
Chapter 5

Convex minimization; some

sufficient conditions

This is some material from chapters 2 and 3 of Troutman. The point of view
concerning the first and second variations is somewhat different in that rather
than giving specific conditions under which these variations exist and explicit
domains of perturbations on which they are defined, Troutman prefers to
allow perturbation in any direction in which the formal definition of the
variation leads to a well-defined real value. We will start off with admissible
classes in the nominal universal set C1[a, b], though Troutman suggests the
consideration of various other vector spaces as universal sets. In particular,
the larger space C0[a, b] ∩ C1(a, b).

5.1 The basic results

Definition 5. Given F ∈ C1([a, b]×R×R) and F [u] =
∫ b

a
F (x, u, u′) dx, we

say F is convex on A ⊂ C1[a, b] if

F [u + v] −F [u] ≥ δFu[v] whenever u, u + v ∈ A. (5.1)

Notice that the first variation will exist under these assumptions even if u +
ǫv /∈ A for all ǫ.

A convex integral functional is said to be strictly convex if equality in
(5.1) occurs only for v ≡ 0.
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Theorem 13. If F is convex on A, as in the definition above, and for every
v ∈ C1[a, b] such that u0 + v ∈ A, we have

δFu0
[v] = 0,

then F [u0] ≤ F [u] for all u ∈ A.
If F is strictly convex, then u0 is the unique minimizer.

Proof: If u ∈ A, then v = u − u0 ∈ C1[a, b] and u + v ∈ A, so

F [u] −F [u0] ≥ δFu0
[v] = 0.

Clearly, if F is strictly convex, then the inequality is strict for all u 6= u0.
2

Theorem 14. If F ∈ C2([a, b] × R × R) is strictly second order convex

in z and p, i.e., for each fixed x, the matrix

(

Fzz Fzp

Fzp Fpp

)

is positive definite, (5.2)

then F [u] =
∫ b

a
F (x, u, u′) dx is strictly convex.

Proof: For fixed x we have a Taylor expansion formula

F (x, u + v, u′ + v′) − F (x, u, u′) = Fz(x, u, u′)v + Fz(x, u, u′)v′

+
1

2
(v, v′)

(

Fzz(x, z∗, p∗) Fzp(x, z∗, p∗)
Fzp(x,z∗,p∗) Fpp(x, z∗, p∗)

) (

v
v′

)

where (z∗, p∗) is a point on the line segment connecting (u, u′) to (u+v, u′+v′)
in R

2. Since

(v, v′)

(

Fzz(x, z∗, p∗) Fzp(x, z∗, p∗)
Fzp(x,z∗,p∗) Fpp(x, z∗, p∗)

) (

v
v′

)

=

〈(

v
v′

)

,

(

Fzz(x, z∗, p∗) Fzp(x, z∗, p∗)
Fzp(x, z∗, p∗) Fpp(x, z∗, p∗)

) (

v
v′

)〉

≥ 0

with equality only if (v, v′) = (0, 0). we have

F (x, u + v, u′ + v′) − F (x, u, u′) ≥ Fz(x, u, u′)v + Fz(x, u, u′)v′ (5.3)
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with equality only if (v, v′) = (0, 0). Integrating, we find

F [u + v] −F [u] ≥
∫ b

a

[Fz(x, u, u′)v + Fz(x, u, u′)v′] dx = δFu[v]. (5.4)

This means F is convex on A. Initially, the equality condition of (5.3) gives
only that (v(x), v′(x)) = (0, 0) at the point under consideration. If, however,
we have equality in (5.4) in the presence of the inequality of (5.3), then by
continuity, we must have equality in (5.3) at every point. Thus, we get v ≡ 0
in the case of equality, and F is strictly convex. 2

5.2 Applications to the Brachistochrone prob-

lem

It is pointed out by Troutman that if we consider points (1,−d) with d > 2/π,
then the resulting cycloid curve is the graph of a function x = v(y) with
v ∈ C1[0,−d], and the transit time may be expressed as

T [v] =

∫ 0

−d

1
dy
dt

dy

=

∫ 0

−d

1
dy
ds

ds
dt

dy

=

∫ 0

−d

√

1 + v′2

−2gy
dy

since

s =

∫ 0

−d

√

1 + [v′(η)]2 dη implies
dy

ds
=

1√
1 + v′2

.

The Lagrangian

F (y, p) =

√

1 + p2

−2gy

while non-autonomous is strictly second order convex in p since

d2

dp2

√

1 + p2 =
d

dp

p
√

1 + p2
=

1

(1 + p2)3/2
> 0.
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This implies these particular cycloids are unique minimizers among curves
given as graphs {(v(y), y) : y ∈ [−d, 0] : v(−d) = 1, v(0) = 0} determined by
functions v ∈ C1[−d, 0].

Exercise 36. Technically, Theorem 14 does not apply to the functional con-
sidered by Troutman because the Hessian matrix with respect to v and v′ is
degenerate in the v direction. Prove a version of the theorem which applies
to this case.

It is pointed out in BGH that under certain assumptions, the transit time
may be written as

T [v] =
1

g

∫ 1

0

√

g2

v2
+ v′2 dx.

To be precise, consider

A1 =

{

u ∈ C0[0, 1] ∩ C1(0, 1] : u ≤ 0, u(0) = 0, u(1) = −d,

∫ 1

0

1√
−u

dx < ∞
}

.

Setting

A2 = {v ∈ C0[0, 1] ∩ C1(0, 1] : v =
√

−2gu for some u ∈ A1}

we have the integrability condition

∫ 1

0

1

v
dx < ∞,

2gu = −v2 so gu′ = −2vv′, and

T [v] =

∫ 1

0

√

1 + u′2

−2gu
dx =

1

g

∫ 1

0

√

g2 + v2v′2

v2
dx

as given above. The Lagrangian

F (z, p) =

√

g2

z2
+ p2

is still autonomous and has

Fz = − g2/z3

√

g2

z2 + p2

and Fp =
p

√

g2

z2 + p2

;



5.2. APPLICATIONS TO THE BRACHISTOCHRONE PROBLEM 83

Fzz =
3g2/z4

√

g2

z2 + p2

− g4/z6

(

g2

z2 + p2
)3/2

=
2g4/z6 + 3g2p2/z4

(

g2

z2 + p2
)3/2

> 0;

Fzp = − g2p/z3

(

g2

z2 + p2
)3/2

and Fpp =
g2/z2

(

g2

z2 + p2
)3/2

> 0.

Finally,

FzzFpp − F 2
zp =

1
(

g2

z2 + p2
)3

[

2g6

z8
+ 3

g4p2

z6
− g4p2

z6

]

> 0.

This means the Hessian matrix is positive definite and the functional T is
strictly convex on A2.

Exercise 37. Theorem 13 and 14 (and technically even the definition of
convexity) given above do not apply in this case. Modify the construction
above to treat the admissible set A2 in the universal vector space C0[0, 1] ∩
C1(0, 1] to show the cycloids provide global minimizers in A2.


