MATH 4305, Fall 2014
 Practice Final: Solutions

Problem 1 Please complete the on-line course survey. Thank you in advance.

Solutions: If you still did not do it, please do it right now.

Problem 2 Let $A=\left(\begin{array}{cc}4 & -2 \\ 2 & -1 \\ 0 & 0\end{array}\right), \mathbf{b}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$.
a) Find a basis for $\operatorname{Nul}(A)$. Show your work.

Solution: Row reduce the augmented matrix into RREF

$$
\left(\begin{array}{ccc}
1 & -\frac{1}{2} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

So a bisis of $N u l(A)$ is $\left\{\left(\frac{1}{2}, 1\right)^{T}\right\}$.
b) What is the dimension of $\operatorname{Row}(A)$? Mention a theorem to justify your answer.

Solution:By rank theorem, $\operatorname{rank}(A)+\operatorname{dim} \operatorname{Nul}(A)=2$, we know $\operatorname{dim} \operatorname{Nul}(A)=$ 1 from part a), so $\operatorname{rank}(A)=1=\operatorname{dim} \operatorname{Row}(A)$.
c) Find the reduced SVD for A.

Solution: Comput $A^{T} A=\left(\begin{array}{cc}20 & -10 \\ -10 & 5\end{array}\right)$. This martix has eigenvalues
$\lambda_{1}=25$, and $\lambda_{2}=0$, so the singular value of A is $\sigma_{1}=5$. Compute the eigenspace of $A^{T} A$ corresponding to λ_{1}, normalize the eigenvector, one has
$\mathbf{v}_{1}=\binom{-\frac{2}{\sqrt{5}}}{\frac{1}{\sqrt{5}}}$. Then, compute $\mathbf{u}_{1}=\frac{1}{\sigma_{1}} A \mathbf{v}_{1}=\left(\begin{array}{c}-\frac{2}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} \\ 0\end{array}\right)$. Thus one
finds the reduced SVD for A, $A=U D V^{T}$, where

$$
U=\left(\begin{array}{c}
-\frac{2}{\sqrt{5}} \\
-\frac{1}{\sqrt{5}} \\
0
\end{array}\right), D=[5], V=\binom{-\frac{2}{\sqrt{5}}}{\frac{1}{\sqrt{5}}} .
$$

d) Find the optimal least-square solution to $A \mathbf{x}=\mathbf{b}$.

Solution: the optimal least-square solution is $\mathbf{x}^{+}=A^{+} \mathbf{b}$, where $A^{+}=$ $V D^{-1} U^{T}$. So,

$$
\mathrm{x}^{+}=\binom{\frac{8}{25}}{\frac{-4}{25}}
$$

Problem 3. Let $Q(\mathbf{x})=4 x_{1}^{2}+4 x_{2}^{2}+4 x_{3}^{2}+4 x_{4}^{2}+2 x_{1} x_{2}+6 x_{1} x_{3}+2 x_{1} x_{4}+$ $2 x_{2} x_{3}+6 x_{2} x_{4}+2 x_{3} x_{4}$.
a) Find the matrix of $Q(\mathbf{x})$, compute its eigenvalues and verify if Q is positive definite.

Solution: Matrix A is

$$
A=\left(\begin{array}{llll}
4 & 1 & 3 & 1 \\
1 & 4 & 1 & 3 \\
3 & 1 & 4 & 1 \\
1 & 3 & 1 & 4
\end{array}\right)
$$

The eigenvalues of A are $\lambda_{1}=9, \lambda_{2}=5, \lambda_{3}=\lambda_{4}=1$, they all are positive, so Q is positive definite.
b) Find an orthogonal matrix P such that the change of variable $\mathbf{x}=P \mathbf{y}$ transforms $Q(\mathbf{x})$ into a quadratic form with no-cross product term. Give P and the new quadratic form.
solution: P will be formed by orthonormal eigenvectors of A. For λ_{1}, the unit eigenvector can be chosen as $\mathbf{v}_{1}=(1 / 2,1 / 2,1 / 2,1 / 2)^{T}$. For λ_{2}, the unit eigenvector can be chosen as $\mathbf{v}_{2}=(-1 / 2,1 / 2,-1 / 2,1 / 2)^{T}$. For λ_{3}, the orthonormal eigenvectors can be chosen as $\mathbf{v}_{3}=\left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}, 0\right)^{T}$ and $\mathbf{v}_{4}=\left(0,-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)^{T}$. So, $\mathbf{x}=P \mathbf{y}$ where $P=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right]$, and $Q(\mathbf{x})=$ $9 y_{1}^{2}+5 y_{2}^{2}+y_{3}^{2}+y_{4}^{2}$.
c) Find the maximum value of $Q(\mathbf{x})$ subject to the constraint $\mathbf{x}^{T} \mathbf{x}=1$. Find a unit vector \mathbf{u} where the maximum is attained.
solution: This maximum is attained at $\mathbf{u}=\mathbf{v}_{1}$, and the maximum is $\lambda_{1}=9$.
d) Find the minimum of $Q(\mathbf{x})$ subject to the constraints $\mathbf{x}^{T} \mathbf{x}=1$. Find a unit vector \mathbf{v} where the minimum is attained.
solution: This minimum is attained at any unit vector that is a linear combination of \mathbf{v}_{3} and \mathbf{v}_{4}. This minimum is 1 .

Problem 4 Let \mathbf{P}_{3} denote the vector space of polynomial of degree at most 3 . Let $T: \mathbf{P}_{3} \rightarrow \mathbf{P}_{3}$ be given by $T(p(t))=p(t)-t$. For example, $T\left(1+2 t+t^{2}\right)=$ $1+t+t^{2}$. Is T a linear transformation? Explain your answer briefly in complete sentences.

Solution: $T(0)=-t$, so T does not map 0 to 0 , and it is not linear.

Problem 5 (5 pt) A is a 3×3 matrix with two eigenvalues. Each eigenspace is one-dimensional. Is A diagonalizable? Why?

Solution: No, A is not diagonalizable. A is 3×3 and λ_{1} and λ_{2} are eigenvalues, we can assume that λ_{1} is simple and λ_{2} is double. It says, $\operatorname{dim}\left(E_{2}\right)=1$, it is less than algebraic multiplicity, so it is not diagonalizable.

Problem 6. Compute $e^{A t}$ if

$$
A=\left(\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right)
$$

Solution: A has double eigenvalue 0 with one-dimensional eigenspace. One found eigenvector $\mathbf{v}=(-1,1)^{T}$, generalized eigenvector $\mathbf{w}=(-1,0)^{T}$. So, $A=P J P^{-1}$ with

$$
P=\left(\begin{array}{cc}
-1 & -1 \\
1 & 0
\end{array}\right), J=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), P^{-1}=\left(\begin{array}{cc}
1 & 0 \\
-1 & -1
\end{array}\right) .
$$

Notice that $J^{2}=0$, it is easy to compute:

$$
e^{A t}=P e^{J t} P^{-1}=\left(\begin{array}{cc}
t+1 & t \\
-t & 1-t
\end{array}\right)
$$

The purpose of this problem is to show you why Jordan form is useful. We will not test the Jordan form in the final.

Problem 7. Suppose that $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ is a linear transformation such that $T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}3 \\ 7\end{array}\right]$, and $T\left(\left[\begin{array}{l}-1 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
a) Find the matrix of T relative to standard bases for \mathbf{R}^{2}.

Solution: $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$.
b) Evaluate $T\left(\left[\begin{array}{ll}3 \\ 1 & \end{array}\right]\right)$.

Solution: $(5,13)^{T}$.
c) Find a basis \mathbf{B} of \mathbf{R}^{2} so that \mathbf{B}-matrix of T is diagonal if possible.

Solution: $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is the basis and $\mathbf{v}_{1}=\left(\frac{\sqrt{33}-3}{6}, 1\right)^{T}, \mathbf{v}_{2}=\left(-\frac{\sqrt{33}+3}{6}, 1\right)^{T}$.

Problem 8. Let A be an $n \times n$ matrix such that $A^{2}=2 A+3 I$. Show that A is invertible and 2 is not an eigenvalue. Find one eigenvalue of A, if -1 is not an eigenvalue.

Solution: $A^{2}-2 A=3 I$ implies that $\operatorname{det}(A) \operatorname{det}(A-2 I) \neq 0$. Thus, $\operatorname{det}(A) \neq 0$ implies that A is ivertible, and $\operatorname{det}(A-2 I) \neq 0$ means that 2 is not an eigenvalue of A.

We now make use of $A^{2}-2 A-3 I=(A+I)(A-3 I)=0$, thus either $\operatorname{det}(A+I)=0$ or $\operatorname{det}(A-3 I)=0$. -1 is not an eigenvalue, one concludes that $\operatorname{det}(A-3 I)=0$ this means 3 is an eigenvalue of A.

