Math 4305, Spring 2016,
 Midterm 1, Practice solutions

Problem 1 Suppose that the matrix below is the augmented matix of a system of linear equations

$$
\left(\begin{array}{ccccc}
1 & 2 & 0 & 0 & 1 \\
0 & 0 & 1 & 3 & 2 \\
0 & -2 & 0 & 1 & 3 \\
0 & 0 & 1 & k & h
\end{array}\right)
$$

a) For what values of h and k, this system has no solution.

Solution: By interchanging r_{2} and r_{3}, and $r_{4}-r_{3}$, one arrives the REF of the matrix:

$$
\left(\begin{array}{ccccc}
1 & 2 & 0 & 0 & 1 \\
0 & -2 & 0 & 1 & 3 \\
0 & 0 & 1 & 3 & 2 \\
0 & 0 & 0 & k-3 & h-2
\end{array}\right)
$$

Now, it's easy to see that, the system has no solution if and only if the rightmost column is pivot. This happens if and only if $k=3$ and $h \neq 2$.
b) For what values of h and k, this system has a unique solution. Find the solution.

Solution: Based on the REF derived from part a), the system has a unique solution if and only if $k \neq 3$. In this case, the system is consistent without free variable. In order to solve the system, we row reduce the REF into RREF. This is achieved by $\frac{1}{k-3} r_{4},-\frac{1}{2} r_{2}, r_{3}-3 r_{4}, r_{2}+\frac{1}{2} r_{4}$ and $r_{1}-2 r_{2}$. The RREF is

$$
\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 4-Y \\
0 & 1 & 0 & 0 & -\frac{3}{2}+\frac{1}{2} Y \\
0 & 0 & 1 & 0 & 2-3 Y \\
0 & 0 & 0 & 1 & Y
\end{array}\right)
$$

where $Y=\frac{h-2}{k-3}$. So the solution is
$x_{1}=4-Y, x_{2}=-\frac{3}{2}+\frac{1}{2} Y, x_{3}=2-3 Y$ and $x_{4}=Y$.
c) For what values of h and k, this system has infinitely many solutions. Describe the set of all solutions using parametric vector form.

Solution: From part a), the system has infinitely many solutions if and only if $k=3$ and $h=2$. In this case, the system is consistent with a free variable x_{4}. The REF is now

$$
\left(\begin{array}{ccccc}
1 & 2 & 0 & 0 & 1 \\
0 & -2 & 0 & 1 & 3 \\
0 & 0 & 1 & 3 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

To solve the system, we row reduce the above matrix to RREF by $r_{1}+r_{2}$ and $-\frac{1}{2} r_{2}$:

$$
\left(\begin{array}{ccccc}
1 & 0 & 0 & 1 & 4 \\
0 & 1 & 0 & -\frac{1}{2} & -\frac{3}{2} \\
0 & 0 & 1 & 3 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Thus, $x_{1}=4-x_{4}, x_{2}=-\frac{3}{2}+\frac{1}{2} x_{4}, x_{3}=2-3 x_{4}$ and x_{4} is free. So the solution is described by

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
4 \\
-\frac{3}{2} \\
2 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{c}
-1 \\
\frac{1}{2} \\
-3 \\
1
\end{array}\right)
$$

Problem 2 Let $\mathbf{v}=(1,0,1)^{t}$. Define the linear transformation $T: \mathbf{R}^{\mathbf{3}} \rightarrow \mathbf{R}^{\mathbf{3}}$ by $T(\mathbf{x})=\mathbf{v} \times \mathbf{x}$. Where $\left(\begin{array}{c}a_{1} \\ a_{2} \\ a_{3}\end{array}\right) \times\left(\begin{array}{c}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)=\left(\begin{array}{c}a_{2} b_{3}-a_{3} b_{2} \\ a_{3} b_{1}-a_{1} b_{3} \\ a_{1} b_{2}-a_{2} b_{1}\end{array}\right)$.
a) Find the standard matrix A of T.

Solution $A=\left[\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right]$, where $\mathbf{a}_{i}=T\left(\mathbf{e}_{i}\right)$.

$$
T\left(\mathbf{e}_{1}\right)=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), T\left(\mathbf{e}_{2}\right)=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right), T\left(\mathbf{e}_{3}\right)=\left(\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right) .
$$

We thus have

$$
A=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & -1 \\
0 & 1 & 0
\end{array}\right)
$$

b) Find a basis of $\operatorname{im}(A)$.

Solution: We do the interchange of r_{1} and r_{2}, then $r_{3}+r_{2}$, we thus reach the REF of A :

$$
\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Therefore, we know that a basis of $\operatorname{im}(A)$ is $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$.
c) What's the dimension of $\operatorname{ker}(A)$?

Solution By the Rank Theorem, we know that

$$
\operatorname{dim} \operatorname{ker}(A)=3-\operatorname{dim} \operatorname{im}(A)=1
$$

Problem 3 Consider an $m \times n$ matrix A and an $n \times m$ matrix B (with $n \neq m$) such that $A B=I_{m}$. Are the columns of B linearly independent? What about columns of A ?

Solution: If columns of B are linearly dependent, so are columns of $A B$, which contradicts to $A B=I_{m}$. Or, we could show that colums of B are linearly independent directly. To show this, we assume there is a vector $\mathbf{x} \in \mathbf{R}^{m}$, such that $B \mathbf{x}=0$. Then we have $\mathbf{x}=I_{m} \mathbf{x}=A B \mathbf{x}=A 0=0$.Thus, if $A B=I_{m}$, then columns of B are linearly independent. Furthermore, we know that $n>m$. Since A is $m \times n$, columns of A are linearly dependent.

Problem 4 Let $S=\{(x, y): x y \geq 0\}$ be a subset of the plane \mathbf{R}^{2}. Is S a subspace of \mathbf{R}^{2} ?

Solution: S is not a subspace of \mathbf{R}^{2}. One can easily verify that it is not close for addition. Choose $\mathbf{v}=(-1,0)$ and $\mathbf{u}=(0,1)$, both are in S, however, $\mathbf{v}+\mathbf{u}=(-1,1)$ is not in S.

Problem 5 For which values of the cosntant k is the following matrix invertible? Find the inverse.

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & k \\
1 & 4 & k^{2}
\end{array}\right)
$$

Solution: Row reduce the matrix into REF by $r_{2}-r_{1}, r_{3}-r_{1}, r_{3}-3 r_{2}$,

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & k-1 \\
0 & 0 & k^{2}-3 k+2
\end{array}\right) .
$$

The matrix is invertible if $k^{2}-3 k+2 \neq 0$. Thus, if $k \neq 1$ and $k \neq 2$, the matrix is invertible. For $k \neq 1$ and $k \neq 2$, we denote the nonzero quantity $k^{2}-3 k+2$ by N, let $M=k-1$, thus Gauss-Jordan algorithm will give the inverse

$$
\frac{1}{N}\left(\begin{array}{ccc}
2 M+2 N-2 & 3-3 M-N & M-1 \\
-N-2 M & N+3 M & -M \\
2 & -3 & 1
\end{array}\right)
$$

