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Abstract

We develop a fully Bayesian tracking algorithm with the purpose of
providing classification prediction results that are unbiased when applied
uniformly to individuals with differing sensitive variable values; e.g., of
different races, sexes, etc. Here, we consider bias in the form of group-
level differences in false prediction rates between the different sensitive
variable groups. Given that the method is fully Bayesian, it is well suited
for situations where group parameters or regression coefficients are dy-
namic quantities. We illustrate our method, in comparison to others, on
simulated datasets and two real-world datasets.

1 Introduction

Algorithmic scoring is employed in a variety of decision making situations in-
cluding parole and bail [9, 3], loan approval [19], and credit scoring [27]. In
the case of bail decisions and the well-known COMPAS algorithm, false positive
rates are much higher for African-American defendants compared to Caucasian
[9]. Recently a number of approaches have been introduced to improve fairness
of machine learning algorithms. In [11], disparate group thresholds on logis-
tic regression predictions are used to improve fairness post model training. In
[15] the authors transform input features to achieve independence of predictions
from group membership. Of particular relevance for us is the work of [29, 30],
in which a penalized loss is used in training in an effort to match false positive
and negative rates across groups; this particular method will be discussed in
more detail below.

A number of fairness-aware forecasting methods have been introduced in the
literature specifically for forecasting recidivism. In [4], the authors consider a
convex surrogate loss where the step function representing the decision at the
cutoff is replaced by a linear approximation (simply the score itself). Fairness
can also be encouraged by post-processing forecasting scores [28]. Other work
has emphasized interpretability of recidivism forecasts (for example through
super-sparse integer models), which may be a more immediately achievable goal
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[23, 26]. Research has shown that recidivism forecasts utilizing limited fea-
ture sets can under-perform human decision making [9], however algorithmic
forecasts outperform humans when the feature set is expanded [12]. In all of
these studies offline training is used and predictions are evaluated in batch on
a test set. Furthermore, these methods do not usually quantify uncertainty in
estimates of fairness or disparate misclassification.

In this paper we introduce a method for mitigating disparate misclassifi-
cation between groups where the distributions of covariates or other relevant
parameters may be changing over time and need to be tracked. Under this
scenario, a fairness-aware algorithm trained offline may deviate from fair pre-
dictions over time due to the changing distribution of the data. We therefore
propose a Bayesian tracking method that will estimate changing covariate and
outcome probability distributions in real-time and dynamically modify deci-
sions to mitigate disparate misclassification in predictions. The method has the
additional benefit of allowing for uncertainty quantification in fairness-aware
classification. To date Bayesian approaches to fairness have been limited to of-
fline studies [8, 24] and to our knowledge this is the first to consider the Bayesian
fairness tracking problem. We also note that there has been recent research on
dynamic logistic regression with Bayesian variable selection [1], however such
research has not addressed the question of fairness in dynamic logistic classifi-
cation.

There are many possible domains where algorithmic decisions may need to
be made sequentially under changes in the underlying distribution of the data.
For example, issues of bias and fairness may arise in other criminal justice appli-
cations beyond recidivism, parole, and bail decisions, including traffic stops and
hotspot policing based on spatial crime forecasts. These scenarios are known to
present complex spatial-temporal dynamics with potential feedback [14, 5, 18].
The methodology may also apply to growth stage technology companies ex-
panding into new geographic regions and customer segments. For example, a
peer-to-peer lending company may benefit from a sequential Bayesian approach
to predicting default on loans. Bias of lending decisions may change as such
a company grows from an early adopter customer base into newer and larger
markets. More generally, since fair prediction algorithms are of specific impor-
tance to social systems and applications, and societal changes can sometimes
occur rather abruptly – in the forms of elections, new laws, rapid adoption or
abandonment of fads, etc – it seems prudent to develop prediction algorithms
that are able to handle such changes gracefully should they arise, while still
being able to ensure fairness of these predictions.

Finally, it is known [31] that classification algorithms can lead to outcomes
that display certain kinds of bias when the distribution of feature vectors varies
from one group to the next, even if the algorithm does not explicitly include
knowledge of the group membership when making its classifications. One could
attempt to counteract this by having the algorithm explicitly take into account
the group membership of the individual in question when making a prediction
or classification, for the purposes of removing the implicit bias. However, this
is often deemed as undesirable, and in some real-use cases, may be illegal. In-
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stead, we develop a tracking algorithm that need not (and probably should not)
explicitly take into account an individual’s group membership in order to make
the prediction, but instead applies the exact same method uniformly to all in-
dividuals, while nonetheless attempting to guarantee similar statistical results
across groups.

The outline of the paper is as follows. In Section 2 we present the formulation
of the problem that we study and the details of our Bayesian algorithm. In
Section 3 we demonstrate the effectiveness of the approach on synthetic data
when ground truth is known and in Section 4 we illustrate the application of the
methodology to the well-known ProPublica COMPAS dataset and a dataset on
traffic stops. We discuss our results and directions for future research in Section
5.

2 Methodology

Our algorithm shall accept as input streaming, N dimensional feature data xi,
where subscript i denotes the time at which this specific data point arrives
for processing; we assume that no two individual’s data arrives simultaneously,
so i also implicitly references individuals as well. It is not strictly necessary
that the data actually be generated at different, well-ordered points in time.
However, as a tracking algorithm, one of the strengths of this method is that it
is built to handle data that is dynamically evolving in some way, so we cast the
problem in this light. Since our main concern here is providing an algorithm
that is unbiased (in the sense of matched false positive or negative rates) when
applied to data from individuals of different groups, we stipulate that each
feature vector xi is accompanied by a categorical value zi that indicates the
value of a sensitive variable (sex, race, age, etc.) for the individual i. We will
assume that feature vectors for individuals with specific sensitive variable value
z are drawn from a probability density Dz(x), which may be changing in time;
this will be discussed in more detail below. The algorithm will then produce
binary classifications ŷi ∈ {0, 1} for each individual; depending on the domain in
question, this classification could correspond to a belief that the individual will
or will not default on a loan, commit a crime in the near future, or soon become
homeless, among many other possibilities. We differentiate here between the
predicted classifications ŷi and the true classifications yi, which are assumed
to derive from some probability mass function that depends on xi, potentially
zi, and some generally unknown parameters. Note that in some domains, the
true classifications may not always be available, or even in some sense exist,
or may only become available after some time has passed after the predicted
classification is made. For the purposes of this study, we simply assume that
yi exists and is known immediately after the predicted value ŷi is generated.
Crucially, we will insist that the classifications our algorithm makes for the
different sensitive variable groups must approximately match in terms of false
prediction rates, which is one common choice for these kinds of algorithms, as
mentioned above. But, we note that other bias/fairness metrics may be used
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as alternatives to this. See [16] for a review of fair machine learning, including
a summary of the different metrics used in practice, and [6] for a discussion of
the tradeoffs.

The main point of comparison for our model will be the method of Zafar et
al. [29, 30]. This is largely because the Zafar method uses the same notion of
bias as we have chosen here – disparity in false prediction rates between groups
– and also uses (but does not specifically depend on) a logistic classifier, which
we will also adopt below. Given the same inputs as described above, the Zafar
method is

minimize: −
N∑
i=1

log [P (yi|θ,xi)]

subject to: |Cov(z, gθ(y,x))| ≤ cg and |Cov(z, fθ(y,x))| ≤ cf , (1)

where P (yi|θ,xi) is given in (6) below for a logistic classifier and z is the sensitive
variable. Here, gθ(y,x) and fθ(y,x) are functions that serve as measures of false
negatives and false positives, respectively, and are given by:

gθ(y,x) = min (0, (2y − 1)ydθ(x)) , (2)

fθ(y,x) = min (0, (1− y)(2y − 1)dθ(x)) , (3)

where dθ(x) is the signed distance from the decision boundary (dictated by θ)
for an individual with feature vector x, such that if dθ(x) ≥ 0 the person is
classified as positive (ŷ = 1), and otherwise is classified as negative (ŷ = 0).
The parameters cg and cf serve to limit potential covariance between sensitive
variable values and false predictions, hence attempting to equalize false predic-
tions between different groups, and are chosen such that c = mcu, where cu is
the value of the given covariance when using an unconstrained classifier, and
m ≤ 1 is a parameter chosen by the user. Whereas the Zafar method solves
the optimization problem in (1) on a fixed training data set, our goal is to de-
velop a dynamic method for tracking and mitigating disparate false prediction
rates that will be updated after each new observation, thus allowing for situa-
tions where the underlying covariate or classifier distributions are changing over
time.

A second point of comparison we analyze is a simple, online version of the
model detailed in [4, 17]. The model, which we will refer to as the Berk model,
consists of a linear regression, yi = θTxi, estimated using a convex surrogate
loss where the step function representing the decision at the cutoff is replaced
by a linear approximation (simply the score itself):

MSE + λ

( ∑
xi∈S00

θTxi
|S00|

−
∑

xi∈S10

θTxi
|S10|

)2

. (4)

Here S00 is the set of individuals of sensitive variable group 0 in the negative
label class (yi = 0) and S10 is the set of individuals with sensitive variable in
group 1 in the negative label group. The penalty term encourages the average
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scores over the negative class (yi = 0) to be matched across the sensitive variable
(as λ increases). Note, then, that this method does not attempt to match
results for those in the positive class, though a similar penalty to encourage
matched false negative rates or precision could be easily added. Because the
loss function in (4) is quadratic, there is an analytical solution [17]. The model
as originally specified in [4] is not dynamic, but to make it so, we estimate the
model parameters iteratively over sequential batches of data (throughout the
paper we use a batch size of 500 samples). Let bi be the batch index containing
data point i. Letting θb be the parameters estimated by minimizing Equation
4 from samples in batch b, the dynamic update is then θb = ρθb−1 + (1− ρ)θb.
The prediction for data point i is then made using parameters θbi−1 (we do not
make predictions for those points in the first batch).

The remainder of this section is broken into three parts. Our main contri-
bution is in subsection 2.2, which presents a new method to remove disparate
misclassification between groups in a dynamic Bayesian context. This method
will require some way to produce classifications of individuals based on their
feature vectors, and some way to estimate the feature vector distributions of
individuals based on their sensitive variable value. In subsections 2.1 and 2.3,
we discuss how a Bayesian classifier and Bayesian feature vector tracker may be
implemented to accomplish these tasks, respectively. It is important to empha-
size, though, that the specific methods we use in these two sections are not of
fundamental importance to the main contribution here, and that our method for
removing classification bias could be paired with other Bayesian classification
and/or feature vector trackers, with only relatively small changes in the bias
removal algorithm. That said, the choices made below are helpful in that the
posterior distributions will all be assumed normal, allowing for some simplifi-
cations of various integrals that will appear. We note that in many real-world
scenarios the features themselves, and/or the posterior distributions of param-
eters, may violate the normal assumption we make in deriving the algorithm.
However, we find that our Bayesian logistic tracker works well in practice on
the synthetic and real data examples we consider in this paper.

2.1 Bayesian logistic tracker

To perform the classification task, we employ a Bayesian logistic tracker. This
choice is made partly for simplicity, since there are well known methods for
Bayesian logistic tracking [21, 1]. Further, this provides for a more direct com-
parison to the Zafar algorithm described above. However, this portion of the
algorithm could be accomplished by an alternative classifier if desired, so long
as it can be implemented in a Bayesian way that results in a distribution over
some kind of parameter space that is used to make predictions. Since this is not
the main contribution of this work, which is in the method for removing bias
from the classifier, we do not test any alternate classifiers here; this is an area
where future work may make a contribution.

The logistic model assumes that the true classifications yi are Bernoulli
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random variables with probability

p(xi|θi) =
eθ

T
i xi

1 + eθ
T
i xi

, (5)

where θi is an N dimensional vector of feature weights at time i. The probability
of observing a specific yi for an individual with feature vector xi is given by

P (yi|θi,xi) = p(xi|θi)yi (1− p(xi|θi))1−yi . (6)

Using this equation, the classifier algorithm will attempt to recursively generate
an estimate for θi, in the form of a probability distribution, given a sequence of
observations {xj} and {yj} for j ≤ i, as described below.

Noting that the model (6) is nonlinear, two prominent possibilities to per-
form the tracking are the Unscented Kalman filter and the Extended Kalman
filter. For our purposes, we employ an Extended Kalman filter, though we make
no claim of its superiority over the Unscented Kalman filter, other than its rel-
ative speed in our particular case. The resulting classifier has been presented
before (see [20] for one such instance), but we briefly provide its derivation here,
largely to provide an opportunity to define several key variables and concepts
of our algorithm.

Let us now assume that the prior belief over θi before incorporating observa-
tion yi is a multivariate normal with mean θi|i−1 and covariance matrix Ci|i−1,

denoted N (θi|θi|i−1, Ci|i−1). We further insist that the posterior belief over θi
after incorporating observation yi is a multivariate normal with mean θi and
covariance matrix Ci, N (θi|θi, Ci) . Under these assumptions, Bayes’ rule, with
logarithms applied to all terms, gives

− 1

2

(
θi − θi

)T
C−1
i

(
θi − θi

)
= yi ln [p(xi|θi)] +

(1− yi) ln [1− p(xi|θi)]−
1

2

(
θi − θi|i−1

)T
C−1
i|i−1

(
θi − θi|i−1

)
+D , (7)

where D is a constant unrelated to θi. We now Taylor expand the logarith-
mic terms on the right hand side of (7) up to second order around the point
θi = θi|i−1 and, after some algebraic manipulation, obtain our iterative update
equations by matching the linear and quadratic terms in θi on both sides of the
equation, finding

C−1
i = C−1

i|i−1 + hih
T
i , (8)

θi = θi|i−1 − Cifi (9)

where

fi = (−1)yixip
(
(−1)yixi|θi|i−1

)
, (10)

hi = xip
(
(−1)1−yixi

∣∣ θi|i−1) exp
(

(−1)yiθ
T

i|i−1xi/2
)
. (11)
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Because of the special form of the matrix used to update C−1
i in (8), the equation

(8) can be computed very efficiently without the need for any matrix inversion
by using the rank-one update rule

Ci = Ci|i−1 −
Ci|i−1hih

T
i Ci|i−1

1 + hTi Ci|i−1hi
. (12)

The tracking algorithm is completed by providing a model for the dynamics
of θi, allowing one to find the prior parameters θi+1|i and Ci+1|i for the next ob-

servation from the posterior parameters θi and Ci from the previous observation.
For our purposes, and lacking any more informed model, we simply make the
common choice that θi is undergoing a simple random walk θi+1 = θi+N (0, Q);
this choice maintains normality of the probability distribution. Then we simply
have θi+1|i = θi and Ci+1|i = Ci +Q. The value of covariance matrix Q affects
how well the algorithm is able to track changes over time, with too high a value
causing the tracked value to fluctuate too rapidly and too low a value causing
the system to adjust too slowly to changes in the tracked variable.

2.2 Bias estimation and elimination

Given our streaming data and the output of our Bayesian tracker (9)-(12), one
can construct predictions ŷi for the classifications yi by first computing the
expected probability for an individual with feature vector xi,

p(xi|θi|i−1, Ci|i−1) =

∫
RN

p(xi|θi)N (θi|θi|i−1, Ci|i−1)dθi , (13)

and then thresholding this probability by a value τ such that ŷi = 1 if p > τ and
ŷi = 0 if p < τ ; generally, and in the remainder of this work unless otherwise
explicitly stated, τ = 0.5. A simpler version of the integral above can be found
by first noting that p(xi|θi) depends only on the argument qi = θTi xi and
employing the well known property [25] that if θi ∼ N (θi|i−1, Ci|i−1), then

θTi xi ∼ N (θ
T

i|i−1xi,x
T
i Ci|i−1xi). Then we have

p(xi|θi|i−1, Ci|i−1) =

∫ ∞
−∞

eqi

1 + eqi
N (qi|θ

T

i|i−1xi,x
T
i Ci|i−1xi)dqi . (14)

The above integral has several known approximations that can be used to sim-
plify computation, and we have chosen to use the approximation from [7].

However, as previously mentioned, under many circumstances these predic-
tions will show bias in terms of false prediction rates when comparing between
those predictions made for individuals of differing sensitive variable values. For
example, consider the case in which the sensitive variable value zi may only
take one of two possible values, which we will simply choose to be 0 and 1
for convenience. Let us assume that the feature vectors xi for those individuals
with sensitive variable value 0 are well described by a probability density D0(xi)
and similarly D1(xi) for individuals with sensitive variable value 1. Then if we
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were to employ posteriors θi and Ci to make hypothetical predictions for more
individuals at time i, the expected instantaneous false negative rate and false
positive rate for sensitive variable value z, FNRi(z) and FPRi(z) respectively,
would be

FNRi(z) =

∫
RN 1p(xi|θi,Ci)<τ

p(xi|θi, Ci)Dz(xi)dxi∫
RN p(xi|θi, Ci)Dz(xi)dxi

, (15)

FPRi(z) =

∫
RN 1p(xi|θi,Ci)>τ

[1− p(xi|θi, Ci)]Dz(xi)dxi∫
RN [1− p(xi|θi, Ci)]Dz(xi)dxi

, (16)

where 1 is an indicator function. Similarly, the expected instantaneous accuracy
would be given by

ACCi(z) =

∫
RN

1p(xi|θi,Ci)>τ
p(xi|θi, Ci)Dz(xi)dxi +∫

RN

1p(xi|θi,Ci)<τ

[
1− p(xi|θi, Ci)

]
Dz(xi)dxi . (17)

It is important to note that discrepancies between the expected false predic-
tion rates for the two sensitive variable values can arise even if the posterior
distribution parameters θi and Ci are correctly specified; that is, even if they
themselves are not biased due to flawed data being used to estimate them. This
is simply due to the fact that D0(xi) and D1(xi) may differ [31].

If we assume that θi and Ci are indeed correct, but the false prediction rates
generated by using (15) and (16) are unequal between the two groups, then the
only way to possibly equalize the false prediction rates, which is our goal, is to
change the indicator function term present in the integrals above, which rep-
resents the prediction methodology. The method we propose to equalize false
positive and negative rates leverages a surrogate multivariate normal distribu-
tion with parameters Θi and Ci rather than the distribution with parameters
θi and Ci. The details of how we obtain these parameters are given below in
Equations 22 and 25. The intuition is that the posterior distribution of Θi and
Ci will concentrate probability density in a subset of regions where the posterior
of θi and Ci is concentrated, but such that false positive and negative rates are
more closely matched across the sensitive variable groups.

Using these newly proposed parameters, then, our false prediction rates and
accuracy are

ˆFNRi(z) =

∫
RN 1p(xi|Θi,Ci)<τ

p(xi|θi, Ci)Dz(xi)dxi∫
RN p(xi|θi, Ci)Dz(xi)dxi

, (18)

ˆFPRi(z) =

∫
RN 1p(xi|Θi,Ci)>τ

[1− p(xi|θi, Ci)]Dz(xi)dxi∫
RN [1− p(xi|θi, Ci)]Dz(xi)dxi

. (19)
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ˆACCi(z) =

∫
RN

1p(xi|Θi,Ci)>τ
p(xi|θi, Ci)Dz(xi)dxi +∫

RN

1p(xi|Θi,Ci)<τ

[
1− p(xi|θi, Ci)

]
Dz(xi)dxi . (20)

It is important to note in these equations that the distribution with parameters
θi and Ci is still assumed to accurately indicate whether or not an individual will
exhibit yi = 0 or yi = 1, whereas the predicted value ŷi is made using our newly
proposed, ideally unbiased distribution. The goal then is to generate posterior
parameters Θi and Ci that reduce or eliminate differences in false prediction
rates, while still retaining some level of accuracy.

To detail how we accomplish this, we begin first by defining our precise
metric for measuring expected prediction bias at time i

∆i =

√
[ ˆFPRi(1)− ˆFPRi(0)]2 + [ ˆFNRi(1)− ˆFNRi(0)]2 , (21)

where our goal will be to make ∆i < ε for some chosen small ε value. Suppose,
then, that we possess some prior values for Θi|i−1 and Ci|i−1, which at the
beginning of the algorithm must be initialized in some way, presumably to the
same values as θ1|0 and C1|0. Given data point xi, yi, we will then use our
Bayesian classification tracker to update them, via

Ci = Ci|i−1 −
Ci|i−1HiH

T
i Ci|i−1

1 + HT
i Ci|i−1Hi

, (22)

Θi = Θi|i−1 − CiFi (23)

where

Fi = (−1)yixip
(
(−1)yixi|Θi|i−1

)
, (24)

Hi = xip
(
(−1)1−yixi

∣∣Θi|i−1) exp
(

(−1)yiΘ
T

i|i−1xi/2
)

; (25)

θi and Ci are also updated after this observation as described previously in (8)-
(9). Upon obtaining these new posterior values Θi and Ci, we then evaluate
(15)-(21). Importantly, at the end of this series of calculations we will find one
of two things. One possibility is that ∆i < ε, in which case the posteriors Θi

and Ci are accomplishing the goal of creating predictions with little or no bias
and the algorithm can simply proceed to the next observation without any need
to address classification bias at this time. The other possibility is that ∆i ≥ ε,
in which case the posteriors Θi and Ci are not accomplishing their intended
goal of creating unbiased classifications, and must be modified in some way in
order to meet this goal. We now detail how this modification is done.

First, we again recognize that Θi and Ci are parameters describing a mul-
tivariate normal distribution. Assuming we are dealing with the case where
the current such distribution of Θi and Ci causes our bias metric to exceed its
threshold, it must be true that the false positive and/or false negative rates differ
too substantially between the two groups. However, we hypothesize that there
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are some subregions where posterior probability density is concentrated that, if
they were the only regions of support when calculating p – that is, if the inte-
gral in (14), properly normalized, were only over those subregions and not all of
space – then the resulting bias metric would fall below its threshold. So, to con-
struct our prior distribution for the next step of the algorithm, we seek to alter
our current posterior distribution by retaining only those regions over which the
bias metric would be below its threshold, and rejecting the rest of the distribu-
tion. In practice, we achieve this via Monte Carlo sampling. Specifically, we first
sample from the current posterior multivariate normal distribution described by
N (θi|Θi,Ci), MΘ potential predictor coefficient vectors, each denoted by a Θ̃ij

where index j runs from 1 to MΘ. Then for each of these sampled predictor
coefficient vectors j we calculate ˆFNRij(z) and ˆFPRij(z) using the right hand
side of (19)-(18) but with the indicator function replaced with 1p(xi|Θ̃ij); that
is, we use the sampled predictor coefficient vectors to make the hypothetical
predictions. We can then calculate the bias ∆ij for each sampled vector, re-
taining those samples whose ∆ij < ε and rejecting those whose ∆ij ≥ ε. After
processing all MΘ samples in this way, the remaining, non-rejected samples all
represent regions of the posterior that lead to unbiased predictions.

However, we note that it is easy to construct predictor coefficient vectors that
yield classifications that are completely unbiased, but that have low predictive
accuracy. Specifically, the predictor coefficient vector Θ̃ij = 0 will automatically
classify all individuals as positive (assuming τ = 0.5), which will lead to a false
positive rate of 1 and a false negative rate of 0 for both groups, making the
predictions unbiased via our metric. And, depending on what the initial values
for the priors of the various tracking parameters are at the beginning of the
algorithm, this particular predictor vector may be quite likely to be chosen in
our sampling method. But (depending on the nature of the true classifications)
this particular unbiased classification will generally lead to low accuracy, in
comparison with the standard, biased classifier. So, we further restrict our
unbiased samples to those whose predictive accuracy ˆACCij , which is calculated
via the right hand side of (20) but with the indicator functions replaced with
1p(xi|Θ̃ij), lies above some threshold in relation to the predictive accuracy of the

standard, biased classifier in (17). Specifically, we require that

min
z

[
ˆACCij(z)/ACCi(z)

]
> α , (26)

where 0 < α < 1. In our various experiments (detailed below), we have found
that the obtained solutions depend on the choice of α (for a given ε) in a rela-
tively straightforward way. Specifically, there appear to be roughly two transi-
tion points for the solutions, call them αL and αH , with αL < αH . For values
of α < αL, solutions tend toward the trivially unbiased answer of classifying
all individuals as positive (or possibly negative), with generally low accuracy.
With α > αH , there generally are no fair predictor coefficients that exhibit the
required accuracy, in which case we abort the algorithm and simply state that it
was unable to attain the requested fairness and accuracy combination. Finally,
for αL < α < αH , the algorithm is able to find numerous predictor coefficient
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vectors that fit the required bias and accuracy constraints while retaining a
non-trivial classification of individuals, and importantly seems to be generally
independent of the specific α value used. These threshold α values can be found
via trial and error, which in our experience has been easy to do, given that
we have generally observed a significant separation between the two threshold
values.

Finally, after processing all MΘ samples both for lack of bias and desired
relative accuracy, the mean Θ

ε

i and covariance matrix Cεi for that subset meeting
these two criteria is computed, and we simply use those to construct our prior
for the next step in the tracker via Θi+1|i = Θ

ε

i and Ci+1|i = Cεi +Q. We see,
then, that our method involves tracking two (potentially) different coefficient
vector distributions using (8)-(12): the “true” distribution N (θi|θi, Ci) that is
never used to make predictions ŷ but is used to predict the current expected
bias level and accuracy, and the “unbiased” distribution N (θi|Θ

ε

i ,Cεi) that is
used to make predictions ŷ and is forced to produce a bias metric ∆ that is
below our threshold ε after every datapoint yi is assimilated via the Monte
Carlo sampling method described above, while retaining at least some relative
measure of accuracy.

Of course, the sampling method for constructing our unbiased distribution
involves evaluating the integrals in (19)-(20) for each of our MΘ potential pre-
dictor coefficient vectors, which is easier said than done. There are at least two
difficulties: the integral may be over a high dimensional space and the integrals
require the knowledge of Dz(xi). We deal with the first problem by performing
the integral via Monte Carlo methods, at this point assuming that estimates for
the distributions Dz(xi) are known; we will detail how these may be estimated
shortly. Specifically, we sample Mx feature vectors x̃k from each distribution Dz,
then for each sample we compute its corresponding p(x̃k|θi, Ci) and p(x̃k|Θ̃ij)
via (14) and (5), respectively. Then the integrals are approximated as

ˆFNRij(z) =

∑Mx

k=1 1p(x̃k|Θ̃ij)<τp(x̃k|θi, Ci)∑Mx

k=1 p(x̃k|θi, Ci)
, (27)

ˆFPRij(z) =

∑Mx

k=1 1p(x̃k|Θ̃ij)>τ

[
1− p(x̃k|θi, Ci)

]∑Mx

k=1

[
1− p(x̃k|θi, Ci)

] , (28)

ˆACCij(z) =
1

Mx

Mx∑
k=1

1p(x̃k|Θ̃ij)>τp(x̃k|θi, Ci) +

1

Mx

Mx∑
k=1

1p(x̃k|Θ̃ij)<τ

[
1− p(x̃k|θi, Ci)

]
; (29)

the integral within (17) is evaluated similarly.
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2.3 Bayesian feature tracker

The only remaining portion of our algorithm to describe is our method for esti-
mating the distributions Dz for the feature vectors x of individuals with sensitive
variable value z. Similarly to the classification portion of our algorithm, there
exist many methods of tracking evolving feature distributions from streaming
data. Since the particular method used is not the focus of our work, and in
theory any Bayesian tracker that allows one to estimate distributions of feature
vectors over time could be employed, we simply adopt a standard approach.
Noting that the N dimensional feature vectors will generally all have an entry
of 1 as their final component, allowing for a constant probability offset for all
individuals in the dataset if necessary (as is standard in logistic regression) the
distributions Dz are really N − 1 dimensional in our case. Then we assume
that the first N − 1 entries of each x for a given sensitive variable value z are
drawn from a multivariate normal distribution N (x|µz,i,Σz,i). The parameters
µz,i and Σz,i are themselves unknown, but we select their prior to be a normal-
inverse-Wishart distribution with hyperparameters mz,i|i−1, λz,i|i−1, Φz,i|i−1,
and νz,i|i−1; note that it is required that λz,i|i−1 > 0, νz,i|i−1 > N − 2, and
Φz,i|i−1 be a positive definite N−1×N−1 matrix. This choice is the conjugate
prior of the multivariate normal distribution assumed for the observations x, so
that a relatively simple Bayesian update rule for the posterior hyperparameters
is known:

λz,i = λz,i|i−1 + 1 (30)

mz,i =
λz,i|i−1mz,i|i−1 + xi

λz,i
(31)

Φz,i = Φz,i|i−1 +
λz,i|i−1

λz,i
(xi −mz,i|i−1)(xi −mz,i|i−1)T (32)

νz,i = νz,i|i−1 + 1 (33)

Given these posterior hyperparameters, the posterior predictive distribution
D̂z for x for sensitive variable value z is multivariate t:

D̂z(xi) = tνz,i−N+2

(
xi|mz,i,

λz,i + 1

λz,i(νz,i −N + 2)
Φz,i

)
. (34)

It is this posterior predictive distribution that is used to generate the samples
x̃k used in (27)-(29). For the multivariate t to have a finite mean and variance,
we need νz,i > N , which is more restrictive than the requirement above.

We complete the specification of the feature vector distribution tracker by
providing a means by which the posterior parameters’ values after step i are
used to construct the priors for step i+ 1. We use mz,i|i−1 = mz,i−1, Φz,i|i−1 =
Φz,i−1, and νz,i|i−1 = νz,i−1. Since λ effectively serves as a factor that weighs
how much the prior mean contributes to the posterior mean, and we are inter-
ested in scenarios where the mean may be evolving over time, we do not want
λ to continually increase after each observation, as (30) might indicate. Hence,
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we simply set λz,i|i−1 = β. If β is very small, then the estimated mean will
fluctuate rapidly with each new datapoint and potentially cause the tracker to
lose accuracy, whereas if β is very large then the mean will flucutate very little
potentially causing the tracker to have a long lag time between a true change in
mean and when that is detected. Generally, an intermediate value will provide
a compromise between these two extremes, allowing a true change in mean to
be detected relatively quickly, while not causing the mean to fluctuate by large
amounts between every datapoint.

We summarize the full algorithm in Algorithm 1, which sequentially updates
the posterior as new data is observed.

3 Results on Synthetic data

We first illustrate our method on synthetic datasets, both with static and dy-
namic parameters.

3.1 Static parameters

We use a low dimensional case of N = 3. The data is generated such that the
static mean of D0 is µ0 = [−1;−3] while for D1 we have µ1 = [2; 3]; both use Σ =
[5, 1; 1, 5]. To generate the simulated classifications yi, each individual’s zi is first
determined uniformly from {0, 1}, then xi is generated via the appropriate Dz,
then the dot product of this feature vector with the vector v = [1,−1] is taken,
such that qi = vxi. Then, if qi > 0, we let pi = 0.7, while if qi < 0, we let pi =
0.3. Finally, the true classification yi is Bernoulli with probability pi. Note, then,
that the true classifications are not generated via a logistic function, though the
feature vectors are in fact generated via multivariate normal distributions. We
generate 10, 000 such data points. Initial values for the various tracking variable
priors are θ1|0 = [0; 0; 0], C1|0 = 0.0001I3, mz,1|0 = [0; 0], λz,1|0 = β, Φz,1|0 = I2,
and νz,1|0 = N + 1. We use ε = 0.05, α = 0.85, Q = 0.00001I3, and β = 49 (this
value was chosen to accomplish the compromise in tracking mentioned above).
Plots in Fig. 1 show the evolution of the estimated values of θ, Θ, mz, and the
false prediction rates ˆFNR(z) and ˆFPR(z). The estimated covariance values are
Σ0 = [5.00, 0.98; 0.98, 5.05] and Σ1 = [5.11, 1.05; 1.05, 5.02] after all points have
been tracked.

Importantly, one can also determine the actual false prediction rates after
the fact, obtaining false positive rates 0.48 and 0.48 and false negative rates
0.28 and 0.28 for sensitive values z = 0 and z = 1, respectively, over the final
9000 data points (we only use these points to allow for some stabilization of the
algorithm before evaluating). These are clearly within the tolerance requested,
and match quite well to the estimated false prediction rates averaged over the
last 9000 data points, which give 0.50 and 0.50 for false positive rates and 0.30
and 0.30 for false negative rates. These essentially unbiased false prediction
rates should be compared to the false prediction rates one would obtain if no
bias elimination were employed (using a value of ε = 2), which are 0.62 and
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Algorithm 1 Bias reducing logistic regression tracking algorithm

Sequential Input: M feature vectors xi, sensitive variable values zi, and
true classifications yi; bias threshold ε, accuracy threshold α, covariance ma-
trix Q, and feature tracker sensitivity β
Initialize: priors θ1|0, C1|0, Θ1|0, C1|0, λz,1|0, mz,1|0, Φz,1|0, νz,1|0
for i = 1 : M do
Z ← zi
Find λZ,i, mZ,i, ΦZ,i, νZ,i using (30)–(33)
for z 6= Z do

Set posteriors λz,i, mz,i, Φz,i, νz,i to their current prior values
end for
Find Ci and θi using (9)–(12)
Find Ci and Θi using (22)–(25)
for all z do

Generate set of Mx feature vectors {x̃}z ∼ D̂z from (34)
Find ACCi(z) from (17) with integrals evaluated as in (29)

end for
Θ̃i0 ← Θi

for all z do
Compute ˆFNRi0(z) and ˆFPRi0(z) using (27)–(28)

end for
Compute ∆i0 using (21)
if ∆i0 < ε then

Θ
ε

i ← Θi, Cεi ← Ci
else

Generate set of MΘ coefficient vectors {Θ̃i} ∼ N (Θi,Ci)
for j = 1 : MΘ do

for all z do
Compute ˆFNRij(z), ˆFPRij(z), and ˆACCij(z) using (27)–(29)

end for
Compute ∆ij using (21)
if ∆ij ≥ ε or accuracy goal (26) is violated then

Remove entry j from set {Θ̃i}
end if

end for
Θ
ε

i ← mean
(
{Θ̃i}

)
, Cεi ← covariance

(
{Θ̃i}

)
end if
Set priors mz,i+1|i, Φz,i+1|i, νz,i+1|i and θi+1|i to their current posterior
values
Θi+1|i ← Θ

ε

i , Ci+1|i ← Cεi +Q, Ci+1|i ← Ci +Q, λz,i+1|i ← β
end for
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Figure 1: Plots of the tracked values of θ (top left), Θ
ε

(top right), mz (bottom
left, shown with the true values µz as dashed lines), and the estimated unbiased
false prediction rates ˆFNR(z) and ˆFPR(z) (bottom right) for static parameters
described in the text.
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0.23 for false positive rates and 0.11 and 0.46 for false negative rates. The
tradeoff of decreased bias is also a decrease in accuracy, however. With no bias
elimination, the accuracies are 0.69 and 0.67 for sensitive variable values 0 and
1, respectively, while our reduced-bias accuracies are 0.64 and 0.60.

The mean value of θ over the last 9000 points is [0.21,−0.21, 0.04], while the
average value of Θ

ε
is [0.30,−0.16, 0.05]. A standard logistic regression over this

set of data yields a coefficient vector [0.21,−0.22, 0.04] almost identical to the
mean of θ that we obtain, showing that our logistic tracker works as anticipated.
In comparison to our baseline methods, the results of our algorithm essentially
match perfectly with those of the Berk method with λ = 10. We also apply the
Zafar algorithm discussed previously to this dataset, with a covariance threshold
multiplicative factor of m = 0.0005. Here, we train the algorithm over the full
dataset, but only evaluate it over the last 9000 points, to put it on an equal
footing with our own algorithm. The results in this case are a coefficient vector
of [0.24,−0.14, 0.04], leading to false positive rates of 0.49 and 0.47, and false
negative rates of 0.26 and 0.29, with accuracies of 0.65 and 0.61. While certainly
less biased than the standard logistic classifier, the difference in false prediction
rates with the Zafar algorithm is certainly larger than in our case; consequently,
the accuracy is slightly higher than in our case. This is likely due to the fact that
our algorithm is directly attempting to equalize the false prediction rates, while
Zafar uses a proxy measure to achieve the same goal. Of course, our algorithm
is much slower than that of Zafar due to the several Monte Carlo steps involved.

3.2 Dynamic parameters

The scenario here is very similar to that used in the static parameter case above.
The exception is that, after the first 1000 data points, the means µ0 and µ1

begin to linearly drift with each new data point, such that the two values have
exactly swapped by the 10,000th data point. Specifically, we use µ0,i = [−1;−3]
and µ1,i = [2; 3] for i ≤ 1000 while µ0,i = [−1;−3] + [3; 6](i − 1000)/9000 and
µ1,i = [2; 3]− [3; 6](i− 1000)/9000 for i > 1000. This highly contrived scenario
allows us to focus on a situation in which, when considering the final 9000 data
points all together, we expect to see little difference in false prediction rates
between the two sensitive variable values even if a standard logistic regression
is used. However, it is clear that there will be, in general, instantaneous bias in
the predictions. This bias will switch between the two groups over the course of
the observations, making the overall false prediction rates roughly equivalent.

We run our tracking algorithm with the same parameters and initial values
as in the static case, and present results in Fig. 2. Here, our reduced bias false
prediction rates as measured over the final 9000 data points are 0.52 and 0.54
for false positives and 0.22 and 0.23 for false negatives for sensitive values z = 0
and z = 1, respectively; accuracies are 0.64 and 0.62. However, as shown in
Fig. 2, the estimated instantaneous false prediction rates vary significantly over
the course of the tracking, albeit in such a way that the estimated bias is always
within our tolerance ε.

However, by design, when we run this scenario through our algorithm using
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Figure 2: Plots of the tracked values of θ (top left), Θ
ε

(top right), mz (bottom
left, shown with the true values µz as dashed lines), and the estimated unbiased
false prediction rates ˆFNR and ˆFPR (bottom right) for dynamic parameters
described in the text.
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the large value ε = 2.0, in which case no bias removal is actually attempted,
the overall observed results still appear effectively unbiased. Over the final 9000
observations, we obtain 0.38 and 0.37 for false positive rates and 0.24 and 0.27 for
false negative rates for sensitive values z = 0 and z = 1, respectively; accuracies
are 0.69 and 0.69. The mean value of θ over the last 9000 points in this case
is [0.25,−0.25, 0.00]. All of these values are very close to those obtained for
a standard logistic regression trained over this dataset, which gives coefficient
vector [0.25,−0.24, 0.00], and which over the last 9000 points gives false positive
rates 0.36 and 0.35, false negative rates 0.23 and 0.24, and accuracies 0.71 and
0.71. In essence, because of the symmetric way that the feature distributions
change over time, even a standard logistic regression will appear unbiased for
this dataset when only analyzing the bulk classifications made on the interval
in which the feature distributions are shifting.

The Zafar method applied to this dataset gives interesting results. Using a
covariance threshold multiplicative factor of m = 0.0005, as used in the static
case above, we obtain false positive rates of 0.06 and 0.06, false negative rates of
0.85 and 0.86, and accuracies of 0.52 and 0.51. The algorithm was able to deter-
mine some potential problem with the baseline logistic regression with regard
to disparate misclassification and correct for it, but at this level was only able
to resolve the problem by classifying the vast majority of individuals (89% of
them) as negative. Applying a much higher coviariance threshold multiplicative
factor of m = .05, and hence reducing the desired bias mitigation, gives false
positive rates of 0.32 and 0.31, false negative rates of 0.41 and 0.42, and accu-
racies of 0.63 and 0.63, much more in line with the standard logistic regression,
and still appearing unbiased. Of course, the dataset is designed so that even a
standard logistic classifier will appear unbiased when averaged over the entire
dataset, so this result is not surprising.

We run the Berk method on this dataset using parameters λ = 10, ρ = 0.9.
The results over the final 9000 datapoints are false positive rates of 0.4 and 0.44,
false negative rates of 0.29 and 0.27, and accuracies of 0.66 and 0.65; these are
similar to the results of our unconstrained algorithm.

Given the design of this dataset, it is not surprising that all of the methods
are able to produce results that are unbiased on average. But, to illustrate the
differences between the methods on this dynamic dataset, we plot in Fig. 3 the
observed false prediction rates when calculated via a symmetric moving-window
average of width 2000 events. In the case of our dynamic method with ε = 0.05
(top left panel), these moving averages show relatively small bias between the
two sensitive variable values, and are similar to the estimated false prediction
rates shown in Fig. 2. However, when the same moving-window average is ap-
plied to predictions made by our tracking algorithm but with ε = 2.0 (top right
panel), which mimics a static logistic regression that appears unbiased when
considering the entire dataset at once as discussed above, we clearly see large
differences in false prediction rates between the two protected variable groups
at any given moment in time. The Zafar method with the larger value m = 0.05
behaves very similarly to the logistic classifier, as the two methods give very
similar parameter estimates, while the results using m = 0.0005 (bottom left
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Figure 3: Plots of the observed false prediction rates computed via a moving-
window average of width 2000 events for our dynamically unbiased predictions
(top left panel), for effectively static logistic predictions (top right panel), for
the Zafar method with m = 0.0005 (bottom left panel), and the Berk method
with λ = 10, ρ = 0.9 (bottom right panel).

panel) appear effectively unbiased at all times, but only by classifying almost all
individuals as negative and thereby having consistently very low accuracy. The
Berk method (bottom right panel) is, as a dynamic method, able to maintain
rough instantaneous fairness while also retaining good accuracy. Interestingly,
the results here are qualitatively different from those of our algorithm, as the
Berk method maintains similar levels of false prediction rates and accuracy
throughout the data set, while our algorithm varies throughout. At this time,
we can speculate that the behavior of the Berk algorithm observed here is related
to the specific details of this example, as in our limited testing, other synthetic
dynamic datasets do not always exhibit this same behavior with the Berk al-
gorithm. But the specific underlying cause is not entirely clear, and highlights
the need for future work on dynamic fairness algorithms, to better understand
which methods might be better or worse, and under what circumstances.
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4 Results on real-world datasets

4.1 ProPublica COMPAS dataset

To illustrate the ability of our algorithm to analyze real-world datasets, we
applied it to the often-used ProPublica COMPAS 2-year recidivism dataset
[13]. This dataset was constructed to test potential bias in recidivism forecasting
between races, and includes certain features (described below) of individuals who
had been arrested on suspicion of committing specific crimes, and whether or
not each individual recidivized within two years of the initial event. In analyzing
the dataset, we have chosen race as the sensitive variable, and only analyzed
that subset of the data in which the race is listed as either “African-American”
or “Caucasian”. After selecting this subset, and removing a few points in the
same way as described in [13], we are left with 5278 entries.

For our features, we have analyzed two scenarios. In both scenarios, we use
“sex” (categorical, male=0 or female=1), “age cat” (using two categorical vari-
ables “Less than 25” and “Greater than 45”), “priors count” (number of prior
crimes), and “c charge degree” (categorical, felony=0 or misdemeanor=1). In
the first scenario, these are the only features considered, while in the second
scenario we also directly consider “race” as the final feature (categorical, Cau-
casian=0 or African-American=1); this is done to match what some other have
considered when analyzing this particular dataset. Importantly, we also analyze
this dataset after sorting the entries by “compas screening date” from earliest
to latest. This is done because our algorithm is specifically developed to allow
for temporally evolving scenarios, so we have evaluated it as such. All initial
parameters of the algorithm are the same as used in the synthetic data above,
with the exception that we use α = 0.65 here; the value of α = 0.85 used in
the synthetic experiments was too high, resulting in the algorithm failing to
find predictor coefficients that were unbiased to the desired ε at this level of
accuracy.

Table 1 lists the results of our algorithm, as well as those of the Zafar and
Berk methods, for both sets of features (with and without race), and both
with and without any bias constraints applied (except Berk is only analyzed in
the constrained case); for the Zafar algorithm we used a covariance threshold
multiplicative factor of m = 0.000001 and for Berk we used λ = 10, ρ = 0.9.
The results here are computed over the second half of the dataset only; in the
case of the Zafar algorithm, only the first half of the dataset is used for training.
The results clearly show that, without any constraints, there is bias between
false prediction rates of Caucasians vs African-Americans: false negative rates
for Caucasians are higher than those for African-Americans, and the opposite is
true of false positive rates. When constraints are added, all algorithms greatly
reduce these differences, with ours accomplishing our goal of ε < 0.05 in all cases,
but the other algorithms generally unable to reduce the bias levels to within this
same tolerance. This is not necessarily surprising, as the other algorithms only
use proxy measures for bias, rather than an explicit calculation of the expected
level as our own algorithm employs; further, the Berk method only attempts
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to equalize results for those in the negative class. Within the table, we have
specifically noted the number of positive predictions given in each case. This
is displayed to illustrate the fact that, in general, the constrained algorithms
accomplish their goal by classifying many more individuals as negative than
in the unconstrained case. The most extreme example of this is in the Zafar
algorithm with race not included as a feature, in which case only 111, or 4.2%,
of the 2639 predictions made are positive. This leads to an overall accuracy
of only 0.48. It seems that, if not explicitly using race to make predictions, a
static unbiased classifier like Zafar can only really treat this data by classifying
essentially everyone in the same way (negative in this case).
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Figure 4: Plots of the tracked values of Θ
ε

for the full ProPublica COMPAS
dataset both without (left panel) and with (right panel) race as a feature.

Interestingly, though, our own constrained classifier in the no-race case still
makes 655 positive predictions, and ends up with an overall accuracy of 0.69,
not much lower than the accuracy of 0.74 that we achieve with the same fea-
tures in the unconstrained case. Somewhat amazingly, our algorithm does this
with a false positive rate of 0 for both races - all 655 positive predictions were
correct. Also, our algorithm displays significantly better overall accuracy than
constrained Zafar and Berk across the board here. To help understand how our
algorithm achieves such results, we plot in Fig. 4 the evolving estimates of the
unbiased coefficients Θ

ε
that our algorithm produces in both the with-race and

without-race scenarios. As can be clearly seen, there is an abrupt and very large
change in estimated coefficients at around data point number 4600 in each case.
Upon investigating the data directly, it was observed that every datapoint start-
ing at number 4512 (with “compas screening date” of April 2, 2014) is classified
as a recidivist. This data, if it is to be believed, is then a perfect example of a
scenario in which a temporal trend is important to the classification task, which
our algorithm handles quite naturally. The Berk algorithm also handles the
data dynamically, but was unable to match the performance of our algorithm
in this case. However, it is likely that these datapoints at the end of the data
set are in fact erroneously classified; in fact, this precise observation has been
pointed out elsewhere [2].

In light of this observation, we have performed two additional analyses on
this dataset. First, we ran all of our analyses on a further subset of the COM-
PAS data, removing all those entries with a ‘compas screening date” on or after
April 2, 2014, as suggested by [2]. This leaves 4511 data points in this sec-
ond subset. Second, we ran our algorithm and Zafar in the specific case of the
constrained classifier without race (the case in which our algorithm performed
suspiciously well previously) again on the full dataset, but with the dataset shuf-
fled randomly so that any potential temporal trend (or misclassified data) was
hidden. The results are shown in Table 3. In comparison to Table 1, the results
in Table 3 show that the overall accuracy of our algorithm drops, while those of
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Zafar increase, as one would expect. Comparing our algorithm to that of Zafar
in the cases of the subset, we find that with the exception of the constrained,
with-race case, results are roughly similar, though Zafar generally has slightly
higher accuracy at the expense of greater bias. The constrained, with-race re-
sults on this subset are quite different between our two algorithms, however. In
this case, the overall accuracy of the two algorithms are on par, but these are
achieved in very different ways. Our algorithm classifies far fewer individuals as
positive than Zafar in this case, ending up with quite high false negative rates
and very low false positive rates, with little difference between the two races.
On the other hand, the Zafar algorithm actually classifies more individuals as
positive in this case than the unconstrained, with-race case, yielding a moder-
ately high false negative rate as well as a low but notable false positive rate,
and with still significant disparity between the races. Finally, we see that the
Zafar results for the shuffled, full dataset are on par with those of the unshuffled
full dataset, again with very few individuals classified as positive. However, our
own algorithm performs very differently on the full, shuffled dataset than the
unshuffled dataset, classifying a very large number of people as positive and
ending up with much lower accuracy (but still similar false prediction rates).
The results here are of course different than those of Zafar on the shuffled data,
but neither could really be classified as better than the other; they are both
quite bad.
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4.2 New Orleans data

For a second real-world example, we apply our method, along with the baseline
methods, to a dataset of traffic stops in New Orleans from 2009 to 2018. The
data come from the Stanford Open Policing Project [22] and contain informa-
tion on the location, date, and time of the stops, race and age of the individual
stopped, whether a search was conducted, and whether contraband was found.
We focus on the subset of traffic stops where the race of the individual was Cau-
casian or African-American and where a search was conducted. After selecting
this subset we are left with 73,041 traffic stops, and we evaluate the models on
the first 70,000 stops. We then predict the label, defined as whether the search
resulted in contraband being found (y = 1) or not (y = 0). We use as features
the hour of the day (categorical with 8 bins containing 3 hours each), the dis-
trict (categorical, with 7 options), the age of the individual (integer values), and
race (categorical). Race is included as a feature here because the data generally
appears unbiased when race is not explicitly included. We only evaluate the
prediction results over the final 35,000 data points; for Zafar, we only train on
the first 35,000 data points. Unlike the cases above, here we use a threshold
for positive predictions of τ = 0.25; this threshold leads to predictions that
are not completely uniform, while the threshold of τ = 0.5 generally leads to
almost all negative predictions. All other parameters are the same as used for
the COMPAS dataset. Given that these data specifically include time of day
and location of stop, it is clear that temporal trends could play a large role,
given that stops made at varying times of day and/or varying locations may
be more or less likely to result in contraband being found, and there could be
links between where a stop was conducted and when it was conducted. So, this
dataset represents a natural venue to explore whether our method might offer
advantages over methods tailored to more static data. To test this, we also
ran our algorithm and Zafar on a shuffled dataset, as with the COMPAS data
above.
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Comparing the results, we see that our unconstrained algorithm gives by
far the highest number of positive predictions, and the results are clearly bi-
ased with significantly different false prediction rates. The unconstrained Zafar
algorithm seems to just predict most individuals as negative, with results still
quite biased. Our constrained algorithm reduced the number of positive pre-
dictions significantly from the unconstrained version, actually yielding higher
accuracy by doing so, and in a way that makes false prediction rates essentially
equal between groups. The constrained Zafar algorithm is essentially all neg-
ative predictions here. Berk predicts a number of positives approaching, but
less than, our constrained number, with corresponding higher accuracy, but the
false prediction rates are not especially similar between the groups, so it has not
reduced the bias to the level our algorithm is able to. Finally, we see that for
the shuffled dataset our algorithm is still able to produce an essentially unbiased
result, but with lower accuracy than the standard dataset. Interestingly, though
there were more positive predictions overall for this shuffled dataset than the
unshuffled version, both for our algorithm and Zafar, the false negative rate rose
quite a bit for the shuffled version of the data with our algorithm, indicating
that these increased positives were going to the wrong people. We also note
that the behavior of Zafar on the shuffled dataset is quite different than the
normal dataset, with vastly increased numbers of positive predictions. These
differences in results between the two versions of the dataset give some indi-
cation that there are some temporal trends within the data that are lost upon
shuffling.

5 Conclusions

In this work we introduced a fully Bayesian tracking algorithm for fairness-
aware classification. The model sequentially tracks potential changes in the
distribution of features, along with false positive and negative rates, and dy-
namically adjusts the model to mitigate disparate misclassification at each step.
We demonstrated the effectiveness of the algorithm on synthetic and recidivism
datasets, showing improved performance with regard to disparate misclassifica-
tion compared to bias reducing methods that are trained in batch offline.

The present methodology has several limitations that should be noted. Here
we assumed that class labels were fully observed in real time, whereas in practice
some labels are unobserved and other labels may only be available after some
delay. For example, in the case of traffic stop searches, the label as to whether
contraband is found is immediately known and available. However, in the case
of recidivism, the label may be delayed by several months or go unobserved.

The accuracy metrics considered here, namely group false positive and nega-
tive rates, may be different than those that matter to policy makers. In certain
cases, precision and recall may be appropriate metrics and could be incorpo-
rated into Equation 26. In this work we focused on group-level, rather than
individual-level, fairness. The method may introduce potential bias as it re-
lates to individual fairness [10], the notion that individuals with similar features
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should receive similar algorithmic scores and decisions. Due to the dynamic
nature of the present algorithm, an individual at an earlier time may receive a
different decision than an individual with similar features at a later time. How-
ever, at each fixed time, our methodology consisted of a single model across
individuals, and thus yielded similar predictions for individuals with similar
features. We also note that the model performed well even when the sensitive
variable was not included as a feature. We also note that the method in the
present paper will likely be inefficient in high dimensional settings and that the
threshold parameter α in Equation 26 needed to be tuned by hand. Removing
these limitations will be a focus of future research.
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