MATH 2551, Fall 2018

 Practice Final: Solutions

 Practice Final: Solutions}

Problem 1. This problem is about the function

$$
f(x, y, z)=3 z y+4 x \cos (z)
$$

(a) Find the rate of change of the function f at $(1,1,0)$ in the direction from this point to the origin.

Solution: The direction vector is $\mathbf{v}=-\mathbf{i}-\mathbf{j}$. Normalize it one obtains: $\mathbf{u}=$ $-\frac{1}{\sqrt{2}}(\mathbf{i}+\mathbf{j})$. Compute the gradient of f at $(1,1,0)$, we have

$$
\nabla f(1,1,0)=4 \mathbf{i}+3 \mathbf{k}
$$

Thus: $f_{\mathbf{u}}^{\prime}(1,1,0)=\nabla f(1,1,0) \bullet \mathbf{u}=-\frac{4}{\sqrt{2}}$.
(b) Give an approximate value of $f(0.9,1.2,0.11)$

Solution: To approximate $f(0.9,1.2,0.11)$, we use differentials. We know that $f(1,1,0)=4$, and $\Delta x=-0.1, \Delta y=0.2, \Delta z=0.11$. Thus,

$$
f(0.9,1.2,0.11) \approx f(1,1,0)+d f=4+4(-0.1)+0(0.2)+3(0.11)=3.93
$$

(c) The equation $f(x, y, z)=4$ implicitly defines z as a function of (x, y), if we agree that $z=0$ if $(x, y)=(1,1)$. Find the numnerical values of the derivatives:

$$
\frac{\partial z}{\partial x}(1,1) \text { and } \frac{\partial z}{\partial y}(1,1)
$$

Solution: By the implicit differentiation, we have

$$
\begin{gathered}
\frac{\partial z}{\partial x}(1,1)=-\frac{\partial f / \partial x(1,1,0)}{\partial f \partial z(1,1,0)}=-\frac{4}{3} \\
\frac{\partial z}{\partial y}(1,1)=-\frac{\partial f / \partial y(1,1,0)}{\partial f \partial z(1,1,0)}=-\frac{0}{3}=0
\end{gathered}
$$

(d) Suppose $\mathbf{r}(t)=(x(t), y(t), z(t))$ is a parametric curve such that $\mathbf{r}(0)=$ $(1,1,0)$ and $\mathbf{r}^{\prime}(0)=(3,2,1)$. Find the value of

$$
\left.\frac{d}{d t} f(\mathbf{r}(t))\right|_{t=0}
$$

Solution: By chain rule,

$$
\left.\frac{d}{d t} f(\mathbf{r}(t))\right|_{t=0}=\nabla f\left(\mathbf{r}(0) \bullet \mathbf{r}^{\prime}(0)=(4 \mathbf{i}+3 \mathbf{k}) \bullet(3 \mathbf{i}+2 \mathbf{j}+\mathbf{k})=15\right.
$$

Problem 2. Consider the planar vector field
$\mathbf{F}(x, y)=\left(y-2 x^{2}\right) \mathbf{i}+4 \mathbf{j}$, and $\mathbf{G}(x, y)=(1+x y) e^{x y} \mathbf{i}+x^{2} e^{x y} \mathbf{j}$, and the curve C from point $A(-2,0)$ to $B(1,3)$ that goes along the parabola $y=4-x^{2}$.
(a) (4 pt) Is \mathbf{F} a gradient field? If yes, find a function whose gradient is \mathbf{F}.

Solution: Set $p=y-2 x^{2}, q=4$, we see that

$$
\frac{\partial p}{\partial y}=1 \neq \frac{\partial q}{\partial x}=0 .
$$

So, \mathbf{F} is not a gradient field.
(b) (6 pt) Is \mathbf{G} a gradient field? If yes, find a function whose gradient is \mathbf{G}.

Solution: Set $P=(1+x y) e^{x y}, Q=x^{2} e^{x y}$, we compute

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}=2 x e^{x y}+x^{2} y e^{x y}
$$

So, $\mathbf{G}=\nabla g$ for some g.
We now look for $g(x, y)$. To this purpose, we know from $\frac{\partial g}{\partial y}=Q$ that

$$
g(x, y)=x e^{x y}+h(x)
$$

However, $\frac{\partial g}{\partial x}=P=(1+x y) e^{x y}=(1+x y) e^{x y}+h^{\prime}(x)$. This implies $h^{\prime}(x)=0$. Thus

$$
g(x, y)=x e^{x y}+C
$$

(c) Compute the work done by the field \mathbf{F} along the curve C.

Solution: C can be parametrized by

$$
\mathbf{r}(t)=t \mathbf{i}+\left(4-t^{2}\right) \mathbf{j},-2 \leq t \leq 1
$$

The work done by \mathbf{F} is

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{C}\left(y-2 x^{2}\right) d x+4 d y \\
& =\int_{-2}^{1}\left[\left(4-t^{2}-2 t^{2}\right)+4(-2 t)\right] d t \\
& =15
\end{aligned}
$$

(d) Compute the work done by the field \mathbf{G} along the curve C.

Solution: Since $\mathbf{G}=\nabla g$, by the fundamental theorem of line integrals, the work done by the \mathbf{G} is

$$
\int_{C} \mathbf{G} \cdot d \mathbf{r}=g(1,3)-g(-2,0)=e^{3}+2
$$

Problem 3. Evaluate $I=\int_{C_{R}} d x+x^{2} y d y$, where C_{R} is the triangle with vertices $(0,0),(0, R),(R, 0)$ oriented counterclockwise.

Solution: A convenient way is to apply Green's Theorem. Set $P=1$, $Q=x^{2} y$, we have

$$
\begin{aligned}
\oint_{C_{R}} d x+x^{2} y d y & =\iint_{D} 2 x y d x d y=\int_{0}^{R} \int_{0}^{R-y} 2 x y d x d y \\
& =\int_{0}^{R} y(R-y)^{2} d y=\frac{1}{2} R^{4}-\frac{2}{3} R^{4}+\frac{1}{4} R^{4} \\
& =\frac{R^{4}}{12}
\end{aligned}
$$

Problem 4 Let S be the portion of the surface $x=5-y^{2}-z^{2}$ in the half space $x \geq 1$, oriented so that the normal vector at $(5,0,0)$ is equal to \mathbf{i}. Let $\mathbf{F}(x, y, z)=-\mathbf{i}+\mathbf{j}$ (a constant vector field).
(a) Set up and evaluate the flux of \mathbf{F} across S.

Solution: Step 1: We first paramatrize the surface S by $\mathbf{r}(y, z)=\left(5-y^{2}-\right.$ $\left.z^{2}\right) \mathbf{i}+y \mathbf{j}+z \mathbf{k},(y, z) \in D$. Here D is the disc

$$
y^{2}+z^{2} \leq 4
$$

Step 2: We now compute the fundamental vector product $\mathbf{N}(\mathbf{y}, \mathbf{z})$.

$$
\begin{gathered}
\mathbf{r}_{y}^{\prime}=-2 y \mathbf{i}+\mathbf{j} \\
\mathbf{r}_{z}^{\prime}=-2 z \mathbf{i}+\mathbf{k} \\
\mathbf{N}=\mathbf{r}_{y}^{\prime} \times \mathbf{r}_{z}^{\prime}=\mathbf{i}+2 y \mathbf{j}+2 z \mathbf{k}
\end{gathered}
$$

We confirm that $\mathbf{N}(0,0)=\mathbf{i}$. Set \mathbf{n} be unit vector normalized from \mathbf{N}.

Step 3: We now compute the flux of \mathbf{F} across S :

$$
\begin{aligned}
\text { the flux } & =\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma \\
& =\iint_{D} \mathbf{F} \cdot \mathbf{N} d y d z \\
& =\iint_{D}(-1+2 y) d y d z \\
& =\int_{0}^{2 \pi} \int_{0}^{2}(-1+2 r \cos \theta) r d r d \theta \\
& =\int_{0}^{2 \pi}\left(-2+\frac{16}{3} \cos (\theta)\right) d \theta \\
& =-4 \pi
\end{aligned}
$$

(b) Verify that $\mathbf{F}=\nabla \times \mathbf{G}$, where $\mathbf{G}=z \mathbf{j}-x \mathbf{k}$.

Solution: Obivious, omitted.
(c) Give an alternative calculation of the surface integral of part (a) by applying Stokes' theorem.

Solution: The bounding curve of C is $y^{2}+z^{2}=4$ oriented in the counterclockwise direction coresponding to i. C is parametrized as $y=2 \cos \theta, z=$ $2 \sin \theta$, with $\theta \in[0,2 \pi]$. Along $C, x=1$.

By Stokes' Theorem, we can compute the flux as following:

$$
\begin{aligned}
\text { the flux } & =\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma \\
& =\iint_{S}(\nabla \times \mathbf{G} \cdot \mathbf{n}) d \sigma \\
& =\oint_{C} z d y-x d z \\
& =\int_{0}^{2 \pi}[2 \sin (\theta)(-2 \sin (\theta))-2 \cos (\theta)] d \theta \\
& =\int_{0}^{2 \pi}\left(-4 \sin ^{2}(\theta)-2 \cos (\theta)\right) d \theta \\
& =-4 \pi
\end{aligned}
$$

Problem 5 Find and classify all critical points of the function

$$
f(x, y)=\frac{5}{2} x^{2}-x y+15 x+\frac{1}{75} y^{3}-3 y
$$

Solution: Solve $\nabla f=(5 x-y+15) \mathbf{i}+\left(-x+\frac{1}{25} y^{2}-3\right) \mathbf{j}=\mathbf{0}$, one finds the critical points
$P_{1}(-3,0)$ and $P_{2}(-2,5)$.

To classify the type of the critical points, we perform the second derivative test.

$$
f_{x x}(x, y)=5, f_{x y}(x, y)=-1, f_{y y}(x, y)=\frac{2}{25} y
$$

For $P_{1}, A=5, B=-1, C=0, A C-B^{2}=-1<0$, so P_{1} is a saddle point.

For $P_{2}, A=5, B=-1, C=\frac{2}{5}, A C-B^{2}=1>0$, so P_{2} is a local minimum since $A>0$.

Problem 6 True or False? Circle the correct answer. No partial credit.

- 1 : Any constant vector field \mathbf{F} is a gradient field.
(a) True (b) False.

Solution: (a) True.

- 2: If C_{1} and C_{2} are two oriented curves, \mathbf{F} is a vector field, and the length of C_{1} is greater than the length of C_{2}, then $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}>\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}$. (a) True (b) False.

Solution: (b) False.

- 3: If $\nabla \cdot \mathbf{F}=0$ and $\nabla \times \mathbf{F}=\mathbf{0}$, then $\mathbf{F}=\mathbf{0}$.
(a) True (b) False.

Solution: (b) False.

- 4: If S_{1} and S_{2} are two oriented surface bounded by the same positively oriented curve C and \mathbf{F} is a smooth vector field, the the flux of $\nabla \times \mathbf{F}$ through S_{1} and S_{2} are the same.
(a) True (b) False.

Solution: (a) True .

- 5 : If S is a unit sphere centered at the origin and \mathbf{F} is a vector field that has zero total flux out of S, then $\nabla \cdot \mathbf{F}=0$ at all points inside S. (a) True (b) False.

Solution: (b) False.

Problem 7 Consider the surface S that is the part of the cone $z=\sqrt{x^{2}+y^{2}}$ below the plane $z=3$.
(a) Give a parametric representation of S. Make sure to explicitly describe or sketch the parametrization domain D.

Solution: We can parametrize S by $\mathbf{r}(x, y)=r \cos (\theta) \mathbf{i}+r \sin (\theta) \mathbf{j}+r \mathbf{k}$, where (x, y) is inside the disc $x^{2}+y^{2} \leq 9$. Therefore, D is given by $0 \leq \theta \leq 2 \pi, 0 \leq$ $r \leq 3$.
(b) Find an equation of the tangent plane to S at the point $P(-1,1, \sqrt{2})$.

Solution: Let $g(x, y, z)=\sqrt{x^{2}+y^{2}}-z, S$ is the level surface of $g(x, y, z)=$ 0 .

$$
\nabla g(-1,1, \sqrt{2})=-\frac{1}{\sqrt{2}} \mathbf{i}+\frac{1}{\sqrt{2}} \mathbf{j}-\mathbf{k}
$$

So the tangent plane to S at $P(-1,1, \sqrt{2})$ is

$$
-\frac{1}{\sqrt{2}}(x+1)+\frac{1}{\sqrt{2}}(y-1)-(z-\sqrt{2})=0 .
$$

(c) If the density function $\lambda(x, y, z)$ is equal to the distance to the $x y$-plane, find the total mass of the surface S.

Solution: $\lambda(x, y)=z=r$. We compute the fundamental vector product

$$
\mathbf{N}(r, \theta)=\mathbf{r}_{r}^{\prime} \times \mathbf{r}_{\theta}^{\prime}=-r \cos (\theta) \mathbf{i}-r \sin (\theta) \mathbf{j}+r \mathbf{k}
$$

and thus $\|\mathbf{N}\|=r \sqrt{2}$.

$$
\begin{aligned}
M & =\iint_{S} \lambda(x, y, z) d \sigma \\
& =\int_{0}^{2 \pi} \int_{0}^{3} r^{2} \sqrt{2} d r d \theta \\
& =18 \sqrt{2} \pi
\end{aligned}
$$

Remark: For this problem, one can also use the parametrization with a surface given by the graph $z=f(x, y)=\sqrt{x^{2}+y^{2}}$.

Problem 8 Let E denote the portion of the solid ball of radius R centered at the origin in the first octant, and let

$$
\mathbf{F}=(2 x+y) \mathbf{i}+y^{2} \mathbf{j}+\cos (x y) \mathbf{k} .
$$

Applying the Divergence Theorem, compute the net flux of the field \mathbf{F} across the boundary of E, oriented by the outward-pointing normal vectors.

Solution: The divergence of \mathbf{F} is

$$
\nabla \cdot \mathbf{F}=2+2 y
$$

By the divergence theorem, the flux out of the given suface is equal to

$$
\iiint_{E}(2+2 y) d x d y d z=2(\operatorname{volum}(E))+2 \iiint_{E} y d x d y d z
$$

where E is the region inside the surface. The volume of E is one eigth of the volume of the ball of radius R. Thus

$$
2(\operatorname{volum}(E))=\frac{1}{3} \pi R^{3} .
$$

In spherical coordinates, we have

$$
\begin{aligned}
2 \iiint_{E} y d x d y d z & =2 \int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{R} \rho \sin (\theta) \sin (\phi) \rho^{2} \sin (\phi) d \rho d \theta d \phi \\
& =\frac{R^{4}}{2} \int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \sin (\theta) \sin ^{2}(\phi) d \theta d \phi \\
& =\frac{R^{4}}{2} \int_{0}^{\pi / 2} \sin ^{2}(\phi) d \phi \\
& =\frac{R^{4}}{8} \pi .
\end{aligned}
$$

So the final answer is

$$
\frac{1}{3} \pi R^{3}+\frac{1}{8} \pi R^{4}
$$

Problem 9 Please complete the course survey. Your comments will help me to improve my teaching in the future. Thank you in advance.

