D2 CHAPTER 1. INDIRECT METHODS

Notice that

d
d—F(x, u,u') = Fp(z,u,u') + o' F(z,u,u') + u"Fy(x,u,u').
T

By adding and subtracting the integral

b
/ Fy(x,u,u' )y dx,

integrating by parts, and applying the lemma of DuBois-Reymond, we ar-
rive at the same conclusions of Theorem 8 under the additional regularity
assumptions. See Exercise 22

Exercise 22. Carry out the details of the proof of Theorem 8§ suggested above
under the additional regularity assumption u € C?[a, b].

Exercise 23. An inner variation is said to be C2° if there is some interval
I'cc(a,b) such that

S

x.

[a,b]\T

Give condituions on the parameter variation & and the function u under
which there is some ¢ € C°(a,b) such that the inner variation v = u(&(z;€))
satisfies the formula

9¢

o7, | wi0)| = 37l

1.10 Variational constraints;
Lagrange multipliers

It is quite common to encounter a variational problem with an integral
constraint of the form

b
Glu] = / G(x,u,u')dz = go (constant).

For example, rather than looking for the shortest graph connecting (a,0) to
(b,0) in the plane, which is easily seen to be given by the graph of u(z) = 0,
one may look for the shortest graph connecting these two points among
graphs enclosing (along with the segment along the axis between the two
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points) a prescribed area A. It is natural to include such a constraint in the
admissible class and write, for example,

A= {u € CMa,b] : u(a) = 0 = u(b), /abu(:)s)dx: A}.

We will now give an alternative which allows us to use the methods developed
above for unconstrained problems. The main result is the following:

Theorem 9 (Proposition 1.17 in BGH). Let
A={ue C%a,bNCa,b): u(a) =u,, ub)=uw, and Glu] =gy}

where
b
Glu] = / G(z,u,u') dx with G € C*([a,b] x R x R).

Assume ug € A satisfies
Flug) < Flu]  forallue A

where
b
f[u]:/ F(x,u,u)dz with F € C*([a,b] x R x R).

Then either 6G,,[¢] = 0 for all ¢ € C°(a,b), or there is some A € R such
that

SF o8] + A8Gu 0] =0 for all ¢ € C=(a,b).

In the latter case, if either
1. uy € C'a,b], or
2. ug € C*(a,b) and F,G € C?*((a,b) x R x R),

then ug s a solution of the Fuler-Lagrange equation for the functional F+\G.
Roughly speaking, this says the constrained problem for F is equivalent to the
unconstrained problem for F + \G.
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Proof: For the proof, denote uy by u; we need make no comparison requiring
a distinction between uy and u as stated in the theorem. If §G, # 0, then
there is some ¢ € C°(a, b) such that

0G. Y] = 1.

For ¢ (fixed) and ¢ € C2°(a,b) arbitrary (but also temporarily fixed), con-
sider the functions f,g: R x R — R by

fle,0) =Flut+ep+op]  and  g(€0) =Glu+ed+ 0y
Notice that ¢(0,0) = Glu] = go and

dg B B
%(0,0) = 0G.[Y] = 1.

By the implicit function theorem the equation g(e, d) = go determines ¢ as a
C' function of € locally near (0,0). To be more precise, there is some ¢y > 0
and a unique C! function & : (—¢g, ¢g) — R such that

gle,h(€)) =go  for || < eo. (1.36)
This means we have a one-parameter family of admissible functions
u+ep+h(e)y  for el < e,

and

f(0,0) = Flu] < Flu+ €d + h(e)y] = f(e, h(e)).
Consequently,

= 5F,[¢] + K (0)F,[¢] = 0. (1.37)

e=0

d
= f(ehe)

On the other hand, differentiating (1.36) we have
0Gu[d] + 0GR (0) =0,  so  K(0) = —3G,[¢].
Thus, (1.37) implies
OFu[¢] — 6Fu[]6Gu[p] =0 for all ¢ € C>(a, D).

Taking A = —0F,[¢], we have established the first assertion of the theorem.
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The Lagrangians may now be combined into a single Lagrangian
F(z,u,u') + MG (z,u,u)
to which either Theorem 4 may be applied since
Ap = {u € C'a,b] : u(a) = uq, u(b) =up}
C Ay = {u e C%a,b) N C(a,b) : u(a) = uq, u(b) =up},

or alternatively, if we have the extra regularity with u € C?(a,b) and F,G €
C?((a,b) x R x R), then Theorem 3 applies. O

There is a result which should be included here. It gives some substance
to the claim above that consideration of the unconstrained functional F 4 AG
is fundamentally related to the constrained minimization of F with respect
to G. It also removes many of the complications of Theorem 9.

Theorem 10. If uy minimizes the functional F + \G without any constraint
and it happens to be the case that the minimizer satisfies a particular con-
straint Glug] = go, then u is also a minimizer of F with respect to the con-
straint Gluo] = go-

Proof: If u satisfies Gu| = go, then since we know
Fluo] + AGluo] < Flu] + AG[u]
we can cancel the terms AG[ug] = Ago = AG[u|, and
Flug] < Flul. O

Example 6 (Example 6 on page 24 of BGH). The variational problem as-
sociated with the potential equation (discussed in Example 1.5.4 of § 1.5) is
often considered subject to a constraint on the L? norm:

The functional here is
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The augmented functional is

b
Flu] — \G = %/ [u” + c(z)u® — M?] du,

and the associated Fuler-Lagrange equation is
—u" + e(x)u = . (1.38)
If considered on the admissible class with fixed endpoints,

A— {uecl[a,b] () = 0 = u(b). %/abuzdngo},

we are led to a two point boundary value problem for the equation in (1.38)
in which the constant X\ is also an unknown. This kind of problem is called a
Sturm-Liouville problem, and the operator

Lu = —u"+ c(z)u

15 called a Sturm-Liouville operator. Notice the Euler-Lagrange equation
prescribes that X\ is an eigenvalue for the associated Sturm-Liouville operator.

Exercise 24. Take the special case c(x) = 1 with u, = 0 = u,. What does
the theory of ODFEs say about the original minimization problem for F over
A? Can your conclusions be generalized to other potentials ¢ = c(x) and
other boundary values?



