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Notice that

d

dx
F (x, u, u′) = Fx(x, u, u

′) + u′Fz(x, u, u
′) + u′′Fp(x, u, u

′).

By adding and subtracting the integral

∫ b

a

Fx(x, u, u
′)ψ dx,

integrating by parts, and applying the lemma of DuBois-Reymond, we ar-
rive at the same conclusions of Theorem 8 under the additional regularity
assumptions. See Exercise 22

Exercise 22. Carry out the details of the proof of Theorem 8 suggested above
under the additional regularity assumption u ∈ C2[a, b].

Exercise 23. An inner variation is said to be C∞

c if there is some interval
I ⊂⊂ (a, b) such that

ξ∣
∣

[a,b]\Ī

≡ x.

Give condituions on the parameter variation ξ and the function u under
which there is some ϕ ∈ C∞

c (a, b) such that the inner variation v = u(ξ(x; ǫ))
satisfies the formula

∂Fu

[

∂ξ

∂ǫ
(x; 0)

]

= δFu[ϕ].

1.10 Variational constraints;

Lagrange multipliers

It is quite common to encounter a variational problem with an integral

constraint of the form

G[u] =

∫ b

a

G(x, u, u′) dx = g0 (constant).

For example, rather than looking for the shortest graph connecting (a, 0) to
(b, 0) in the plane, which is easily seen to be given by the graph of u(x) ≡ 0,
one may look for the shortest graph connecting these two points among
graphs enclosing (along with the segment along the axis between the two
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points) a prescribed area A. It is natural to include such a constraint in the
admissible class and write, for example,

A =

{

u ∈ C1[a, b] : u(a) = 0 = u(b),

∫ b

a

u(x) dx = A

}

.

We will now give an alternative which allows us to use the methods developed
above for unconstrained problems. The main result is the following:

Theorem 9 (Proposition 1.17 in BGH). Let

A =
{

u ∈ C0[a, b] ∩ C1(a, b) : u(a) = ua, u(b) = ub, and G[u] = g0

}

where

G[u] =

∫ b

a

G(x, u, u′) dx with G ∈ C1([a, b] × R × R).

Assume u0 ∈ A satisfies

F [u0] ≤ F [u] for all u ∈ A

where

F [u] =

∫ b

a

F (x, u, u′) dx with F ∈ C1([a, b] × R × R).

Then either δGu0 [φ] ≡ 0 for all φ ∈ C∞

c (a, b), or there is some λ ∈ R such
that

δFu0 [φ] + λ δGu0[φ] = 0 for all φ ∈ C∞

c (a, b).

In the latter case, if either

1. u0 ∈ C1[a, b], or

2. u0 ∈ C2(a, b) and F,G ∈ C2((a, b) × R × R),

then u0 is a solution of the Euler-Lagrange equation for the functional F+λG.
Roughly speaking, this says the constrained problem for F is equivalent to the
unconstrained problem for F + λG.
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Proof: For the proof, denote u0 by u; we need make no comparison requiring
a distinction between u0 and u as stated in the theorem. If δGu 6≡ 0, then
there is some ψ ∈ C∞

c (a, b) such that

δGu[ψ] = 1.

For ψ (fixed) and φ ∈ C∞

c (a, b) arbitrary (but also temporarily fixed), con-
sider the functions f, g : R × R → R by

f(ǫ, δ) = F [u+ ǫφ+ δψ] and g(ǫ, δ) = G[u+ ǫφ+ δψ].

Notice that g(0, 0) = G[u] = g0 and

∂g

∂δ
(0, 0) = δGu[ψ] = 1.

By the implicit function theorem the equation g(ǫ, δ) = g0 determines δ as a
C1 function of ǫ locally near (0, 0). To be more precise, there is some ǫ0 > 0
and a unique C1 function h : (−ǫ0, ǫ0) → R such that

g(ǫ, h(ǫ)) = g0 for |ǫ| < ǫ0. (1.36)

This means we have a one-parameter family of admissible functions

u+ ǫφ+ h(ǫ)ψ for |ǫ| < ǫ0,

and
f(0, 0) = F [u] ≤ F [u+ ǫφ + h(ǫ)ψ] = f(ǫ, h(ǫ)).

Consequently,

d

dǫ
f(ǫ, h(ǫ))∣

∣

ǫ=0

= δFu[φ] + h′(0)δFu[ψ] = 0. (1.37)

On the other hand, differentiating (1.36) we have

δGu[φ] + δGu[ψ]h′(0) = 0, so h′(0) = −δGu[φ].

Thus, (1.37) implies

δFu[φ] − δFu[ψ]δGu[φ] = 0 for all φ ∈ C∞

c (a, b).

Taking λ = −δFu[ψ], we have established the first assertion of the theorem.
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The Lagrangians may now be combined into a single Lagrangian

F (x, u, u′) + λG(x, u, u′)

to which either Theorem 4 may be applied since

A1 = {u ∈ C1[a, b] : u(a) = ua, u(b) = ub}

⊂ A0 = {u ∈ C0[a, b] ∩ C1(a, b) : u(a) = ua, u(b) = ub},

or alternatively, if we have the extra regularity with u ∈ C2(a, b) and F,G ∈
C2((a, b) × R × R), then Theorem 3 applies. 2

There is a result which should be included here. It gives some substance
to the claim above that consideration of the unconstrained functional F+λG
is fundamentally related to the constrained minimization of F with respect
to G. It also removes many of the complications of Theorem 9.

Theorem 10. If u0 minimizes the functional F +λG without any constraint
and it happens to be the case that the minimizer satisfies a particular con-
straint G[u0] = g0, then u is also a minimizer of F with respect to the con-
straint G[u0] = g0.

Proof: If u satisfies G[u] = g0, then since we know

F [u0] + λG[u0] ≤ F [u] + λG[u]

we can cancel the terms λG[u0] = λg0 = λG[u], and

F [u0] ≤ F [u]. 2

Example 6 (Example 6 on page 24 of BGH). The variational problem as-
sociated with the potential equation (discussed in Example 1.5.4 of § 1.5) is
often considered subject to a constraint on the L2 norm:

G[u] =
1

2

∫ b

a

[u(x)]2 dx = g0.

The functional here is

F [u] =
1

2

∫ b

a

[

u′2 + c(x)u2
]

dx.
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The augmented functional is

F [u] − λG =
1

2

∫ b

a

[

u′2 + c(x)u2 − λu2
]

dx,

and the associated Euler-Lagrange equation is

−u′′ + c(x)u = λu. (1.38)

If considered on the admissible class with fixed endpoints,

A =

{

u ∈ C1[a, b] : u(a) = 0 = u(b),
1

2

∫ b

a

u2 dx = g0

}

,

we are led to a two point boundary value problem for the equation in (1.38)
in which the constant λ is also an unknown. This kind of problem is called a
Sturm-Liouville problem, and the operator

Lu = −u′′ + c(x)u

is called a Sturm-Liouville operator. Notice the Euler-Lagrange equation
prescribes that λ is an eigenvalue for the associated Sturm-Liouville operator.

Exercise 24. Take the special case c(x) ≡ 1 with ua = 0 = ub. What does
the theory of ODEs say about the original minimization problem for F over
A? Can your conclusions be generalized to other potentials c = c(x) and
other boundary values?


