential equation is the Euler-Lagrange equation of the functional

$$
\mathcal{F}[u]=\int_{a}^{b}\left[u^{\prime 2}+c(x) u^{2}\right] d x .
$$

What can you say about the regularity of solutions in $C^{1}[a, b]$?
Exercise 20 (project exercise). Consider a cylindrical container (modeled by)

$$
\left\{(x, y, z): x^{2}+y^{2}=1, z \geq 0\right\} \cup\left\{(x, y, 0): x^{2}+y^{2} \leq 1\right\} .
$$

Assume the container contains a volume $V=\pi$ of liquid in a gravity field so that the volume initially occupies the space

$$
\left\{(x, y, z): x^{2}+y^{2}<1,0<z<1\right\} .
$$

(Ignore surface tension and wetting energy.) Assume, more generally, that the liquid is bounded by the graph of an even function $z=u(r)$ for $-1<r<1$ (in polar coordinates) in the admissible class

$$
\mathcal{A}=\left\{u \in C^{1}[0,1]: u^{\prime}(0)=0,2 \pi \int_{0}^{1} r u(r) d r=\pi\right\} .
$$

If the container (along with the liquid it contains) is rotating at a constant angular velocity ω, calculate the physical energy of the system two ways:
(a) The physical energy is the kinetic energy of rotation.
(b) With respect to a rotating frame fixed to the container, the physical energy is the potential energy with respect to the apparent field.

Find (and solve) the Euler-Lagrange equation for the interface. What happens if the container has some other shape (but still rotates with a given volume of liquid around some axis)?

Solutions

Solution 1 (Exercise 8). Let

$$
f(x)=\chi_{(-\delta, \delta)}\left(\frac{x-x_{0}}{\delta}\right)
$$

and consider the convolution integral

$$
\mu_{\epsilon} * f(x)=\int_{\xi \in \mathbb{R}} \mu(\xi) f(\xi-x)
$$

Show the following:
(a) $\mu_{\epsilon} * f=f * \mu_{\epsilon}$.
(b) $\mu_{\epsilon} * f \in C_{c}^{\infty}(\mathbb{R})$.
(c) $0 \leq \mu_{\epsilon} * f(x) \leq 1$ for all $x \in \mathbb{R}$.
(d) When $\epsilon<\delta$

$$
\mu_{\epsilon} * f(x)= \begin{cases}0, & |x| \geq \delta+\epsilon \\ 1, & |x| \leq \delta-\epsilon\end{cases}
$$

