Therefore,

$$
\int\left(u+u^{\prime 2}\right) d x-\int\left(u_{0}+u_{0}^{\prime 2}\right) d x=\int v^{\prime 2} d x \geq 0
$$

with equality only if $v^{\prime} \equiv 0$. In this admissible class, this means $v \equiv 0$.

1.7 Free boundary conditions

We have considered weak extremals u for which

$$
\delta \mathcal{F}_{u}[\phi]=0 \quad \text { for all } \phi \in C_{c}^{\infty}(a, b) .
$$

Here we consider the much stronger condition

$$
\begin{equation*}
\delta \mathcal{F}_{u}[\phi]=0 \quad \text { for all } \phi \in C^{1}[a, b] . \tag{1.26}
\end{equation*}
$$

Theorem 5 (Proposition 1.12 in BGH). If $u \in C^{1}[a, b]$, the Lagrangian F satisfies $F \in C^{1}([a, b] \times \mathbb{R} \times \mathbb{R})$, and (1.26) holds, then in addition to the Euler-Lagrange equation we have also the endpoints conditions

$$
F_{p}\left(a, u(a), u^{\prime}(a)\right)=0=F_{p}\left(b, u(b), u^{\prime}(b)\right) .
$$

Proof: Recall that we have shown by the Lemma of DuBois-Reymond, and the extremality condition, that

$$
\psi(x)=F_{p}\left(x, u, u^{\prime}\right) \text { is a } C^{1} \text { function of } x \text { on }(a, b)
$$

In fact,

$$
F_{p}\left(x, u, u^{\prime}\right)=F_{p}\left(a, u(a), u^{\prime}(a)\right)+\int_{a}^{x} F_{z}\left(\xi, u(\xi), u^{\prime}(\xi)\right) d \xi
$$

Notice that ψ has well defined values at the endpoints a and b, and we can calculate right and left derivatives at these points:

$$
\psi^{\prime}\left(a^{+}\right)=\lim _{h \searrow 0} \frac{1}{h} \int_{a}^{a+h} F_{z}\left(\xi, u(\xi), u^{\prime}(\xi)\right) d \xi=F_{z}\left(a, u(a), u^{\prime}(a)\right)
$$

and

$$
\begin{aligned}
\psi^{\prime}\left(b^{-}\right) & =\lim _{h \searrow 0} \frac{1}{(-h)}\left[\int_{a}^{b-h} F_{z}\left(\xi, u(\xi), u^{\prime}(\xi)\right) d \xi-\int_{a}^{b} F_{z}\left(\xi, u(\xi), u^{\prime}(\xi)\right) d \xi\right] \\
& =F_{z}\left(b, u(b), u^{\prime}(b)\right)
\end{aligned}
$$

In view of these calculations, we may assume $\psi \in C^{1}[a, b]$ and return to the extremality condition

$$
\int_{a}^{b}\left[F_{p}\left(x, u, u^{\prime}\right) \phi^{\prime}+F_{z}\left(x, u, u^{\prime}\right) \phi\right] d x=0
$$

Since we know extra regularity for $\psi=F_{p}\left(x, u, u^{\prime}\right)$, we can integrate by parts in the usual direction (but this time with $\phi(a)$ and/or $\phi(b)$ possibly nonzero) to get

$$
\left.F_{p}\left(x, u, u^{\prime}\right)\right|_{x=a} ^{b}+\int_{a}^{b}\left[F_{z}\left(x, u, u^{\prime}\right)-\frac{d}{d x} F_{p}\left(x, u, u^{\prime}\right)\right] d x=0 \quad \text { for all } \phi \in C^{1}[a, b] .
$$

The integral vanishes because the integrand is (up to a sign) the operator in the Euler-Lagrange equation applied to an extremal. Therefore,

$$
F_{p}\left(a, u(a), u^{\prime}(a)\right) \phi(a)=F_{p}\left(b, u(b), u^{\prime}(b)\right) \phi(b) \quad \text { for all } \phi \in C^{1}[a, b]
$$

Taking ϕ with $\phi(a)=1$ and $\phi(b)=0$, we obtain

$$
F_{p}\left(a, u(a), u^{\prime}(a)\right)=0 .
$$

Similarly, $F_{p}\left(b, u(b), u^{\prime}(b)\right)=0$.
Exercise 21. Extend Theorem 5 to the case where

$$
\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{n}, \quad \mathbf{x} \in C^{1}\left([a, b] \rightarrow \mathbb{R}^{n}\right)
$$

$F \in C^{1}\left([a, b] \times \mathbb{R}^{n} \times \mathbb{R}^{n}\right)$, and \mathbf{x} is a weak extremal with free endpoints, meaning

$$
\begin{aligned}
\int_{a}^{b}\left[\sum_{j=1}^{n} F_{p_{j}}\left(t, \mathbf{x}, \mathbf{x}^{\prime}\right) \phi_{j}^{\prime}\right. & \left.+\sum_{j=1}^{n} F_{z_{j}}\left(t, \mathbf{x}, \mathbf{x}^{\prime}\right) \phi_{j}\right] d t=0 \\
\text { for all } \vec{\phi} & =\left(\phi_{1}, \ldots, \phi_{n}\right) \in C^{1}\left([a, b] \rightarrow \mathbb{R}^{n}\right)
\end{aligned}
$$

1.8 Technique of the first integral

The following considerations apply to C^{2} (classical) extremals of autonomous functionals, i.e., ones with Lagrangians $F=F(z, p)$ with no explicit x dependence.

