Notice that

$$
\frac{d}{d x} F\left(x, u, u^{\prime}\right)=F_{x}\left(x, u, u^{\prime}\right)+u^{\prime} F_{z}\left(x, u, u^{\prime}\right)+u^{\prime \prime} F_{p}\left(x, u, u^{\prime}\right) .
$$

By adding and subtracting the integral

$$
\int_{a}^{b} F_{x}\left(x, u, u^{\prime}\right) \psi d x
$$

integrating by parts, and applying the lemma of DuBois-Reymond, we arrive at the same conclusions of Theorem 8 under the additional regularity assumptions. See Exercise 22

Exercise 22. Carry out the details of the proof of Theorem 8 suggested above under the additional regularity assumption $u \in C^{2}[a, b]$.

Exercise 23. An inner variation is said to be C_{c}^{∞} if there is some interval $I \subset \subset(a, b)$ such that

$$
\xi_{[a, b \backslash \backslash \bar{I}} \equiv x
$$

Give condituions on the parameter variation ξ and the function u under which there is some $\varphi \in C_{c}^{\infty}(a, b)$ such that the inner variation $v=u(\xi(x ; \epsilon))$ satisfies the formula

$$
\partial \mathcal{F}_{u}\left[\frac{\partial \xi}{\partial \epsilon}(x ; 0)\right]=\delta \mathcal{F}_{u}[\varphi] .
$$

1.10 Variational constraints; Lagrange multipliers

It is quite common to encounter a variational problem with an integral constraint of the form

$$
\mathcal{G}[u]=\int_{a}^{b} G\left(x, u, u^{\prime}\right) d x=g_{0} \quad \text { (constant). }
$$

For example, rather than looking for the shortest graph connecting $(a, 0)$ to $(b, 0)$ in the plane, which is easily seen to be given by the graph of $u(x) \equiv 0$, one may look for the shortest graph connecting these two points among graphs enclosing (along with the segment along the axis between the two
points) a prescribed area A. It is natural to include such a constraint in the admissible class and write, for example,

$$
\mathcal{A}=\left\{u \in C^{1}[a, b]: u(a)=0=u(b), \int_{a}^{b} u(x) d x=A\right\} .
$$

We will now give an alternative which allows us to use the methods developed above for unconstrained problems. The main result is the following:

Theorem 9 (Proposition 1.17 in BGH). Let

$$
\mathcal{A}=\left\{u \in C^{0}[a, b] \cap C^{1}(a, b): u(a)=u_{a}, u(b)=u_{b}, \text { and } \mathcal{G}[u]=g_{0}\right\}
$$

where

$$
\mathcal{G}[u]=\int_{a}^{b} G\left(x, u, u^{\prime}\right) d x \quad \text { with } G \in C^{1}([a, b] \times \mathbb{R} \times \mathbb{R})
$$

Assume $u_{0} \in \mathcal{A}$ satisfies

$$
\mathcal{F}\left[u_{0}\right] \leq \mathcal{F}[u] \quad \text { for all } u \in \mathcal{A}
$$

where

$$
\mathcal{F}[u]=\int_{a}^{b} F\left(x, u, u^{\prime}\right) d x \quad \text { with } F \in C^{1}([a, b] \times \mathbb{R} \times \mathbb{R})
$$

Then either $\delta \mathcal{G}_{u_{0}}[\phi] \equiv 0$ for all $\phi \in C_{c}^{\infty}(a, b)$, or there is some $\lambda \in \mathbb{R}$ such that

$$
\delta \mathcal{F}_{u_{0}}[\phi]+\lambda \delta \mathcal{G}_{u_{0}}[\phi]=0 \quad \text { for all } \phi \in C_{c}^{\infty}(a, b)
$$

In the latter case, if either

1. $u_{0} \in C^{1}[a, b]$, or
2. $u_{0} \in C^{2}(a, b)$ and $F, G \in C^{2}((a, b) \times \mathbb{R} \times \mathbb{R})$,
then u_{0} is a solution of the Euler-Lagrange equation for the functional $\mathcal{F}+\lambda \mathcal{G}$. Roughly speaking, this says the constrained problem for \mathcal{F} is equivalent to the unconstrained problem for $\mathcal{F}+\lambda \mathcal{G}$.

Proof: For the proof, denote u_{0} by u; we need make no comparison requiring a distinction between u_{0} and u as stated in the theorem. If $\delta \mathcal{G}_{u} \not \equiv 0$, then there is some $\psi \in C_{c}^{\infty}(a, b)$ such that

$$
\delta \mathcal{G}_{u}[\psi]=1
$$

For ψ (fixed) and $\phi \in C_{c}^{\infty}(a, b)$ arbitrary (but also temporarily fixed), consider the functions $f, g: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(\epsilon, \delta)=\mathcal{F}[u+\epsilon \phi+\delta \psi] \quad \text { and } \quad g(\epsilon, \delta)=\mathcal{G}[u+\epsilon \phi+\delta \psi] .
$$

Notice that $g(0,0)=\mathcal{G}[u]=g_{0}$ and

$$
\frac{\partial g}{\partial \delta}(0,0)=\delta \mathcal{G}_{u}[\psi]=1
$$

By the implicit function theorem the equation $g(\epsilon, \delta)=g_{0}$ determines δ as a C^{1} function of ϵ locally near $(0,0)$. To be more precise, there is some $\epsilon_{0}>0$ and a unique C^{1} function $h:\left(-\epsilon_{0}, \epsilon_{0}\right) \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
g(\epsilon, h(\epsilon))=g_{0} \quad \text { for }|\epsilon|<\epsilon_{0} . \tag{1.36}
\end{equation*}
$$

This means we have a one-parameter family of admissible functions

$$
u+\epsilon \phi+h(\epsilon) \psi \quad \text { for }|\epsilon|<\epsilon_{0}
$$

and

$$
f(0,0)=\mathcal{F}[u] \leq \mathcal{F}[u+\epsilon \phi+h(\epsilon) \psi]=f(\epsilon, h(\epsilon))
$$

Consequently,

$$
\begin{equation*}
\frac{d}{d \epsilon} f(\epsilon, h(\epsilon))_{\epsilon=0}=\delta \mathcal{F}_{u}[\phi]+h^{\prime}(0) \delta \mathcal{F}_{u}[\psi]=0 \tag{1.37}
\end{equation*}
$$

On the other hand, differentiating (1.36) we have

$$
\delta \mathcal{G}_{u}[\phi]+\delta \mathcal{G}_{u}[\psi] h^{\prime}(0)=0, \quad \text { so } \quad h^{\prime}(0)=-\delta \mathcal{G}_{u}[\phi] .
$$

Thus, (1.37) implies

$$
\delta \mathcal{F}_{u}[\phi]-\delta \mathcal{F}_{u}[\psi] \delta \mathcal{G}_{u}[\phi]=0 \quad \text { for all } \phi \in C_{c}^{\infty}(a, b)
$$

Taking $\lambda=-\delta \mathcal{F}_{u}[\psi]$, we have established the first assertion of the theorem.

The Lagrangians may now be combined into a single Lagrangian

$$
F\left(x, u, u^{\prime}\right)+\lambda G\left(x, u, u^{\prime}\right)
$$

to which either Theorem 4 may be applied since

$$
\begin{aligned}
& \mathcal{A}_{1}=\left\{u \in C^{1}[a, b]: u(a)=u_{a}, u(b)=u_{b}\right\} \\
& \subset \mathcal{A}_{0}=\left\{u \in C^{0}[a, b] \cap C^{1}(a, b): u(a)=u_{a}, u(b)=u_{b}\right\}
\end{aligned}
$$

or alternatively, if we have the extra regularity with $u \in C^{2}(a, b)$ and $F, G \in$ $C^{2}((a, b) \times \mathbb{R} \times \mathbb{R})$, then Theorem 3 applies.

There is a result which should be included here. It gives some substance to the claim above that consideration of the unconstrained functional $\mathcal{F}+\lambda \mathcal{G}$ is fundamentally related to the constrained minimization of \mathcal{F} with respect to \mathcal{G}. It also removes many of the complications of Theorem 9 .

Theorem 10. If u_{0} minimizes the functional $\mathcal{F}+\lambda \mathcal{G}$ without any constraint and it happens to be the case that the minimizer satisfies a particular constraint $\mathcal{G}\left[u_{0}\right]=g_{0}$, then u is also a minimizer of \mathcal{F} with respect to the constraint $\mathcal{G}\left[u_{0}\right]=g_{0}$.

Proof: If u satisfies $\mathcal{G}[u]=g_{0}$, then since we know

$$
\mathcal{F}\left[u_{0}\right]+\lambda \mathcal{G}\left[u_{0}\right] \leq \mathcal{F}[u]+\lambda \mathcal{G}[u]
$$

we can cancel the terms $\lambda \mathcal{G}\left[u_{0}\right]=\lambda g_{0}=\lambda \mathcal{G}[u]$, and

$$
\mathcal{F}\left[u_{0}\right] \leq \mathcal{F}[u] .
$$

Example 6 (Example 6 on page 24 of BGH). The variational problem associated with the potential equation (discussed in Example 1.5.4 of § 1.5) is often considered subject to a constraint on the L^{2} norm:

$$
\mathcal{G}[u]=\frac{1}{2} \int_{a}^{b}[u(x)]^{2} d x=g_{0} .
$$

The functional here is

$$
\mathcal{F}[u]=\frac{1}{2} \int_{a}^{b}\left[u^{\prime 2}+c(x) u^{2}\right] d x .
$$

The augmented functional is

$$
\mathcal{F}[u]-\lambda \mathcal{G}=\frac{1}{2} \int_{a}^{b}\left[u^{\prime 2}+c(x) u^{2}-\lambda u^{2}\right] d x
$$

and the associated Euler-Lagrange equation is

$$
\begin{equation*}
-u^{\prime \prime}+c(x) u=\lambda u . \tag{1.38}
\end{equation*}
$$

If considered on the admissible class with fixed endpoints,

$$
\mathcal{A}=\left\{u \in C^{1}[a, b]: u(a)=0=u(b), \frac{1}{2} \int_{a}^{b} u^{2} d x=g_{0}\right\},
$$

we are led to a two point boundary value problem for the equation in (1.38) in which the constant λ is also an unknown. This kind of problem is called a Sturm-Liouville problem, and the operator

$$
L u=-u^{\prime \prime}+c(x) u
$$

is called a Sturm-Liouville operator. Notice the Euler-Lagrange equation prescribes that λ is an eigenvalue for the associated Sturm-Liouville operator.

Exercise 24. Take the special case $c(x) \equiv 1$ with $u_{a}=0=u_{b}$. What does the theory of ODEs say about the original minimization problem for \mathcal{F} over \mathcal{A} ? Can your conclusions be generalized to other potentials $c=c(x)$ and other boundary values?

