MATH 2401, Summer 2014

Practice Midterm, Solutions

Problem 1. Calculations.
(a) $\frac{d}{d t}[(2 t \mathbf{i}+\sqrt{t} \mathbf{j}) \bullet(t \mathbf{i}-3 \mathbf{j})]$
solution: $4 t-\frac{3}{2} t^{-1 / 2}$.
(b) $\frac{d}{d t}[(\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k}) \times(3 \mathbf{i}+4 \mathbf{j}+5 \mathbf{k})]$
solution: $(5 \cos t-4) \mathbf{i}+(5 \sin t+3) \mathbf{j}-(4 \sin t+3 \cos t) \mathbf{k}$
(c) $\frac{d}{d t}\left[e^{\cos 2 t} \mathbf{i}+\ln \left(1+t^{2}\right) \mathbf{j}+(1-\cos t) \mathbf{k}\right]$
solution: $-2 \sin (2 t) e^{\cos 2 t} \mathbf{i}+\frac{2 t}{1+t^{2}} \mathbf{j}+\sin t \mathbf{k}$
(d) Let $w=f(x, y, z)=x z+e^{y^{2} z}+\sqrt{x y^{2} z^{3}}$, calculate $w_{x}, w_{y}, w_{z}, w_{x y}$ and $w_{y z}$
solution: $w_{x}=z+\frac{1}{2} \sqrt{y^{2} z^{3}} x^{-1 / 2}, w_{y}=2 y z e^{y^{2} z}+\sqrt{x z^{3}}$,

$$
\begin{aligned}
& w_{z}=x+y^{2} e^{y^{2} z}+\frac{3}{2} \sqrt{x y^{2} z}, w_{x y}=\frac{1}{2} z^{3 / 2} x^{-1 / 2} . \\
& w_{y z}=2 y e^{y^{2} z}+2 y^{3} z e^{y^{2} z}+\frac{3}{2} \sqrt{x z} .
\end{aligned}
$$

(e) Set $f(x, y)=\frac{x^{2}-y^{4}}{x^{3}-y^{4}}$. Determine whether or not f has a limit at $(1,1)$.
solution: Along $x=1$, the limit is 1 , while along $y=1$, the limit is $2 / 3$. So it has no limit at $(1,1)$.
(f) Find the directional derivative of $f(x, y, z)=x y+y z+z x$ at $P(1,-1,1)$ in the direction of $\mathbf{i}+2 \mathbf{j}+\mathbf{k}$

Solution:

$$
\nabla f=(y+z) \mathbf{i}+(x+z) \mathbf{j}+(y+x) \mathbf{k}
$$

$\nabla f(1,-1,1)=2 \mathbf{j} . \mathbf{u}=\frac{\sqrt{6}}{6}(\mathbf{i}+2 \mathbf{j}+\mathbf{k})$, so

$$
f_{\mathbf{u}}^{\prime}(1,-1,1)=\nabla f(1,-1,1) \bullet \mathbf{u}=\frac{2}{3} \sqrt{6} .
$$

(g) Find the rate of change of $f(x, y)=x e^{y}+y e^{-x}$ along the curve $\mathbf{r}(t)=$ $(\ln t) \mathbf{i}+t(\ln t) \mathbf{j}$.

Solution:

$$
\begin{gathered}
\nabla f=\left(e^{y}-y e^{-x}\right) \mathbf{i}+\left(x e^{y}+e^{-x}\right) \mathbf{j}, \\
\nabla f(\mathbf{r}(t))=\left(t^{t}-\ln t\right) \mathbf{i}+\left(t^{t} \ln t+\frac{1}{t}\right) \mathbf{j}, \\
\frac{d f}{d t}=\nabla f(\mathbf{r}(t)) \bullet \mathbf{r}^{\prime}(t)=t^{t}\left(\frac{1}{t}+\ln t+(\ln t)^{2}\right)+\frac{1}{t} .
\end{gathered}
$$

(h) Find $\frac{\partial u}{\partial s}$ for $u=x^{2}-x y, x=s \operatorname{cost}, y=t$ sins.

Solution:

$$
\frac{\partial u}{\partial s}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial s}=(2 x-y)(\cos t)+(-x)(t \cos s)=2 \operatorname{scos}^{2} t-t \text { sins cost }- \text { st coss cost. }
$$

(i) Find $\frac{d y}{d x}$ if $x \cos (x y)+y \cos (x)=2$.

Solution: Set $u=x \cos (x y)+y \cos (x)-2$,

$$
\begin{gathered}
\frac{\partial u}{\partial x}=\cos (x y)-x y \sin (x y)-y \sin (x) . \\
\frac{\partial u}{\partial y}=-x^{2} \sin (x y)+\cos (x) \\
\frac{d y}{d x}=-\frac{\partial u / \partial x}{\partial u / \partial y}=\frac{\cos (x y)-x y \sin (x y)-y \sin (x)}{x^{2} \sin (x y)-\cos (x)} .
\end{gathered}
$$

(j) Is $\mathbf{F}(x, y)=(x+\sin y) \mathbf{i}+(x \cos y-2 y) \mathbf{j}$ a gradient of a function $f(x, y)$? If yes, find the general form of $f(x, y)$.

Solution: Set $P=x+\sin y, Q=x \cos y-2 y \cdot \frac{\partial P}{\partial y}=\cos y=\frac{\partial Q}{\partial x}=\cos y$.
Thus, \mathbf{F} is a gradient of a function. For $f(x, y)$, we have from $\frac{\partial f}{\partial x}=P$ that

$$
f(x, y)=\frac{1}{2} x^{2}+x \sin (y)+g(y) .
$$

To determine $g(y)$, we have

$$
Q=\frac{\partial f}{\partial y}=x \cos (y)+g^{\prime}(y)
$$

which implies that $g^{\prime}(y)=-2 y$, thus $g(y)=-y^{2}+C$, with C a constant. So, $f(x, y)=\frac{1}{2} x^{2}+x \sin (y)-y^{2}+C$.

Problem 2 A golf ball is hit at time $t=0$. Its position vector as a function of time is given by

$$
\mathbf{r}(t)=2 t \mathbf{i}+3 t \mathbf{j}+\left(-t^{2}+4 t\right) \mathbf{k}
$$

Notice that at $t=0$ the ball is at the origin of the coordinate system. The $x y$ plane represents the ground. At some time $t_{1}>0$ the ball will return to the $x y$ plane at some point $P(a, b, 0)$.
(a) Compute the velocity, the accelaration and the speed of the ball at an arbitrary time t.
solution: $\mathbf{v}(t)=\mathbf{r}^{\prime}(t)=2 \mathbf{i}+3 \mathbf{j}+(4-2 t) \mathbf{k}, \mathbf{a}(t)=-2 \mathbf{k} . v(t)=\|\mathbf{v}(t)\|=$ $\sqrt{13+(4-2 t)^{2}}$.
(b) Find the time $t_{1}>0$ and the coordinates of the point P where the ball hits the $x y$ plane again.
solution: $t_{1}=4$.
(c) Set up a definite integral equal to the length of the arc of the trajectory from the origin to the point P . You do not have to evaluate the integral.
solution: $\int_{0}^{4} \sqrt{13+(4-2 t)^{2}} d t$.
(d) Find the equation of the line tangent to the trajectory at P.
solution: $\mathbf{R}(u)=8 \mathbf{i}+12 \mathbf{j}+u \mathbf{r}^{\prime}(4)=(8+2 u) \mathbf{i}+(12+3 u) \mathbf{j}-4 u \mathbf{k}$.
(e) Find the equation of the vertical plane containing the trajectory.
solution: The plane is through the origin and is vertical. The vector \mathbf{k} is in this plane. The other vector can be easily found by the projection of the trajectory onto xy-plane. The projection of the trajectory onto xy-plane is the curve:

$$
C(t): x=2 t, y=3 t, z=0 .
$$

This is a straight line through the origin with dirction $2 \mathbf{i}+3 \mathbf{j}$. Thus the normal for the plane of the trajectory is

$$
\mathbf{n}=(2 \mathbf{i}+3 \mathbf{j}) \times \mathbf{k}=3 \mathbf{i}-2 \mathbf{j} .
$$

The plane equation is thus

$$
3 x-2 y=0 .
$$

(f) Find the curvature of the trajectory at P.
solution: $(1) k=\frac{\|\mathbf{v} \times \mathbf{a}\|}{(d s / d t)^{3}}$. At $t_{1}=4$,

$$
k=\frac{\sqrt{52}}{29^{\frac{3}{2}}} .
$$

(2) $k=\frac{\|d \mathbf{T} / d t\|}{d s / d t}=\frac{\sqrt{52}}{29^{\frac{3}{2}}}$.

Problem 3 At each point $P(x(t), y(t), z(t))$ of its motion, an object of mass m is subject to a force:
$\mathbf{F}(t)=m \pi^{2}[4 \cos (\pi t) \mathbf{i}+3 \sin (\pi t) \mathbf{j}]$. Given that $\mathbf{v}(0)=-3 \pi \mathbf{j}+\mathbf{k}$, and $\mathbf{r}(0)=3 \mathbf{j}$. find the following:
solution: Upon integration, we have

$$
\begin{aligned}
& \mathbf{a}(t)=\pi^{2}[4 \cos (\pi t) \mathbf{i}+3 \sin (\pi t) \mathbf{j}] \\
& \mathbf{v}(t)=4 \pi \sin (\pi t) \mathbf{i}-3 \pi \cos (\pi t) \mathbf{j}+\mathbf{k} \\
& \mathbf{r}(t)=4(1-\cos (\pi t)) \mathbf{i}+3(1-\sin (\pi t) \mathbf{j}+t \mathbf{k}
\end{aligned}
$$

(a) The velocity $\mathbf{v}(1)$.
solution: $\mathbf{v}(1)=3 \pi \mathbf{j}+\mathbf{k}$.
(b) The speed $v(1)$.
solution: $v(1)=\sqrt{9 \pi^{2}+1}$.
(c) The momentum $\mathbf{p}(1)$.
solution: $\mathbf{p}(1)=m \mathbf{v}(1)=3 m \pi \mathbf{j}+m \mathbf{k}$.
(d) The angular momentum $\mathbf{L}(1)$.
solution: $\mathbf{L}(1)=\mathbf{r}(1) \times \mathbf{p}(1)=3 m(1-\pi) \mathbf{i}-8 m \mathbf{j}+24 m \pi \mathbf{k}$.
(e) The torque $\tau(1)$.
solution: $\tau(1)=\mathbf{r}(1) \times \mathbf{F}(1)=-4 m \pi^{2} \mathbf{j}+12 m \pi^{2} \mathbf{k}$.
(f) The position $\mathbf{r}(1)$.
solution: $\mathbf{r}(1)=8 \mathbf{i}+3 \mathbf{j}+\mathbf{k}$.

Problem 4 Consider the function $f(x, y, z)=\sqrt{x}+\sqrt{y}+\sqrt{z}$.
(a) Find the equation for the tangent plane to the level surface $f=4$ at the point $P(1,4,1)$.

Solution:

$$
\begin{aligned}
& \nabla f=\frac{1}{2 \sqrt{x}} \mathbf{i}+\frac{1}{2 \sqrt{y}} \mathbf{j}+\frac{1}{2 \sqrt{z}} \mathbf{k} \\
& \nabla f(1,4,1)=\frac{1}{2} \mathbf{i}+\frac{1}{4} \mathbf{j}+\frac{1}{2} \mathbf{k}
\end{aligned}
$$

Tangent plane: $\frac{1}{2}(x-1)+\frac{1}{4}(y-4)+\frac{1}{2}(z-1)=0$.
(b) Find the equation for the normal line to $f=4$ at $P(1,4,1)$.

Solution: The normal line: $x=1+\frac{1}{2} t, y=4+\frac{1}{4} t, z=1+\frac{1}{2} t$.
(c) Use differentials to estimate $f(0.9,4.1,1.1)$.

Solution: $f(0.9,4.1,1.1) \sim \sim-f(1,4,1)+d f$.

$$
d f=\frac{1}{2} \times(-0.1)+\frac{1}{4} \times 0.1+\frac{1}{2} \times 0.1=0.025
$$

Thus, the estimate is 4.025 .

Problem 5. Find the area of the largest rectangle with edges parrallel to the coordinate axes that can be inscribed in the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$.

Solution: Use Lagrange multiplies method. Set the coordiates of the corner points of the rectangle to be $(x, y),(-x, y),(-x,-y),(x,-y)$. We need to maximize $f(x, y)=4 x y$ with the side condition $g(x, y)=\frac{x^{2}}{9}+\frac{y^{2}}{4}-1=0$. $\nabla f=4 y \mathbf{i}+4 x \mathbf{j}, \nabla g=\frac{2}{9} x \mathbf{i}+\frac{1}{2} y \mathbf{j}$. Solve the following system:

$$
\left\{\begin{array}{l}
4 y=\lambda \frac{2}{9} x \\
4 x=\lambda \frac{1}{2} y \\
g(x, y)=0
\end{array}\right.
$$

We have

$$
\lambda=12, x=\frac{3}{2} \sqrt{2}, y=\sqrt{2}, \text { and the area is } 12 .
$$

Problem 6 Find the absolute extreme values taken on $f(x, y)=\frac{-2 y}{x^{2}+y^{2}+1}$ on the set $D=\left\{(x, y): x^{2}+y^{2} \leq 4\right\}$.

Solution: $\nabla f=\frac{4 x y}{\left(x^{2}+y^{2}+1\right)^{2}} \mathbf{i}+\frac{2 y^{2}-2 x^{2}-2}{\left(x^{2}+y^{2}+1\right)^{2}} \mathbf{j}=\mathbf{0}$ at $P_{1}=(0,1)$ and $P_{2}=(0,-1)$ in D.

Next we consider the boundary of D. We parametrize the circle by

$$
C: \mathbf{r}(t)=2 \cos (t) \mathbf{i}+2 \sin (t) \mathbf{j}, t \in[0,2 \pi] .
$$

The values of f on the boundary are given by the function:

$$
F(t)=f(\mathbf{r}(t))=-\frac{4}{5} \sin (t), t \in[0,2 \pi]
$$

$F^{\prime}(t)=-\frac{4}{5} \cos (t)=0$ at $t=\frac{1}{2} \pi$ and $t=\frac{3}{2} \pi$. Thus the critical points on boundary of D are $P_{3}=\mathbf{r}(0)=\mathbf{r}(2 \pi)=(2,0), P_{4}=\mathbf{r}\left(\frac{1}{2} \pi\right)=(0,2)$, and $P_{5}=\mathbf{r}\left(\frac{3}{2} \pi\right)=(0,-2)$. Evaluate f at all critical points:

$$
\begin{gathered}
f(0,1)=-1, f(0,-1)=1, f(2,0)=0, \\
f(0,2)=-\frac{4}{5}, f(0,-2)=\frac{4}{5}
\end{gathered}
$$

So, f takes on its absolute maximum of 1 at $(0,-1)$ and its absolute minimum of -1 at $(0,1)$.

