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1.9 C2 inner variations

So far, we have restricted attention to linear variations. These are varia-
tions of the form

v(x; ǫ) = u(x) + ǫφ(x)

where φ is in some linear perturbation class P, for example, P = C∞

c (a, b)
or P = C1[a, b]. These variations have the advantages that the dependence
on ǫ is simple and explicit, and there are well-understood useful linear per-
turbation classes available. Sometimes, especially in the context of nonlinear
admissibility conditions, it is (more or less) necessary to consider more gen-
eral variations. I say “more or less” for two reasons. First, if one restricts
attention to the theory of the first variation, then consideration of more
general variations does not (for the most part) yield any essentially new or
different information. This point can be made a little more precise. A gen-

eral variation of u ∈ A is a function v : (a, b)× (−ǫ0, ǫ0) → R where ǫ0 > 0
and

v(x; 0) = u(x), (1.28)

the condition (1.28) being the essential defining one. In this generality, the
question of how v depends on ǫ can be very subtle, and the regularity of v in
both variables x and ǫ requires careful attention. On the other hand, one has
much more flexibility, in general, when it comes to admissibility conditions.
Returning to the point under consideration, the perturbation associated
with a general variation v is usually defined to be5

ϕ(x) =
∂v

∂ǫ
∣

∣

ǫ=0

=
∂v

∂ǫ
(x; 0), (1.29)

and it can be shown, for example, under rather general hypotheses that the
first variation with respect to general variations, defined by

δFu =
d

dǫ
F [v(x; ǫ)]∣

∣

ǫ=0

depends only on the perturbation ϕ and is given by the formula

δFu[ϕ] =

∫ b

a

[Fz(x, u, u
′)ϕ+ Fp(x, u, u

′)ϕ′] dx.

5More generally, the partial derivative ∂v/∂ǫ defined at a general (x; ǫ) is sometimes
called the variation vector.
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It will be noticed at once that the first variation formula for a general vari-
ation is essentially identical to the one appearing in the condition (1.1) of
Proposition 1 for a linear variation; the only difference is that the linear
perturbation φ of (1.1) is replaced by the general perturbation ϕ of (1.29).

The second reason general variations may be of somewhat secondary in-
terest is that they are rarely used in applied mathematics, i.e., by applied
mathematicians. Even when the second variation is considered to deter-
mine (or define) stability of a physical system and the use of general variations
can make a difference, applied mathematicians tend to prefer the use of lin-
ear variations and the associated condition of linear stability as opposed to
the more natural (though more complicated) notion of nonlinear stability

associated with general variations. It may be noted, in this connection, that
the term stability is used for both concepts in the literature, but linear sta-
bility is what most authors (and especially applied mathematicians) usually
have in mind.

We now proceed to consider an interesting special class of general varia-
tions which gives some insight into the origin of the Erdmann operator and
the first integral equation; the discussion also leads to a generalization called
Noether’s equation.

A C2 parameter variation of the interval [a, b] is a function

ξ ∈ C2( [a, b] × (−ǫ0, ǫ0) )

satisfying
∂ξ

∂x
> 0, ξ(a; ǫ) ≡ a, ξ(b; ǫ) ≡ b, and (1.30)

ξ(x; 0) = id[a,b] ≡ x. (1.31)

The partial derivative

ψ =
∂ξ

∂ǫ
∣

∣

ǫ=0

=
∂ξ

∂ǫ
(x; 0) (1.32)

is called the parameter perturbation or inner perturbation. Given a C2

parameter variation and and extremal u ∈ C1[a, b], and inner variation (or
C2 inner variation) is a general variation of the form

v(x; ǫ) = u(ξ(x; ǫ)). (1.33)

When considered as a general variation, an inner variation has the peculiarity
that the associated perturbation depends on the varied function:

ϕ(x) = u′(x)
∂ξ

∂ǫ
(x; 0) = u′(x)ψ(x).
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For this reason, the first variation functional associated with an inner varia-
tion is given a different notation by the authors of BGH:

∂Fu[ψ] =
d

dǫ

∫ b

a

F

(

x, v,
∂v

∂x

)

dx∣
∣

ǫ=0

=
d

dǫ

∫ b

a

F

(

x, u(ξ), u′(ξ)
∂ξ

∂x

)

dx∣
∣

ǫ=0

.

They also give this expression a special name: the first inner variation of

F in the direction ψ. If u has additional regularity, say u ∈ C2[a, b], then
we can write

∂Fu[ψ] = δFu[u
′ψ].

We will follow up on this situation after we establish the main results on
inner variations from BGH.

1.9.1 Generalized Erdmann’s equation

We first establish a formula for the first inner variation.

Theorem 7 (Proposition 1.14 in BGH). (First inner variation formula) If
u ∈ C1[a, b] and v = v(x; ǫ) is a C2 inner variation of u with parameter
perturbation ψ, then

∂Fu[ψ] =

∫ b

a

[(Eu)ψ′ − Fx(x, u, u
′)ψ] dx (1.34)

where

F [u] =

∫ b

a

F (x, u, u′) dx

is the usual integral functional with C1 Lagrangian and

Eu = u′Fp(x, u, u
′) − F (x, u, u′)

is the Erdmann operator appearing in the first integral equation.

Proof: For each fixed ǫ, the parameter transformation x 7→ ξ(x; ǫ) has an
inverse, which we denote ξ−1 = ξ−1(η; ǫ). Differentiating the relation

ξ−1(ξ(x)) = x (1.35)

with respect to x we find

∂ξ−1

∂η
(ξ(x))

∂ξ

∂x
= 1 or

∂ξ

∂x
=

1
∂ξ−1

∂η
(ξ(x))

.
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Starting with the definition of the first inner variation, we change variables
using η = ξ(x; ǫ) so that

dη =
∂ξ

∂x
dx and dx =

∂ξ−1

∂η
(η) dη.

Thus,

∂Fu[ψ] =
d

dǫ

∫ b

a

F

(

x, u(ξ), u′(ξ)
∂ξ

∂x

)

dx∣
∣

ǫ=0

=
d

dǫ

∫ b

a

F

(

ξ−1, u(η), u′(η)
1

∂ξ−1

∂η

)

∂ξ−1

∂η
dη∣
∣

ǫ=0

.

The dependence on ǫ in the integrand is now isolated in the appearances of
ξ−1, and we have

∂Fu[ψ] =

∫ b

a

{[

Fx

(

ξ−1, u(η), u′(η)
1

∂ξ−1

∂η

)

∂ξ−1

∂ǫ

− Fp

(

ξ−1, u(η), u′(η)
1

∂ξ−1

∂η

)

u′(η)
(

∂ξ−1

∂η

)2

∂2ξ−1

∂ǫ∂η







∂ξ−1

∂η

+ F

(

ξ−1, u(η), u′(η)
1

∂ξ−1

∂η

)

∂2ξ−1

∂ǫ∂η

}

dη∣
∣

ǫ=0

Since ξ(x; 0) = id[a,b] ≡ x, we have also

ξ−1(η; 0) = id[a,b] ≡ η and
∂ξ−1

∂η
(η; 0) ≡ 1.

Furthermore, we can differentiate (1.35) with respect to ǫ to obtain

∂ξ−1

∂η

∂ξ

∂ǫ
+
∂ξ−1

∂ǫ
= 0 or

∂ξ−1

∂ǫ
= −

∂ξ−1

∂η

∂ξ

∂ǫ
.

Evaluating at ǫ = 0, this means

∂ξ−1

∂ǫ
= −ψ(η).
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Similarly,
∂2ξ−1

∂η∂ǫ
(η; 0) = −ψ′(η).

Making these substitutions in our expression for ∂Fu[ψ], we have

∂Fu[ψ] =

∫ b

a

{[Fx (η, u(η), u′(η)) (−ψ) − Fp (η, u(η), u′(η))u′(η)(−ψ′)]

+ F (η, u(η), u′(η)) (−ψ′)} dη.

Renaming the variable of integration η to x and rearranging the terms, we
see this is (1.34). 2

Theorem 8 (Proposition 1.16 in BGH6). If u ∈ C1[a, b] and

∂Fu[ψ] = 0 for all C2 inner variations,

then there is some constant c such that

Eu = u′Fp(x, u, u
′) − F (x, u, u′) = c−

∫ x

a

Fx(η, u(η), u
′(η)) dη

and
d

dx
[u′Fp(x, u, u

′) − F (x, u, u′)] = −Fx(x, u, u
′).

The first equation, involving Erdmann’s first order operator, generalizes the
theorem of the first integral. The second equation is called Noether’s equation.
As with the first integral equation, this equation, presumably, should not be
considered equivalent to the Euler-Lagrange equation, but rather a second
order equation with possibly (many) more solutions than the Euler-Lagrange
equation.

Proof: For any ψ ∈ C∞

c the parameter variation

ξ(x; ǫ) = x+ ǫψ

is well-defined for all ǫ small enough. That is, u(ξ(x; ǫ)) is an inner variation
with inner perturbation

∂ξ

∂ǫ
(x; 0) = ψ(x).

6There seems to be a sign error in the statement of this result in BGH; if the function
Φ used in BGH is replaced with what we have called the Erdmann operator, the statement
seems to be correct.
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According to (1.34) we have shown

∫ b

a

[(Eu)ψ′ − Fx(x, u, u
′)ψ] dx = 0 for all ψ ∈ C∞

c (a, b).

Integrating by parts we get

∫ b

a

[Eu+ g]ψ′ dx = 0 for all ψ ∈ C∞

c (a, b)

where

g(x) =

∫ x

a

Fx(η, u(η), u
′(η)) dη.

Notice that g ∈ C1[a, b]. It now follows from the Lemma of DuBois-Reymond
that there is some constant c for which

Eu = c− g(x).

This establishes the first assertion of the theorem. Because the right side
c − g(x) is a C1 function, the left side is differentiable too, and Noether’s
equation follows from differentiation. 2

1.9.2 Inner variations with higher regularity

We used a change of variables in the calculation of the first inner variation
formula which we then used to derive the generalized first integral relations.
If we have additional regularity, we should be able to make this calculation
without the change of variables. Let us verify that this is the case. If u ∈
C2[a, b] and ξ ∈ C2([a, b]× (−ǫ0, ǫ0)) is a parameter variation with associated
inner variation v = u(ξ(x; ǫ)), then the formula for the first inner variation
becomes

∂Fu[ψ] =
d

dǫ

∫ b

a

F

(

x, v,
∂v

∂x

)

dx∣
∣

ǫ=0

=

∫ b

a

[

(u′Fz(x, u, u
′) + u′′Fp(x, u, u

′) )
∂ξ

∂ǫ
+ u′Fp(x, u, u

′)
∂2ξ

∂x∂ǫ

]

dx

=

∫ b

a

[( u′Fz(x, u, u
′) + u′′Fp(x, u, u

′) )ψ + u′Fp(x, u, u
′)ψ′] dx.
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Notice that

d

dx
F (x, u, u′) = Fx(x, u, u

′) + u′Fz(x, u, u
′) + u′′Fp(x, u, u

′).

By adding and subtracting the integral

∫ b

a

Fx(x, u, u
′)ψ dx,

integrating by parts, and applying the lemma of DuBois-Reymond, we ar-
rive at the same conclusions of Theorem 8 under the additional regularity
assumptions. See Exercise 22

Exercise 22. Carry out the details of the proof of Theorem 8 suggested above
under the additional regularity assumption u ∈ C2[a, b].

Exercise 23. An inner variation is said to be C∞

c if there is some interval
I ⊂⊂ (a, b) such that

ξ∣
∣

[a,b]\Ī

≡ x.

Give condituions on the parameter variation ξ and the function u under
which there is some ϕ ∈ C∞

c (a, b) such that the inner variation v = u(ξ(x; ǫ))
satisfies the formula

∂Fu

[

∂ξ

∂ǫ
(x; 0)

]

= δFu[ϕ].

1.10 Variational constraints;

Lagrange multipliers

It is quite common to encounter a variational problem with an integral

constraint of the form

G[u] =

∫ b

a

G(x, u, u′) dx = g0 (constant).

For example, rather than looking for the shortest graph connecting (a, 0) to
(b, 0) in the plane, which is easily seen to be given by the graph of u(x) ≡ 0,
one may look for the shortest graph connecting these two points among
graphs enclosing (along with the segment along the axis between the two


