Math 4305, Spring 2016, Midterm 1, Practice

Show all your work. You may use one side of a sheet sized paper for formula in this exam. No calculator is allowed. Please give yourself 50 minutes.

Problem 1 Suppose that the matrix below is the augmented matix of a system of linear equations

$$
\left(\begin{array}{ccccc}
1 & 2 & 0 & 0 & 1 \\
0 & 0 & 1 & 3 & 2 \\
0 & -2 & 0 & 1 & 3 \\
0 & 0 & 1 & k & h
\end{array}\right)
$$

a) For what values of h and k, this system has no solution.
b) For what values of h and k, this system has a unique solution. Find the solution.
c) For what values of h and k, this system has infinitely many solutions. Describe the set of all solutions using parametric vector form.

Problem 2 Let $\mathbf{v}=(1,0,1)^{t}$. Define the linear transformation $T: \mathbf{R}^{\mathbf{3}} \rightarrow \mathbf{R}^{\mathbf{3}}$ by $T(\mathbf{x})=\mathbf{v} \times x$. Where $\left(\begin{array}{c}a_{1} \\ a_{2} \\ a_{3}\end{array}\right) \times\left(\begin{array}{c}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)=\left(\begin{array}{c}a_{2} b_{3}-a_{3} b_{2} \\ a_{3} b_{1}-a_{1} b_{3} \\ a_{1} b_{2}-a_{2} b_{1}\end{array}\right)$.
a) Find the standard matrix A of T.
b) Find a basis of $\operatorname{im}(A)$.
c) What's the dimension of $\operatorname{ker}(A)$?

Problem 3 Consider an $m \times n$ matrix A and an $n \times m$ matrix B (with $n \neq m)$ such that $A B=I_{m}$. Are the columns of B linearly independent? What about columns of A ?

Problem 4 Let $S=\{(x, y): x y \geq 0\}$ be a subset of the plane \mathbf{R}^{2}. Is S a subspace of \mathbf{R}^{2} ?

Problem 5 For which values of the cosntant k is the following matrix invertible? Find the inverse.

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & k \\
1 & 4 & k^{2}
\end{array}\right)
$$

