
Modeling E-mail Networks and Inferring Leadership Using Self-Exciting

Point Processes

Eric W. Fox1, Martin B. Short2, Frederic P. Schoenberg3, Kathryn D. Coronges4,

Andrea L. Bertozzi5

1 UCLA Department of Statistics, 8125 Math Sciences Bldg., Los Angeles, CA,

90095-1554. eric.fox@stat.ucla.edu.

2 Department of Mathematics, Georgia Institute of Technology, 686 Cherry Street,

Atlanta, GA 30332-0160. mbshort@math.gatech.edu.

3 Corresponding author. UCLA Department of Statistics, 8125 Math Sciences

Bldg., Los Angeles, CA, 90095-1554. frederic@stat.ucla.edu.

4 Department of Behavioral Sciences and Leadership, United States Military Academy

at West Point, 606 Thayer Road, West Point, NY 10996. Kathryn.Coronges@usma.edu.

5 UCLA Department of Mathematics, 520 Portola Plaza, Los Angeles, CA 90095-

1555. bertozzi@math.ucla.edu.

1



Abstract.

Self-exciting point process models are used to model a social network dataset con-

sisting of email communications between officers at West Point Academy during a

one year period beginning in May 2010. The models appear to adequately capture

major clustering features in the data, and features of the model may be used to

predict perceived leadership status within the social network. The results suggest

that such models may be used for simulation, understanding basic properties of, and

perhaps even prediction of underlying leadership status of social communication net-

works.

Keywords: conditional intensity, epidemic-type aftershock sequence models, Hawkes

process, IkeNet data, social networks.

Running title: Modeling email networks using self-exciting point processes.
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1 Introduction

Self-exciting point processes describe random collections of events where the occur-

rence of one event increases the likelihood that another event occurs shortly there-

after. Models for self-exciting point processes have been used extensively in seismol-

ogy to characterize the branching structure of earthquakes, where each mainshock

potentially triggers its own aftershocks sequence (Ogata, 1988, 1998). The Hawkes

process (Hawkes, 1971; Hawkes and Oakes, 1974) was one of the earliest models of

the conditional intensity, λ(t), for the expected rate at which earthquakes occur at

time t, given all earthquakes that occurred previously at times tk < t:

λ(t) = µ+
∑
tk<t

g(t− tk). (1)

In this model mainshocks occur at a constant rate µ over time, and each earthquake

at time tk elevates the risk of future earthquakes (aftershocks) through the triggering

function g(t− tk), which is often assumed power-law or exponential.

Self-exciting point processes have found application in many areas besides seis-

mology. These include modeling the spread of invasive plant species (Balderama

et al., 2011), insurgencies in Iraq (Lewis et al., 2011), and domestic crimes (Mohler
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et al., 2011) as well as retaliatory acts of violence between rival gangs in Los An-

geles (Stomakhin et al., 2011; Hegemann et al., 2012). Within the field of com-

munication, self-exciting models have been used to model face-to-face conversation

sequences (Masuda et al., 2012) or for e-mail transactions between an employee and

an employer (Halpin and De Boeck, 2013). However, the study of self-exciting point

processes in the context of social networks is a relatively new topic.

In this paper we extend the Hawkes process to model e-mail activity on a so-

cial network. Like earthquakes, e-mail communications may be viewed as branching

processes. The ‘mainshocks’ are the times when an individual initiates e-mail con-

versations, or starts new e-mail threads. The ‘aftershocks’ are the reply e-mails,

which are sent in response to e-mails received from other individuals in the network.

Our approach is similar to that of Halpin and De Boeck (2013), though we model

e-mail traffic on a network, not just between two people, and account for circadian

and weekly trends. A primary motivation in the present paper is to use estimated

model parameters to identify and rank network leaders. In Section 2, we introduce

an e-mail network data set from West Point Military Academy and present some

descriptive statistics. In Section 3, we propose various self-exciting models for e-mail

activity on a social network and fit these models to the network data. In Section
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4, we describe how our estimated model parameters can be used to infer network

behavior and leadership. In Section 4 we also discuss model comparison, model di-

agnostics, and a simulation analysis of e-mail network traffic.

2 Data and Descriptive Statistics

In our study we use e-mail data collected from twenty-two officers attending West

Point Academy over a one year period beginning in May 2010. This dataset, coined

the IkeNet dataset, presents a unique opportunity to analyze and model e-mail traffic

on a closed and finite social network. The sender, receiver, timestamp, and id were

recorded for each message sent between officers in the network. The officers were

anonymized in the data for privacy, therefore we will refer to them by number (1–22)

in lieu of name. After removing duplicates and instances when officers sent messages

to themselves, we are left with a total of approximately 8400 e-mails.

Each officer was also asked in a survey to list the officers, within the network, whom

they considered strong team and military leaders. This additional data enables us

to look at connections between IkeNet e-mail communication and leadership. In

many previous studies on e-mail activity, the data do not contain this sort of supple-

5



mentary information about the participants (e.g. Barabási (2005); Malmgren et al.

(2008)). This dataset offers a particularly unique opportunity to address questions

such as how one might predict network leadership using only observations of network

communication. In Section 4 we propose a novel way to address this issue using the

parameters of our model for e-mail network traffic described in Section 3.

Descriptive statistics for the IkeNet dataset reveal daily, weekly and seasonal trends

in e-mail traffic. Figure 1 is a histogram of the number of e-mails sent in the net-

work each hour of the day, over the yearlong observation window. There was a clear

diurnal rhythm in this plot: e-mails were most frequently sent mid-day and activ-

ity diminishes at night. Decreased activity during lunch and dinner is also visible,

around noon and seven p.m. Figure 2 is a bar plot of the number of emails sent each

day of the week. The e-mail activity among these officers was evidently substantially

greater during weekdays (Mon.–Fri.) than on the weekend.

Figure 3 is a time series plot of the number of e-mails sent in the network each

day. The red smoother curve helps reveal monthly trends. For instance, there was a

drop in network activity in January; this is probably due to the holidays and officers

being out of town. In the time series plot two days have an unusually high amount of
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traffic: 02 May 2011 and 02 February 2011, with 166 and 162 e-mails sent on those

days, respectively. These outliers are also present in Figure 4, a right skewed his-

togram which shows that on a typical day, fewer than thirty e-mails are sent within

the network.

Also of interest are descriptive statistics for the number of e-mails sent by each

officer and between pairs of officers. Officers 9, 18, 13, and 22 stand out for sending

the largest number of e-mails in the network (Figure 5). There is also a high corre-

lation (r = 0.945) between the number of e-mails sent and received by each officer

(Figure 6). Figure 7(a) is a graphical representation of a matrix whose entries are the

number of e-mails sent from officer i (column) to j (row). Notice that this matrix is

not symmetric, since the number of e-mails sent from officer i to j may be different

from the number of e-mails sent from j to i. The plot reveals that officer pair (9,18)

is the most prolific, as these officers sent a total of 1042 emails to each other.
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3 Self-Exciting Models for E-mail Network Activ-

ity

Several studies on e-mail communication have shown that the times when e-mails

are sent by an individual deviates from a stationary Poisson process (Barabási, 2005;

Malmgren et al., 2008). A stationary Poisson process model assumes that the rate

at which events are expected to occur is constant at all times. One property of this

model is that the times between consecutive events (inter-event times) follows an

exponential distribution. Barabási (2005) provided empirical evidence showing that

the inter-event times for e-mails are better approximated by a heavy-tailed power

law distribution. Essentially, this means e-mail traffic is highly clustered: short pe-

riods of intense activity are followed by long periods when relatively few e-mails are

sent. To explain this observed activity, Barabási (2005) proposed a priority queue

model, in which high priority e-mails are responded to before low priority e-mails.

We take a different approach, and account for clustering by viewing e-mail traffic as

a self-exciting point process, whereby each e-mail received by an individual increases

the likelihood that reply e-mails are sent shortly thereafter. In other words, sending

an e-mail can trigger a chain of messages sent between individuals in rapid succession.
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For a thorough introduction to point processes, conditional intensities, and closely

related constructs, see Daley and Vere-Jones (2003). Here we briefly review a few

necessary preliminaries.

A point process is a random collection of points, with each point falling in some

observed metric space, S. Here, as in many applications, the observed space is a por-

tion of the real time line, [0, T ], and our observations of the email network may be

considered a sequence of 22 point patterns, or equivalently a single multivariate point

pattern. Point processes are typically modeled by specifying their associated condi-

tional intensity processes, as all finite-dimensional distributions of a point process are

uniquely characterized by its conditional intensity process, assuming it exists. For a

temporal point process on a closed time interval [0, T ], the conditional intensity may

be defined as the infinitesimal expected rate at which points occur around time t,

given the entire history, Ht, of the point process up to time t:

λ(t) = lim
∆t↓0

E[N(t, t+ ∆t)|Ht]

∆t
. (2)

An important conditional intensity model for a self-exciting point process is the

Hawkes process (Hawkes, 1971; Hawkes and Oakes, 1974; Ogata, 1988) given by

equation (1). This may readily be extended to model the rate at which each IkeNet
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officer i sends e-mails at time t (hours) given all messages received by i at times

rik < t:

λi(t) = µi +
∑
rik<t

gi(t− rik)

= µi + θi
∑
rik<t

ωie
−ωi(t−rik). (3)

In the context of e-mails, the background rate µi can be interpreted as that rate at

which officer i sends e-mails that are not replies to e-mails received from other offi-

cers. In other words, µi is the baseline rate at which i initiates new e-mail threads.

Each message received by officer i at time rik elevates the overall rate of sending

e-mails at time t > rik, through the triggering function gi(t − rik), which is assumed

to be exponential.

In model (3), the background rate µi is assumed to be constant over the observation

window [0, T ]. This is unrealistic in light of the diurnal and weekly nonstationarities

suggested in Figures 1 and 2. Non-stationary forms for µi(t) will be discussed sub-

sequently in Section 3.1.

The exponential triggering function is perhaps not unreasonable. Note that since
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the officers are using mobile devices (Blackberries) to send e-mails, they do not have

to wait until they reach a computer, and can thus send quick replies. Moreover,

Figure 8 shows that the survival function of the inter-event times for e-mails sent by

each officer in the network falls reasonably close to the 95% confidence envelope for

the self-exciting Hawkes process model. This indicates that the inter-event time dis-

tribution for the model closely resembles that of the observed data. The simulation

procedure used to create the confidence envelop will be described in greater detail in

Section 4.3.

As an illustration of model (3), the top panel in Figure 9 shows the estimated con-

ditional intensity for officer 13, λ̂13(t), over a three day time period. The clustering

in the times when e-mails are sent (red points) and received (blue points) are easily

discerned and are characteristic of Hawkes point processes.

The parameters of model (3) characterize general e-mail communication habits of

each officer. For instance, θi can be interpreted as the reply rate for officer i, since

it is the total expected number of replies, on average, sent by officer i per e-mail
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received from another officer in the network, as

lim
T→∞

∫ T

rki

θiωie
−ωi(t−rik)dt = lim

T→∞
θi(1− e−ωi(T−r

i
k)) = θi.

The integrated triggering function over a finite time period will be slightly less than

θi, but for the IkeNet data, where T = 8640 hours and ω−1 << T (see Table 1), θi

will be extremely close to the expected number of replies for officer i. The speed at

which officer i replies to e-mails is governed by the parameter ωi, with larger values of

ωi indicating faster response times for officer i. Indeed, ω−1
i is the expected number

of hours it takes for officer i to reply to a typical e-mail.

3.1 Non-stationary Background Rate

Model (3) makes the assumption that the background rate is a stationary Poisson

process, which means in this context that the rate of creating new e-mail threads is

constant at all times. This is not realistic due to the presence of circadian and weekly

trends in e-mail traffic (see Figures 1 and 2). Malmgren et al. (2008) argued that

the clustering and heavy-tails in the inter-event distribution of times when e-mails

are sent is partially a consequence of rhythms in human activity (e.g. sleep, meals,

work, etc.), and the authors explicitly modeled periodicities in e-mail communication
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as a non-stationary Poisson process. We take a similar approach by considering a

non-stationary background rate for our Hawkes process model (3) of email traffic:

λi(t) = piN
send
i µ̂0(t) + θi

∑
rik<t

ωie
−ωi(t−rik), (4)

where the parameter pi is the probability that a randomly selected email sent by

officer i is not a reply, N send
i is the number of e-mails sent by officer i to other of-

ficers, and µ̂0(t) is a non-parametrically estimated density curve obtained by kernel

smoothing the emails sent by all officers, accounting for daily and weekly rhythms

in IkeNet activity (Figure 11).

Technically, if we let m ∈ {0, · · · , 59} be the minute, h ∈ {0, · · · , 23} the hour, and

d ∈ {0, · · · , 6} the day (Mon = 0, · · · , Sun = 6) corresponding to time t ∈ [0, T ],

then µ̂0(t) = f̂(h+m/60)w(d), where

f̂(h+m/60) =
1

σN

N∑
k=1

K

(
h+m/60− hk

σ

)
=

1

N

N∑
k=1

1√
2πσ

e−
(h+m/60−hk)

2

2σ2 , (5)

and

w(d) =
7

360N

N∑
k=1

I(dk = d). (6)
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In equation (5) we use kernel density estimation to get a smoothed version of the

histogram of the number of e-mails sent by hour of day (Figure 10). We chose a nor-

mal smoothing kernel K(·) with bandwidth σ set to the default value suggested by

Scott (1992); N is simply the total number of e-mails sent in the network. To account

for weekly trends f̂(·) is given a weight, w(d), proportional to the total number of

e-mails sent on day d (Figure 2). The constant of proportionality is chosen so that

µ̂0(t) integrates to one over [0,T]. Note that µ̂0(t) is periodic, with period equal to

one week (7 days / 168 hours); i.e. µ̂0(t+168) = µ̂0(t). One period of µ̂0(t) is plotted

in Figure 11. To illustrate the fitted model, the lower panel of Figure 9 shows the

estimated conditional intensity for officer 15 under model (4). The troughs in the

conditional intensity in Figure 9 correspond to times when few e-mails are sent and

received.

3.2 Pairwise Model

One shortcoming of models (3) and (4) is that the reply rate θi for officer i does

not depend on who sends an e-mail to i. According to these models, if two officers

send officer i a message, officer i sends each of them the same expected number

of replies. In order to incorporate some pairwise interactions between officers we
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consider the following alternative Hawkes process model for the rate at which officer

i sends e-mails at time t:

λi(t) = piN
send
i µ̂0(t) +

∑
j 6=i

∑
rijk <t

gij(t− rijk )

= piN
send
i µ̂0(t) +

∑
j 6=i

∑
rijk <t

θijωie
−ωi(t−rijk ). (7)

The triggering function, gij(t− rijk ), gives the contribution of the kth message officer

i receives from j at time rijk to the conditional intensity at time t. The inner sum-

mation is over all messages officer i receives from j at times rijk < t, and the outer

summation is over all officers j other than i. Note that one may also extend model

(7) so that a distinct ωij is estimated for each email receiver i and each sender j,

and thus essentially model each pairwise interaction individually, though with the

current dataset this may not be advisable due to the the sparsity in the number of

e-mail sent between certain pairs of individuals (Figure 7(a)) and the large number

of additional parameters to estimate.

The parameters of model (7) help characterize e-mail communication behaviors

between officers. For each officer i, there are twenty-one parameters θij, each of

which may be interpreted as the expected number of replies i sends per e-mail re-
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ceived from j. This additional information is gained at the expense of adding twenty

more parameters than model (4). A more in-depth comparison between models (4)

and (7) is provided in Section 4.

3.3 Parameter Estimation

The parameters of models (3) and (4) can readily be estimated by maximizing the

log-likelihood over the parameter space Ωi. The log-likelihood equation (Ogata, 1978)

is given by

li(Ωi) = logLi(Ωi) =

Nsend
i∑
k=1

log(λi(s
i
k))−

∫ T

0

λi(t)dt

=

Nsend
i∑
k=1

log(λi(s
i
k))−

∫ T

0

µi(t)dt+ θi

Nrec
i∑

k=1

[1− e−ωi(T−rik)]

 , (8)

where sik is the time when the kth e-mail was sent by officer i, rik is the time when

the kth e-mail was received by i, and N rec
i and N send

i are the total number of e-mails

received and sent by i, respectively. The integral of the background rate depends on

whether it is stationary, µi(t) = µi, or non-stationary, µi(t) = piN
send
i µ̂0(t). For the

stationary background rate the integral is simply µiT , while for the non-stationary

background rate the integral is piN
send
i since µ̂0(t) is a density. Standard errors for

16



the maximum likelihood estimators, Ω̂i, of equation (8) can be derived using asymp-

totic properties (Ogata, 1978).

The log-likelihood equation (8) can also be used to simultaneously find the max-

imum likelihood estimates of the parameters, Ωi = (pi, wi, ~θi), of model (7). The

vector ~θi contains twenty-one parameters θij such that j 6= i. For model (7), the

loglikelihood has the form

li(Ωi) =

Nsend
i∑
k=1

log(λi(s
i
k))−

piN send
i +

∑
j 6=i

Nrec
ij∑

k=1

θij[1− e−ωi(T−r
ij
k )]

 , (9)

where N rec
ij is the the number of messages officer i received from j. When N send

ij = 0

or N rec
ij = 0 we set θij = 0.

Parameter estimates and standard errors for the stationary (3) and non-stationary

(4) Hawkes process models are given in Tables 1 and 2. The estimates were obtained

using the general purpose optimization function, optim(), provided in the statistical

software package R (R Core Team (2013)). We used the box-contrained optimization

method described in Byrd et al. (1995) to maximize equation (8). The maximum

log-likelihoods for each officer, li(Ω̂i), for models (3) and (4) are also provided in

Tables 1 and 2. In terms of likelihood, model (4) outperforms model (3) since it
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has larger maximum log-likelihood values for every officer, and typically (as well

as overall) by a statistically significant margin according to the Akaike Information

Criterion (AIC) of Akaike (1974). The inclusion of the non-stationary background

rate evidently provides a better fit to the network data.

4 Analysis

4.1 Inferring Network Behavior and Leadership

The parameter estimates in Table 2 provide insight into the communication habits of

officers in the network. The estimator p̂i is the estimated probability an e-mail sent

by officer i is a background event, or non-reply e-mail. In other words, N send
i p̂i is the

expected total number of e-mail threads initiated by officer i. Thus, according to the

fitted model (4), we can infer for example that approximately 68% of e-mails sent

by officer 15 are non-replies, and 48% of e-mails sent by officer 18 are non-replies.

Over the entire network, p̂i ranges between 42% and 83%, and the estimated overall

percentage of non-reply e-mails for the entire network is 100∗
∑22

i=1N
send
i p̂i/N ≈ 55%.

The estimator θ̂i provides an estimate of the mean number of replies officer i sends
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in response to a typical e-mail. For instance, according to the model, officer 18 sends

approximately 58 replies per 100 e-mails received, while officer 15 sends approxi-

mately 45 replies per 100 e-mails received. Note also that the estimate of p̂i is higher

for officer 15 than 18. This suggests that officer 15 has a higher tendency to initiate

e-mail conversations than officer 18, while officer 18 has a higher tendency to respond

to e-mails than officer 15.

The speed at which officers send e-mails is governed by ω̂−1
i , which according to

the fitted model (4) is the estimated mean time it takes officer i to reply to an e-mail.

By examining Table 2 we see that officers 18 and 9 are estimated to take about 6

minutes to reply to an e-mail. This is much faster than many of the other officers,

such as officer 13, who takes an estimated 21 minutes, on average, to reply. The

matrix plot (Figure 7(a)) shows that officers 9 and 18 communicate frequently with

each other, which may account for their similar and speedy response times. The

estimated mean response times for officers in the network ranges from less than six

minutes to over seventy minutes.

An important question is what properties of an e-mail network can best identify

the perceived leaders of that network. As indicated in Section 2, each officer in the
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IkeNet data set was asked in a survey to list up to five people considered to be strong

team leaders, and up to five people considered to be strong military leaders. The

distinction made in the survey was that a team leader is someone who is perceived as

confident leading a business or research project, while a military leader is someone

who is perceived as confident leading soldiers in combat. The aggregate numbers of

votes received by each officer for team and military leadership are shown in Figures

12 and 13, respectively. The differences between the aggregate counts in Figures

12 and 13 and the the total number of e-mails sent by each officer (Figure 5) are

quite striking. For instance, officer 15 stands out for having the most votes for both

team and military leadership, though this officer ranks below the 80th percentile in

terms of the total number of e-mails sent (officers 18, 13, 9, 22, and 11 all sent more

messages than officer 15). Clearly, total number of emails sent is a poor predictor of

one’s perceived leadership status within the network.

Fortunately, aspects of the fitted Hawkes process models (4) and (7) can perhaps

be used to help identify and rank perceived leaders among the network. Table 3 lists

five possible covariates for estimating leadership. The covariates N send and N rec are

the number of e-mails respectively sent and received by an officer, and θ̂ is the reply

rate (mean number of messages an officer sends per message received) from fitted
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model (4). We consider also the potential predictor Yi which is defined, for each

officer i, as the total number of other officers j for which officer i has an estimated

mean email reply percentage (θ̂ij) above the overall mean for the network, and a

mean non-reply send rate p̂iN
send
ij above the overall median for the network. That is

Yi =
∑
j 6=i

I(θ̂ij > 0.45, p̂iN
send
ij > 5.09), (10)

where I denotes the indicator function and all fitted parameters are from model (7).

The threshold 0.45 is the estimated mean percentage of reply emails sent in the entire

network ( 1
N

∑
i 6=j

∑
j N

rec
ij θ̂ij), and the threshold 5.09 is simply the median of the set

{p̂iN send
ij |N send

ij > 0}. Of course, many other thresholds are possible.

Tables 3 and 4 report the Spearman correlation, Pearson correlation, and root

mean square error to measure how accurately each covariate estimates and ranks

network leaders. The correlations are between the covariate of interest and the actual

numbers of votes for team and military leadership shown in Figure 12 and Figure 13.

The root mean square errors are found by fitting a simple linear regression of the

leadership vote totals on the values of the covariates for each officer. The last col-

umn in both leadership tables gives the top three leaders predicted by each covariate.
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Tables 3 and 4 show that Y , defined in equation (10), is much more highly corre-

lated with team and military leadership votes than the number of messages received

and sent by each officer. Y also has the lowest root mean square error when compared

to all other covariates. Moreover, Y is the only covariate that correctly identifies the

top three team leaders (officers 15, 13, and 22) clearly seen in Figure 12. Thus, not

only is Y more closely associated with the true leadership vote totals, but it also

better identifies the top leaders, which are not well estimated using N send or N rec.

Comparison of Tables 3 and 4 reveals that the covariates considered are all more

highly correlated with team leadership vote totals than with military leadership vote

totals. Note also that the estimated reply rate θ̂ from model (4) correlates much

more strongly with perceived military leadership when compared to the email totals.

4.2 Model Comparison and Diagnostics

The maximized log-likelihoods for the network and corresponding AIC values are

provided in Table 5. The first row gives these values for a stationary Poisson model

of e-mail traffic where the rate at which each officer sends e-mails is constant and

given by λi(t) = µi. This model only has twenty-two parameters (the constant rate

for each officer). The other three rows of this table are for the Hakwes process models
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(3, 4, and 7) described in Section 2. The Hawkes process models fit the data signifi-

cantly better than the stationary Poisson model in terms of AIC. Additionally, the

AIC values for the models with non-stationary background rates (4, 7) are signifi-

cantly lower than the AIC for the model with the stationary background rate (3).

This indicates that taking diurnal and weekly trends into account provides a better

fit to the data. The Hawkes process model that incorporates pairwise interactions

between officers (7) fits the data more closely than model (4) as measured by the

loglikelihood, but scores worse in terms of AIC. This is because the AIC penalizes

for the large number of parameters in (7).

One simple diagnostic for model (7) is the inspection of whether the estimated

numbers of reply and non-reply messages add up to the total number of messages

sent by each officer. For the fitted model (7),

p̂iN
send
i +

∑
j 6=i θ̂ijN

rec
ij

N send
i

(11)

is indeed very close to unity for each officer i. In the expression above, p̂iN
send
i

is the expected number of non-reply messages and
∑

j 6=i θ̂ijN
rec
ij is the expected

number of reply messages estimated under model (7). Similarly, we verified that

(p̂iN
send
i + θ̂iN

rec
i )/N send

i ≈ 1 for each officer i under model (4).
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Another goodness-of-fit diagnostic considered in Ogata (1988) is the transformed

time {τ ik}, which may be defined for each officer i as

τ ik = Λ(sik) =

∫ sik

0

λi(t)dt. (12)

If the model used in their construction is correct, then the transformed times should

form a Poisson process with rate 1 (Meyer, 1971), and similarly the interevent times

τ ik − τ ik−1 between the transformed times should follow an exponential distribution;

hence U i
k = 1− exp{−(τ ik− τ ik−1)} should be uniformly distributed over [0, 1). Thus,

as suggested e.g. in Ogata (1988), if the main features of the data are well captured

by the estimated model, a plot of U i
k+1 versus U i

k should look like a uniform scatter of

points. These plots are presented in Figure 14 for the Hawkes process model (4) and

the stationary Poisson model of e-mail network traffic. A comparison of these plots

reveals much less clustering around the perimeter for the Hawkes process model,

indicating that while the Poisson model clearly fails to account for the clustering in

the data, this feature is noticeably less pronounced for the self-exciting model.
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4.3 Simulation

The fitted models (4) or (7) can be used to simulate IkeNet e-mail traffic. For in-

stance, Figure 7(b) is a matrix plot from a simulation of the network using model

(7), which consists of N = 8490 events (compare to the N = 8397 events in the

observed network data). The model appears to reproduce the matrix of total e-mail

communications sent between officers quite accurately.

By simulating the network repeatedly, one can form 95% confidence envelopes for

the non-stationary background rate µ0(t) (Figure 11). This error bound is formed by

simulating model (7) 100 times and re-estimating the background rate for each sim-

ulation. The pointwise 0.025 and 0.975 quantiles of the simulated and re-estimated

background rates are shown in cyan. Note that the background rate from the ob-

served network data falls reasonably within the 95% confidence bands. A confidence

envelope for the survival function of the inter-event times (Figure 8) can be formed

similarly.
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5 Discussion

Self-exciting point process models for e-mail network traffic clearly appear to outper-

form traditional stationary Poisson models, at least for the IkeNet data considered

here. These Hawkes models, which appear to properly account for the clustering in

the times when e-mails are sent and the overall branching structure of e-mail commu-

nication, are significantly improved by accounting for diurnal and weekly rhythms

in e-mail traffic in the background rate component. The estimated parameters of

these models, such as θ̂ and ω̂, are easily interpretable and characterize important

properties of the e-mail communication network, such as an individuals’ tendencies

to reply to e-mails and initiate new e-mail threads. These parameters also appear to

be useful for both ranking and identifying team and military leaders, and thus may

more accurately summarize the core structure of the social network, compared with

simple email totals.

A network leader may possess more qualities than simply sending and receiving

many messages. One attribute of a leader may be his or her responsiveness to mes-

sages received from others in the network. Furthermore, a leader may initiate many

e-mail conversations, and not rely on others to start projects and make decisions.

The parameters of the Hawkes process model (7) quantified these additional features,
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which we attempted to combine into a simple measure (10) for estimating network

leadership. This covariate was more highly correlated with the perceived leadership

vote totals than simply the number of e-mails sent or received by each individual in

the network.

These results may be seen as merely a first step towards attempting to character-

ize the leadership patterns from email occurrences in a social network. Obviously,

many other measures of leadership status should be investigated, and the results

tested on other social network datasets. Another future direction for this research

is to consider different forms for the triggering function in models (3), (4), and (7).

The authors of Halpin and De Boeck (2013), who fit a similar Hawkes process model

for e-mails sent between an employee and employer, modeled the triggering function

with a gamma kernel instead of an exponential kernel. A gamma triggering function

may help account for the time it takes an individual to check their inbox and write a

reply. Another option may be to consider a completely non-paramteric approach to

estimating the background rate and triggering function as described in Marsan and

Lengline (2008).

Lastly, it would be interesting to test our methods on other e-mail data sets. For
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example, Eckmann et al. (2004) utilized an e-mail data set extracted from the log

files of a university mail server. Their network is substantially larger that the IkeNet,

and consists of e-mails sent between thousands of users at a university over an 83

day period. Similar to the IkeNet, this data contains the sender, recipient, and

timestamp for each e-mail. An additional variable, the size of each e-mail, is also

provided, but Barabási (2005) showed that this does not correlate well with the reply

times for e-mails. Also of interest is the Enron e-mail dataset (Klimt and Yang, 2004)

since it contains the actual message content for each e-mail. Furthermore, within the

Enron corporation there are established leaders, hence we have a means to test our

covariate for identifying leaders and discover new covariates associated with network

leadership. By continuing to explore and model such communication network data

sets, one may hope ultimately to find robust ways to identify leaders of criminal or

terrorist organization from e-mail communication patterns.
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Figure 1. Histogram of the number of emails sent, each hour of the day, over the
yearlong observation window.
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Figure 2. Number of emails sent by day of the week.
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Figure 4. Histogram of the number of daily e-mails sent.
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Figure 5. Number of e-mails sent by each officer over the yearlong observation
window.
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Figure 6. Scatter plot of the total number of emails received by each officer (x)
versus the total number of e-mails sent (y). The scatter plot and regression line show
a strong association between the number of e-mails sent and received (r = 0.945).
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Figure 7. (a) Matrix plot of the logarithm of the number of e-mails sent from officer
i (column) to j (row) from the observed data. The red and orange cells indicate
pairs of officers that communicate frequently through e-mail. Likewise, the yellow
and green cells indicates moderate to low communication between officer pairs. (b)
Simulated matrix plot of the logarithm of the number of e-mail sent from officer i
(column) to j (row). Data were synthesized from one simulation of the IkeNet e-mail
network using the maximum likelihood estimates of the pairwise model (7).
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Figure 8. Survivor plot of the inter-event times for e-mails sent by each officer in
the network (black line). A 95% confidence envelope was formed by simulating the
network 100 times from the fitted model (7) and computing the survivor function for
each realization. The pointwise 0.025 and 0.975 quantiles of the simulated survivor
functions are plotted in cyan.
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Figure 9. Top panel shows the estimated conditional intensity for officer 13 over a
three day period using the Hawkes model with the stationary background rate (3).
The bottom panel shows the estimated conditional intensity for officer 15 over the
same three day period using the Hawkes model with the non-stationary background
rate (4). The blue dots represent the times when messages are received, while the
red dots represent the times when messages are sent.
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Figure 10. Kernel density estimation of the histogram of e-mails sent per hour of
day, using the default fixed bandwidth suggested by Scott (1992).
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Figure 11. Estimated background rate density µ̂0(t) for the IkeNet data set (red).
The background rate is periodic; the figure plots only one period (i.e. one week, Mon.-
Sun.). A 95% confidence envelope is plotted in cyan. This is formed by simulating
the network repeatedly 100 times.
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Figure 12. Barplot of the number of votes each officer received for perceived team
leadership. Votes are based on a survey which asked each officer to list up to five
officers that he or she considered to be a team leader.
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Figure 13. Barplot of the number of votes each officer received for perceived military
leadership. Votes are based on a survey which asked each officer to list up to five
officers that he or she considered to be a military leader.
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Figure 14. (a-b) Plot of Uk+1 versus Uk for a stationary Poisson process model of
e-mail activity on the network with corresponding histogram of transformed time
values U . (c-d) Plot of Uk+1 versus Uk for the Hawkes process model (4) of e-mail
activity on the network with corresponding histogram of transformed time values U .
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Table 1. Parameter estimates, standard errors and log-likelihood values for model
(3)

i N send
i µ̂i θ̂i ω̂i l(Ω̂i)

1 94 0.009 (0.0010) 0.17 (0.04) 8.65 (2.52) -464.2
2 260 0.014 (0.0013) 0.58 (0.05) 3.64 (0.51) -732.8
3 301 0.021 (0.0016) 0.49 (0.05) 1.38 (0.19) -1089.4
4 316 0.024 (0.0017) 0.43 (0.05) 2.93 (0.51) -1126.4
5 179 0.012 (0.0012) 0.35 (0.04) 1.64 (0.29) -702.9
6 207 0.014 (0.0013) 0.34 (0.04) 3.10 (0.63) -752.5
7 276 0.016 (0.0015) 0.51 (0.05) 0.80 (0.11) -989.0
8 355 0.025 (0.0018) 0.40 (0.04) 4.71 (0.95) -1125.6
9 868 0.045 (0.0026) 0.54 (0.03) 6.68 (0.73) -1620.0
10 155 0.012 (0.0013) 0.33 (0.06) 3.38 (1.74) -635.4
11 687 0.034 (0.0023) 0.55 (0.03) 2.19 (0.24) -1647.9
12 277 0.018 (0.0018) 0.43 (0.05) 1.34 (0.42) -1018.5
13 876 0.038 (0.0025) 0.45 (0.02) 2.21 (0.20) -2029.1
14 296 0.016 (0.0014) 0.57 (0.05) 2.87 (0.34) -871.4
15 558 0.040 (0.0024) 0.53 (0.04) 1.75 (0.27) -1717.8
16 181 0.014 (0.0013) 0.41 (0.05) 6.49 (1.36) -683.6
17 295 0.019 (0.0017) 0.26 (0.03) 2.87 (0.66) -1023.1
18 1181 0.059 (0.0029) 0.64 (0.03) 6.91 (0.59) -1853.8
19 247 0.019 (0.0017) 0.53 (0.08) 0.83 (0.25) -992.8
20 73 0.006 (0.0008) 0.26 (0.06) 3.18 (0.92) -360.2
21 26 0.002 (0.0004) 0.32 (0.12) 0.67 (0.27) -159.7
22 689 0.030 (0.0020) 0.73 (0.04) 3.52 (0.35) -1223.4
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Table 2. Parameter estimates, standard errors, and log-likelihood values for model
(4)

i N send
i p̂i θ̂i ω̂i l(Ω̂i)

1 94 0.83 (0.09) 0.16 (0.04) 10.01 (3.25) -430.2
2 260 0.47 (0.04) 0.56 (0.05) 4.12 (0.59) -681.6
3 301 0.65 (0.05) 0.44 (0.05) 1.66 (0.26) -1018.7
4 316 0.71 (0.05) 0.37 (0.05) 4.70 (1.20) -1017.6
5 179 0.58 (0.06) 0.34 (0.04) 1.67 (0.32) -692.2
6 207 0.59 (0.06) 0.32 (0.04) 3.53 (0.64) -716.7
7 276 0.54 (0.05) 0.47 (0.05) 0.91 (0.15) -930.9
8 355 0.63 (0.04) 0.38 (0.04) 5.52 (0.96) -1059.0
9 868 0.50 (0.03) 0.49 (0.03) 10.35 (1.05) -1456.6
10 155 0.70 (0.07) 0.31 (0.05) 4.70 (1.07) -599.3
11 687 0.48 (0.03) 0.50 (0.03) 2.77 (0.26) -1534.0
12 277 0.57 (0.06) 0.44 (0.06) 1.04 (0.40) -971.8
13 876 0.45 (0.03) 0.40 (0.02) 2.85 (0.30) -1904.5
14 296 0.50 (0.04) 0.54 (0.05) 3.34 (0.40) -800.8
15 558 0.68 (0.04) 0.45 (0.04) 2.58 (0.40) -1616.1
16 181 0.69 (0.06) 0.39 (0.05) 7.69 (1.54) -638.5
17 295 0.61 (0.05) 0.23 (0.02) 4.28 (0.69) -953.0
18 1181 0.48 (0.02) 0.58 (0.03) 10.00 (0.83) -1626.2
19 247 0.71 (0.06) 0.46 (0.06) 1.28 (0.26) -936.5
20 73 0.73 (0.10) 0.25 (0.06) 3.45 (1.01) -340.6
21 26 0.73 (0.17) 0.20 (0.08) 0.77 (0.36) -148.9
22 689 0.42 (0.03) 0.68 (0.04) 4.51 (0.45) -1127.7
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Table 3. Covariates for estimating team leadership

Covariate rs rp RMSE Estimated top 3 leaders
N send 0.40 0.52 4.03 18, 13, 9
N rec 0.39 0.49 4.11 13, 8, 9
N send +N rec 0.40 0.51 4.05 18, 13, 9

θ̂ 0.41 0.39 4.34 22, 18, 2
Y 0.62 0.70 3.37 15, 13, 22

Table 4. Covariates for estimating military leadership

Covariate rs rp RMSE Estimated top 3 leaders
N send 0.29 0.13 4.28 18, 13, 9
N rec 0.20 0.02 4.31 13, 8, 9
N send +N rec 0.24 0.07 4.30 18, 13, 9

θ̂ 0.36 0.28 4.14 22, 18, 2
Y 0.42 0.50 3.73 15, 13, 22

Table 5. Number of parameters (ρ), AIC and maximum log-likelihood values for the
Poisson and Hawkes process models of the e-mail network

ρ l(Ω̂) AIC
Stationary Poisson 22 -32347.4 64738.9
Hawkes model (3) 66 -22819.4 45770.9
Hawkes model (4) 66 -21201.8 42535.5
Hawkes model (7) 506 -20887.1 42786.2
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