MATH 4305, Fall 2015,
 Midterm 2, Practice

Show all your work. You may use one side of a letter-size sheet of paper for formulae in this exam. Calculator is not allowed. Please give yourself 50 minutes.
Problm 1 Let $\mathbf{y}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right), \mathbf{u}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right), \mathbf{v}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$, and $W=$ $\operatorname{span}\{\mathbf{u}, \mathbf{v}\}$.
a) Find the orthogonal projection of \mathbf{y} onto W.
b) Find the distance between \mathbf{y} and W.

Problem 2 Find the trigonometric function of the form $f(t)=c_{0}+c_{1} \sin (t)+$ $c_{2} \cos (t)$ that best fits the data points $(0,0),(1,1),(2,2),(3,3)$, using least squares. Compute the least square error. (Remark: This is a problem for concept, find the formula, don't have to solve for exact solution. The test problem will be easier to solve.)

Problem 3 Find all possible values of a so that the columns of A given below are linearly dependent?

$$
\left(\begin{array}{llll}
a & 2 a & 0 & 0 \\
0 & 0 & a-3 & 3(a-3) \\
0 & -2 a & 0 & 1 \\
0 & 0 & a-2 & 2(a-2)
\end{array}\right)
$$

Problem 4 (a) Prove that the set $\mathbf{B}=\left\{1+t^{2}, t+t^{2}, 1+2 t+t^{2}\right\}$ is a basis for \mathbf{P}_{2}.
b) Find the matrix of the linear transformation $T(f(t))=f^{\prime}-3 f$ from \mathbf{P}_{2} to \mathbf{P}_{2} with respect to the basis \mathbf{B} found in part (a).

Problem 5. Let A be the following matrix

$$
\left(\begin{array}{lll}
1 & 3 & 5 \\
1 & 1 & 0 \\
1 & 1 & 2 \\
1 & 3 & 3
\end{array}\right)
$$

a) Find the $Q R$ factorization of A .
b) Find the orthoganal projection of $\mathbf{b}=(1,2,3,4)^{T}$ onto $\operatorname{Col}(A)$.

Problem 6: If A is an $n \times n$ matrix, is it true that $\operatorname{det}\left(A A^{T}\right)=\operatorname{det}\left(A^{T} A\right)$? Why?

