A new concordance invariant of knots in sums of $S^2 \times S^1$

Miriam Kuzbary

Rice University

December 14, 2018
Two knots K and J inside S^3 are concordant if there is a smooth, properly embedded annulus in $S^3 \times [0, 1]$ whose boundary is $K \times \{0\} \sqcup J \times \{1\}$.
Preliminaries

- Two knots K and J inside S^3 are concordant if there is a smooth, properly embedded annulus in $S^3 \times [0, 1]$ whose boundary is $K \times \{0\} \sqcup J \times \{1\}$.
- A knot $K \subset S^3$ is slice if bounds a properly embedded disk in B^4.

Miriam Kuzbary (Rice University) Knot Conc. Inv. in $S^2 \times S^1$'s December 14, 2018 2 / 20
Preliminaries

- Two knots K and J inside S^3 are concordant if there is a smooth, properly embedded annulus in $S^3 \times [0, 1]$ whose boundary is $K \times \{0\} \sqcup J \times \{1\}$.
- A knot $K \subset S^3$ is slice if bounds a properly embedded disk in B^4.
- Two n-component links L_1 and L_2 in S^3 are concordant if their components are concordant by n disjoint smooth annuli.
Preliminaries

- Two knots K and J inside S^3 are concordant if there is a smooth, properly embedded annulus in $S^3 \times [0, 1]$ whose boundary is $K \times \{0\} \sqcup J \times \{1\}$.
- A knot $K \subset S^3$ is slice if bounds a properly embedded disk in B^4.
- Two n-component links L_1 and L_2 in S^3 are concordant if their components are concordant by n disjoint smooth annuli.
- An n-component link L in S^3 is slice if it bounds n smooth, disjoint, properly embedded disks in B^4.
Preliminaries

- Two knots K and J inside S^3 are concordant if there is a smooth, properly embedded annulus in $S^3 \times [0, 1]$ whose boundary is $K \times \{0\} \sqcup J \times \{1\}$.
- A knot $K \subset S^3$ is slice if bounds a properly embedded disk in B^4.
- Two n-component links L_1 and L_2 in S^3 are concordant if their components are concordant by n disjoint smooth annuli.
- An n-component link L in S^3 is slice if it bounds n smooth, disjoint, properly embedded disks in B^4.

Proposition

A knot (or link) $K \subset S^3$ is slice if and only if it is concordant to the unknot (or unlink).
When is a link trivial modulo concordance?

For oriented links $L \subset S^3$, linking number is one of the first tools we use to detect nontrivial links.
When is a link trivial modulo concordance?

For oriented links $L \subset S^3$, linking number is one of the first tools we use to detect nontrivial links.

Example

![Link Diagram]
When is a link trivial modulo concordance?

For oriented links $L \subset S^3$, linking number is one of the first tools we use to detect nontrivial links.

Example

(a) $lk(K, J) = 1$
When is a link trivial modulo concordance?

For oriented links $L \subset S^3$, linking number is one of the first tools we use to detect nontrivial links.

Example

(a) $lk(K, J) = 1$
When is a link trivial modulo concordance?

For oriented links $L \subset S^3$, linking number is one of the first tools we use to detect nontrivial links.

Example

(a) $lk(K, J) = 1$

(b) $lk(K, J) = 0$ so ...?
Fact:

If L is an n-component oriented link with L_i the 0-framed longitude of the i^{th} component of L and $G = \pi_1(S^3 \setminus \nu(L), \ast)$, then

$$[L_i] = \Sigma_{i=1}^{n} \text{lk}(L_i, L_j) \cdot x_i \in H_1(S^3 \setminus \nu(L)) = G/[G,G]$$

where x_i represents the i^{th} meridian.
Fact:

If \(L \) is an \(n \)-component oriented link with \(L_i \) the 0-framed longitude of the \(i^{th} \) component of \(L \) and \(G = \pi_1(S^3 \setminus \nu(L), \ast) \), then

\[
[L_i] = \sum_{i=1}^{n} \text{lk}(L_i, L_j) \cdot x_i \in H_1(S^3 \setminus \nu(L)) = G/[G, G]
\]

where \(x_i \) represents the \(i^{th} \) meridian.

Question:

What if you look at the image of this longitude in a different quotient of \(G \)?
Linking number in the context of groups

Recall:

The lower central series of a group G is defined recursively by $G_1 = G$, $G_{n+1} = [G_n, G]$.

Theorem (Casson '75)

If L_1 and L_2 are concordant links whose groups are G and H, then G/G^q and H/H^q are isomorphic for all q.

Motivating Idea: Look at the image of a longitude L_i inside the quotient G/G^q!
Linking number in the context of groups

Recall:
The lower central series of a group G is defined recursively by $G_1 = G$, $G_{n+1} = [G_n, G]$.

Theorem (Casson ’75)
If L_1 and L_2 are concordant links whose groups are G and H, then G/G_q and H/H_q are isomorphic for all q.
Recall:
The lower central series of a group G is defined recursively by $G_1 = G$, $G_{n+1} = [G_n, G]$.

Theorem (Casson ’75)
If L_1 and L_2 are concordant links whose groups are G and H, then G/G_q and H/H_q are isomorphic for all q.

Motivating Idea:
Look at the image of a longitude L_i inside the quotient G/G_q!
Concordance data from the lower central series

Notice:
If $L \subset S^3$ is an n-component link, then $H_1(S^3 \setminus \nu(L)) = G/[G, G] = \mathbb{Z}^n$ and the n-component unlink has $\pi_1(S^3 \setminus \nu(U), \ast) \cong F(n)$.
Concordance data from the lower central series

Notice:

If \(L \subset S^3 \) is an \(n \)-component link, then \(H_1(S^3 \setminus \nu(L)) = G/[G,G] = \mathbb{Z}^n \)

and the \(n \)-component unlink has \(\pi_1(S^3 \setminus \nu(U),\ast) \cong F(n) \).

To compute higher order linking numbers (called Milnor’s invariants) back in ‘54:

Find clever presentation of \(G/G_q \).

Write \(i \)th longitude modulo \(G_q \) as a word in meridians (one for each component).

Use the Magnus embedding to map this word to a power series ring in \(n \) non-commuting variables and read off coefficients of degree \(q-1 \) terms modulo coefficients of lower order terms.
Notice:

If $L \subset S^3$ is an n-component link, then $\mathbb{H}_1(S^3 \setminus \nu(L)) = G/[G, G] = \mathbb{Z}^n$
and the n-component unlink has $\pi_1(S^3 \setminus \nu(U), *) \cong F(n)$.

To compute higher order linking numbers (called Milnor’s invariants) back in ‘54:

1. Find clever presentation of G/G_q.

Notice:

If $L \subset S^3$ is an n-component link, then $H_1(S^3 \setminus \nu(L)) = G/[G, G] = \mathbb{Z}^n$ and the n-component unlink has $\pi_1(S^3 \setminus \nu(U), *) \cong F(n)$.

To compute higher order linking numbers (called Milnor’s invariants) back in ‘54:

1. Find clever presentation of G/G_q.
2. Write i^{th} longitude modulo G_q as a word in meridians (one for each component).
Concordance data from the lower central series

Notice:
If $L \subset S^3$ is an n-component link, then $H_1(S^3 \setminus \nu(L)) = G/[G, G] = \mathbb{Z}^n$ and the n-component unlink has $\pi_1(S^3 \setminus \nu(U), *) \cong F(n)$.

To compute higher order linking numbers (called Milnor’s invariants) back in ‘54:

1. Find clever presentation of G/G_q.
2. Write i^{th} longitude modulo G_q as a word in meridians (one for each component).
3. Use the Magnus embedding to map this word to a power series ring in n non-commuting variables and read off coefficients of degree $q - 1$ terms modulo coefficients of lower order terms.
Concordance data from the lower central series

Notice:
If $L \subset S^3$ is an n-component link, then $H_1(S^3 \setminus \nu(L)) = G/[G, G] = \mathbb{Z}^n$ and the n-component unlink has $\pi_1(S^3 \setminus \nu(U), *) \cong F(n)$.

To compute higher order linking numbers (called Milnor’s invariants) back in ‘54:

1. Find clever presentation of G/G_q.
2. Write i^{th} longitude modulo G_q as a word in meridians (one for each component).
3. Use the Magnus embedding to map this word to a power series ring in n non-commuting variables and read off coefficients of degree $q - 1$ terms modulo coefficients of lower order terms.
Concordance data from the lower central series

Rough definition (Milnor ‘54)

The Milnor invariants of an n-component link $L \subset S^3$ with link group G are a set of integers

$$\bar{\mu}_L(I) \in \mathbb{Z}$$

with $I = (i_1...i_k)$ and $i_j \in \{1, ..., n\}$ detecting when G/G_q stops being isomorphic to F/F_q where F is the rank n free group.
Concordance data from the lower central series

Rough definition (Milnor ‘54)

The Milnor invariants of an n-component link $L \subset S^3$ with link group G are a set of integers

$$\bar{\mu}_L(I) \in \mathbb{Z}$$

with $I = (i_1 \ldots i_k)$ and $i_j \in \{1, \ldots, n\}$ detecting when G/G_q stops being isomorphic to F/F_q where F is the rank n free group.

- $\bar{\mu}_L(ij) = lk(L_j, L_i)$

Miriam Kuzbary (Rice University) Knot Conc. Invt. in $S^2 \times S^1$'s December 14, 2018 7 / 20
Concordance data from the lower central series

Rough definition (Milnor ‘54)

The Milnor invariants of an n-component link $L \subset S^3$ with link group G are a set of integers

$$\bar{\mu}_L(I) \in \mathbb{Z}$$

with $I = (i_1...i_k)$ and $i_j \in \{1, ..., n\}$ detecting when G/G_q stops being isomorphic to F/F_q where F is the rank n free group.

- $\bar{\mu}_L(ij) = lk(L_j, L_i)$
- $\bar{\mu}_L(ijk) = \text{triple linking number}$

$$\bar{\mu}_L(ijk) = 1$$
Why are $\bar{\mu}$-invariants useful?

- (Milnor ‘54) $\bar{\mu}_L(I)$ is a link homotopy invariant for each I with non-repeating indices.
Why are $\bar{\mu}$-invariants useful?

- (Milnor ‘54) $\bar{\mu}_L(I)$ is a link homotopy invariant for each I with non-repeating indices.
- (Casson ‘75) $\bar{\mu}_L(I)$ is a link concordance invariant for each I.

Why are $\bar{\mu}$-invariants useful?

- (Milnor ‘54) $\bar{\mu}_L(I)$ is a link homotopy invariant for each I with non-repeating indices.
- (Casson ‘75) $\bar{\mu}_L(I)$ is a link concordance invariant for each I.
- (Turaev ‘79, Porter ’80) $\bar{\mu}_L(I)$ can be computed by evaluating Massey products in $H^1(S^3 \setminus \nu(L))$ on individual boundary components.
Why are $\bar{\mu}$-invariants useful?

- (Milnor ’54) $\bar{\mu}_L(I)$ is a link homotopy invariant for each I with non-repeating indices.
- (Casson ’75) $\bar{\mu}_L(I)$ is a link concordance invariant for each I.
- (Turaev ’79, Porter ’80) $\bar{\mu}_L(I)$ can be computed by evaluating Massey products in $H^1(S^3 \setminus \nu(L))$ on individual boundary components.
- (Cochran ’90) The first non-zero $\bar{\mu}_L(I)$ (and thus, the first q for which G/G_q is not isomorphic to F/F_q) can be computed using intersection theory.
Computing $\bar{\mu}_L(I)$

Example

We can detect non-zero Milnor's invariants by intersecting surfaces and computing linking numbers of the intersection curves.
Computing $\bar{\mu}_L(I)$

Example

We can detect non-zero Milnor’s invariants by intersecting surfaces and computing linking numbers of the intersection curves.

Build a surface system $(\mathcal{C}, \mathcal{V})$

(a) $\{C'(x), C'(y)\} \in \mathcal{C}$
Computing $\bar{\mu}_L(I)$

Example

We can detect non-zero Milnor’s invariants by intersecting surfaces and computing linking numbers of the intersection curves.

Build a surface system $(\mathcal{C}, \mathcal{V})$

(a) $\{C(x), C(y)\} \in \mathcal{C}$

(b) $V(x) \in \mathcal{V}$
Computing $\bar{\mu}_L(I)$

Example

We can detect non-zero Milnor’s invariants by intersecting surfaces and computing linking numbers of the intersection curves.

Build a surface system (C, V)

(a) $\{C(x), C(y)\} \in C$

(b) $V(x) \in V$

(c) $V(y) \in V$
Computing $\bar{\mu}_L(I)$

Throw intersection curves in \mathcal{C}

$V(x) \cap V(y)$ in a simple closed curve $c(xy)$.
Computing $\tilde{\mu}_L(I)$

Throw intersection curves in C

$V(x) \cap V(y)$ in a simple closed curve $c(xy)$.

Compute pairwise linking numbers of curves in C

$lk(C(xy), C^+(xy)) = -1$
Computing $\bar{\mu}_L(I)$

Throw intersection curves in C

$V(x) \cap V(y)$ in a simple closed curve $c(xy)$.

Compute pairwise linking numbers of curves in C

$\text{lk}(C(xy), C^+(xy)) = -1$ which indicates (by work of Cochran) that L has a nonzero $\bar{\mu}_L(I)$ of weight $|I| = 4$ (and thus G/G_5 is not isomorphic to F/F_5).
Computing $\bar{\mu}_L(I)$

Throw intersection curves in C

$V(x) \cap V(y)$ in a simple closed curve $c(xy)$.

Compute pairwise linking numbers of curves in C

$lk(C(xy), C^+(xy)) = -1$ which indicates (by work of Cochran) that L has a nonzero $\bar{\mu}_L(I)$ of weight $|I| = 4$ (and thus G/G_5 is not isomorphic to F/F_5). If all possible linkings are trivial, run the process again.
Is there a version of this linking data for knots or links in other 3-manifolds?

Question:

For a knot or link $L \subset M$ where M is an oriented 3-manifold, can we similarly extract concordance data from quotients of $G = \pi_1(M \setminus \nu(K), \ast)$ by G_q?

Previous results:

(D. Miller '95) Defined Milnor’s invariants for knots homotopic to a singular fiber in a Seifert fiber space using covering spaces and combinatorial group theory.

(Heck '11) Defined a homotopy-theoretic version of Milnor’s invariants for knots in prime manifolds.

Idea:

Exploit surfaces to define analogue of first non-vanishing $\bar{\mu}_1(L)$.
Is there a version of this linking data for knots or links in other 3-manifolds?

Question:
For a knot or link $L \subset M$ where M is an oriented 3-manifold, can we similarly extract concordance data from quotients of $G = \pi_1(M \setminus \nu(K), *)$ by G_q?

Previous results:
- (D. Miller ’95) Defined Milnor’s invariants for knots homotopic to a singular fiber in a Seifert fiber space using covering spaces and combinatorial group theory.
- (Heck ’11) Defined a homotopy-theoretic version of Milnor’s invariants for knots in prime manifolds.
Is there a version of this linking data for knots or links in other 3-manifolds?

Question:
For a knot or link $L \subset M$ where M is an oriented 3-manifold, can we similarly extract concordance data from quotients of $G = \pi_1(M \setminus \nu(K), *)$ by G_q?

Previous results:
- (D. Miller ’95) Defined Milnor’s invariants for knots homotopic to a singular fiber in a Seifert fiber space using covering spaces and combinatorial group theory.
- (Heck ’11) Defined a homotopy-theoretic version of Milnor’s invariants for knots in prime manifolds.

Idea:
Exploit surfaces to define analogue of first non-vanishing $\bar{\mu}_L(I)$!
A half grope of class 3.
Realizing iterated commutators geometrically

A half grope of class 3.

Definition

A class n half-grope is a 2-complex made of $n - 1$ layers of surfaces.

1. The first layer is an oriented surface Σ_2.
Realizing iterated commutators geometrically

A half grope of class 3.

Definition

A class n half-grope is a 2-complex made of $n - 1$ layers of surfaces.

1. The first layer is an oriented surface Σ_2.
2. Exactly half of the generators in a symplectic basis for $H_1(\Sigma_2)$ bound surfaces Σ^i_3 where $1 \leq i \leq g(\Sigma_2)$.
Realizing iterated commutators geometrically

A half grope of class 3.

Definition

A class n half-grope is a 2-complex made of $n - 1$ layers of surfaces.

1. The first layer is an oriented surface Σ_2.
2. Exactly half of the generators in a symplectic basis for $H_1(\Sigma_2)$ bound surfaces Σ_3^i where $1 \leq i \leq g(\Sigma_2)$.
3. For each i, exactly half of the generators in a symplectic basis for $H_1(\Sigma_3^i)$...
The Dwyer number of a knot $K \subset \# S^2 \times S^1$

Definition (Dwyer ‘75, reformulation by Cochran-Harvey ‘07)

For a space X, $\Phi_n(X) \subset H_2(X)$ is the subgroup generated by homology classes which can be represented by maps of surfaces which are the first layer of an $n + 1$ half-grope.
The Dwyer number of a knot $K \subset \#^l S^2 \times S^1$

Definition (Dwyer ‘75, reformulation by Cochran-Harvey ‘07)

For a space X, $\Phi_n(X) \subset \text{H}_2(X)$ is the subgroup generated by homology classes which can be represented by maps of surfaces which are the first layer of an $n + 1$ half-grope.

Definition (K.)

Let K be a null-homologous knot in $\#^l S^2 \times S^1$. The Dwyer number of K is

$$D(K) = \max \{ q \mid \frac{\text{H}_2(\#^l S^2 \times S^1 \setminus K)}{\Phi_q(\#^l S^2 \times S^1 \setminus K)} = 0 \}.$$
Why would this be the right definition?
Why would this be the right definition?

Proposition (K.)

If K is a null-homologous knot in $\#^l S^2 \times S^1$ with $G = \pi_1(\#^l S^2 \times S^1 \setminus K, \ast)$, then $D(K) = q$ if and only if G/G_k is isomorphic to F/F_k for $k < q$ and G/G_q is not isomorphic to F/F_q.
Why would this be the right definition?

Proposition (K.)

If K *is a null-homologous knot in* $\#^1 S^2 \times S^1$ *with* $G = \pi_1(\#^1 S^2 \times S^1 \setminus K, *)$, *then* $D(K) = q$ *if and only if* G/G_k *is isomorphic to* F/F_k *for* $k < q$ *and* G/G_q *is not isomorphic to* F/F_q.

Theorem (K.)

If K *is a null-homologous knot in* $\#^1 S^2 \times S^1$ *then* $D(K) \geq q$ *if and only if the longitude of* K *lies in* G_{q-1}.
Why would this be the right definition?

Proposition (K.)

If K is a null-homologous knot in $\#^1 S^2 \times S^1$ with $G = \pi_1(\#^1 S^2 \times S^1 \setminus K, \star)$, then $D(K) = q$ if and only if G/G_k is isomorphic to F/F_k for $k < q$ and G/G_q is not isomorphic to F/F_q.

Theorem (K.)

If K is a null-homologous knot in $\#^1 S^2 \times S^1$ then $D(K) \geq q$ if and only if the longitude of K lies in G_{q-1}.

Theorem (K.)

$D(K)$ is an invariant of concordance in $(\#^1 S^2 \times S^1) \times I$.
Properties of $D(K)$.

Example

A knot $K \subset S^1 \times S^2$ with $D(K) = 4$
Properties of $D(K)$.

Example

A knot $K \subset S^1 \times S^2$ with $D(K) = 4$

- If every homology class in $\mathrm{H}_2(\#^lS^2 \times S^1 \setminus K)$ can be represented by a half-grope of arbitrary class, we say $D(K) = \infty$
Properties of $D(K)$.

Example

A knot $K \subset S^1 \times S^2$ with $D(K) = 4$

- If every homology class in $H_2(\#^1 S^2 \times S^1 \setminus K)$ can be represented by a half-grope of arbitrary class, we say $D(K) = \infty$.
- If K is the unknot, $D(K) = \infty$.
Properties of $D(K)$.

Example

A knot $K \subset S^1 \times S^2$ with $D(K) = 4$

- If every homology class in $H_2(\#^1 S^2 \times S^1 \setminus K)$ can be represented by a half-grope of arbitrary class, we say $D(K) = \infty$.
- If K is the unknot, $D(K) = \infty$.
- $3 \leq D(K) \leq \infty$.
$D(K)$ behaves like first non-vanishing $\overline{\mu}_L(I)$.

Theorem (K.)

If K is a null-homologous knot in $\#^1 S^2 \times S^1$ and $D(K) = q$, then the first non-vanishing Massey product in $H^1(\#^1 S^2 \times S^1 \setminus K, \ast)$ is weight q.
$D(K)$ behaves like first non-vanishing $\overline{\mu}_L(I)$.

Theorem (K.)

*If K is a null-homologous knot in $\#^1S^2 \times S^1$ and $D(K) = q$, then the first non-vanishing Massey product in $H^1(\#^1S^2 \times S^1 \setminus K, \ast)$ is weight q.***

Theorem (K.)

There is an infinite family $\{M_i\}$ of null-homologous knots in $\#^1S^2 \times S^1$ which bound null-homologous disks in $\natural^1S^2 \times D^2$ and distinct in (stable) concordance.
What does this mean?

For knots in \(K \subset \#^3 S^1 \times S^2 \),

\[
K_3 \subset \#^3 S^1 \times S^2 \text{ with } D(K) = 4
\]

concordance \(\implies \) slice in \(\#^l S^2 \times D^2 \)

slice in \(\#^l S^2 \times D^2 \) \(\implies \) concordance.
What linking data is preserved by knotification
$L \leadsto \kappa(L)$?
What linking data is preserved by knotification $L \leadsto \kappa(L)$?

Proposition (Ozsváth-Szabó ‘03)

For every oriented n-component link $L \subset S^3$ we can construct a knot $\kappa(L) \subset \#^{n-1}S^1 \times S^2$ which is unique up to diffeomorphism of $\#^{n-1}S^1 \times S^2$ throwing one knot onto another. We call $\kappa(L)$ the knotification of L.

Miriam Kuzbary (Rice University)
Knot Conc. Invt. in $S^2 \times S^1$’s
December 14, 2018
18 / 20
What linking data is preserved by knotification $L \leadsto \kappa(L)$?

Proposition (Ozsváth-Szabó ‘03)

For every oriented n-component link $L \subset S^3$ we can construct a knot $\kappa(L) \subset \#^{n-1}S^1 \times S^2$ which is unique up to diffeomorphism of $\#^{n-1}S^1 \times S^2$ throwing one knot onto another. We call $\kappa(L)$ the knotification of L.

Matthew Hedden and I used the previous theorem in order to motivate the definition of a concordance group of knotified links.
What linking data is preserved by knotification $L \rightsquigarrow \kappa(L)$?

Proposition (Ozsváth-Szabó ‘03)

For every oriented n-component link $L \subset S^3$ we can construct a knot $\kappa(L) \subset \#^{n-1} S^1 \times S^2$ which is unique up to diffeomorphism of $\#^{n-1} S^1 \times S^2$ throwing one knot onto another. We call $\kappa(L)$ the knotification of L.

Matthew Hedden and I used the previous theorem in order to motivate the definition of a concordance group of knotified links.

Theorem (Hedden-K.)

If a $L \subset S^3$ is an n-component link with first non-vanishing $\overline{\mu}_L(I)$ invariant weight $rn + 1$, then $D(\kappa(L)) \geq r + 1$.
Future Goals

- Classify Dwyer number for knots and links in other 3-manifolds.
- Construct a version with rational coefficients to deal with knots in 3-manifolds with torsion.
- Identify higher order linking data within the link Floer complex (Gorsky-Liu-Moore '18 recovered the Sato-Levine invariant $\mu(1122)$ for 2-component links).
Future Goals

- Classify Dwyer number for knots and links in other 3-manifolds.
Future Goals

- Classify Dwyer number for knots and links in other 3-manifolds.
- Construct a version with rational coefficients to deal with knots in 3-manifolds with torsion.
Future Goals

- Classify Dwyer number for knots and links in other 3-manifolds.
- Construct a version with rational coefficients to deal with knots in 3-manifolds with torsion.
- Identify higher order linking data within the link Floer complex (Gorsky-Liu-Moore ‘18 recovered the Sato-Levine invariant $\overline{\mu}(1122)$ for 2-component links).
Future Goals

- Classify Dwyer number for knots and links in other 3-manifolds.
- Construct a version with rational coefficients to deal with knots in 3-manifolds with torsion.
- Identify higher order linking data within the link Floer complex (Gorsky-Liu-Moore ‘18 recovered the Sato-Levine invariant $\overline{\mu}(1122)$ for 2-component links).
Thank you!