Therefore,

$$\int (u+u'^2) \, dx - \int (u_0+u'^2) \, dx = \int v'^2 \, dx \ge 0$$

with equality only if $v' \equiv 0$. In this admissible class, this means $v \equiv 0$. \Box

1.7 Free boundary conditions

We have considered weak extremals u for which

$$\delta \mathcal{F}_u[\phi] = 0$$
 for all $\phi \in C_c^{\infty}(a, b)$.

Here we consider the much stronger condition

$$\delta \mathcal{F}_u[\phi] = 0 \qquad \text{for all } \phi \in C^1[a, b]. \tag{1.26}$$

Theorem 5 (Proposition 1.12 in BGH). If $u \in C^1[a, b]$, the Lagrangian F satisfies $F \in C^1([a, b] \times \mathbb{R} \times \mathbb{R})$, and (1.26) holds, then in addition to the Euler-Lagrange equation we have also the endpoints conditions

$$F_p(a, u(a), u'(a)) = 0 = F_p(b, u(b), u'(b))$$

Proof: Recall that we have shown by the Lemma of DuBois-Reymond, and the extremality condition, that

$$\psi(x) = F_p(x, u, u')$$
 is a C^1 function of x on (a, b) .

In fact,

$$F_p(x, u, u') = F_p(a, u(a), u'(a)) + \int_a^x F_z(\xi, u(\xi), u'(\xi)) d\xi$$

Notice that ψ has well defined values at the endpoints a and b, and we can calculate right and left derivatives at these points:

$$\psi'(a^+) = \lim_{h \searrow 0} \frac{1}{h} \int_a^{a+h} F_z(\xi, u(\xi), u'(\xi)) \, d\xi = F_z(a, u(a), u'(a)),$$

and

$$\psi'(b^{-}) = \lim_{h \searrow 0} \frac{1}{(-h)} \left[\int_{a}^{b-h} F_{z}(\xi, u(\xi), u'(\xi)) \, d\xi - \int_{a}^{b} F_{z}(\xi, u(\xi), u'(\xi)) \, d\xi \right]$$

= $F_{z}(b, u(b), u'(b)).$

In view of these calculations, we may assume $\psi \in C^1[a, b]$ and return to the extremality condition

$$\int_{a}^{b} \left[F_{p}(x, u, u')\phi' + F_{z}(x, u, u')\phi \right] \, dx = 0.$$

Since we know extra regularity for $\psi = F_p(x, u, u')$, we can integrate by parts in the usual direction (but this time with $\phi(a)$ and/or $\phi(b)$ possibly nonzero) to get

$$F_p(x, u, u')\Big|_{x=a}^b + \int_a^b \left[F_z(x, u, u') - \frac{d}{dx} F_p(x, u, u') \right] \, dx = 0 \quad \text{for all } \phi \in C^1[a, b].$$

The integral vanishes because the integrand is (up to a sign) the operator in the Euler-Lagrange equation applied to an extremal. Therefore,

 $F_p(a, u(a), u'(a))\phi(a) = F_p(b, u(b), u'(b))\phi(b)$ for all $\phi \in C^1[a, b]$.

Taking ϕ with $\phi(a) = 1$ and $\phi(b) = 0$, we obtain

$$F_p(a, u(a), u'(a)) = 0.$$

Similarly, $F_p(b, u(b), u'(b)) = 0.$

Exercise 21. Extend Theorem 5 to the case where

$$\mathbf{x}: [a,b] \to \mathbb{R}^n, \qquad \mathbf{x} \in C^1([a,b] \to \mathbb{R}^n),$$

 $F \in C^1([a,b] \times \mathbb{R}^n \times \mathbb{R}^n)$, and **x** is a weak extremal with free endpoints, meaning

$$\int_{a}^{b} \left[\sum_{j=1}^{n} F_{p_{j}}(t, \mathbf{x}, \mathbf{x}') \phi_{j}' + \sum_{j=1}^{n} F_{z_{j}}(t, \mathbf{x}, \mathbf{x}') \phi_{j} \right] dt = 0$$

for all $\vec{\phi} = (\phi_{1}, \dots, \phi_{n}) \in C^{1}([a, b] \to \mathbb{R}^{n}).$

1.8 Technique of the first integral

The following considerations apply to C^2 (classical) extremals of **autonomous** functionals, i.e., ones with Lagrangians F = F(z, p) with no explicit x dependence.