MATH 2401, Summer 2014
 Practice Final : Solutions

Problem 1. This problem is about the function

$$
f(x, y, z)=3 z y+4 x \cos (z)
$$

(a) Find the rate of change of the function f at $(1,1,0)$ in the direction from this point to the origin.

Solution: The direction vector is $\mathbf{v}=-\mathbf{i}-\mathbf{j}$. Normalize it one obtains: $\mathbf{u}=$ $-\frac{1}{\sqrt{2}}(\mathbf{i}+\mathbf{j})$. Compute the gradient of f at $(1,1,0)$, we have

$$
\nabla f(1,1,0)=4 \mathbf{i}+3 \mathbf{k}
$$

Thus: $f_{\mathbf{u}}^{\prime}(1,1,0)=\nabla f(1,1,0) \bullet \mathbf{u}=-\frac{4}{\sqrt{2}}$.
(b) Give an approximate value of $f(0.9,1.2,0.11)$

Solution: To approximate $f(0.9,1.2,0.11)$, we use differentials. We know that $f(1,1,0)=4$, and $\Delta x=-0.1, \Delta y=0.2, \Delta z=0.11$. Thus,

$$
f(0.9,1.2,0.11) \approx f(1,1,0)+d f=4+4(-0.1)+0(0.2)+3(0.11)=3.93
$$

(c) The equation $f(x, y, z)=4$ implicitly defines z as a function of (x, y), if we agree that $z=0$ if $(x, y)=(1,1)$. Find the numnerical values of the derivatives:

$$
\frac{\partial z}{\partial x}(1,1) \text { and } \frac{\partial z}{\partial y}(1,1)
$$

Solution: By the implicit differentiation, we have

$$
\begin{gathered}
\frac{\partial z}{\partial x}(1,1)=-\frac{\partial f / \partial x(1,1,0)}{\partial f \partial z(1,1,0)}=-\frac{4}{3} \\
\frac{\partial z}{\partial y}(1,1)=-\frac{\partial f / \partial y(1,1,0)}{\partial f \partial z(1,1,0)}=-\frac{0}{3}=0
\end{gathered}
$$

(d) Suppose $\mathbf{r}(t)=(x(t), y(t), z(t))$ is a parametric curve such that $\mathbf{r}(0)=$ $(1,1,0)$ and $\mathbf{r}^{\prime}(0)=(3,2,1)$. Find the value of

$$
\left.\frac{d}{d t} f(\mathbf{r}(t))\right|_{t=0}
$$

Solution: By chain rule,

$$
\left.\frac{d}{d t} f(\mathbf{r}(t))\right|_{t=0}=\nabla f\left(\mathbf{r}(0) \bullet \mathbf{r}^{\prime}(0)=(4 \mathbf{i}+3 \mathbf{k}) \bullet(3 \mathbf{i}+2 \mathbf{j}+\mathbf{k})=15\right.
$$

Problem 2 (a) Find the value of a such that the field on the plane

$$
\mathbf{F}(x, y)=(a x y) \mathbf{i}+x^{2} \mathbf{j}
$$

is conservative. Find a potential for the resulting field.

Solution: Set $P=a x y, Q=x^{2}$. For $\mathbf{F}(x, y)$ to be conservative, we need

$$
\frac{\partial P}{\partial y}=a x=\frac{\partial Q}{\partial x}=2 x .
$$

Hence, $a=2$.

We now look for $f(x, y)$ such that $\nabla f=\mathbf{F}$. To this purpose, we know from $\frac{\partial f}{\partial x}=P=2 x y$ that

$$
f(x, y)=x^{2} y+g(y)
$$

However, $\frac{\partial f}{\partial y}=A=x^{2}=x^{2}+g^{\prime}(y)$. This implies $g^{\prime}(y)=0$. Thus

$$
f(x, y)=x^{2} y+C
$$

A potential of \mathbf{F} is $G(x, y)=-x^{2} y$.
(b) Compute the line integral of the conservative field you found in part (a) over the curve $\mathbf{r}(t)=e^{t^{2}} \mathbf{i}+t \cos (2 \pi t) \mathbf{j}, 0 \leq t \leq 1$.

Solution: We first determine the endpoints for the curve. It is clear that the curve starts at $(1,0)$ and ends at $(e, 1)$. Since $\mathbf{F}=\nabla f$, by the fundamental theorem of line integrals, we have

$$
\int_{C} \mathbf{F}(\mathbf{r}) \bullet d \mathbf{r}=f(e, 1)-f(1,0)=e^{2} .
$$

Problem 3. Evaluate $I=\int_{C_{R}} d x+x^{2} y d y$, where C_{R} is the triangle with vertices $(0,0),(0, R),(R, 0)$ oriented counterclockwise.

Solution: A convenient way is to apply Green's Theorem. Set $P=1$, $Q=x^{2} y$, we have

$$
\begin{aligned}
\oint_{C_{R}} d x+x^{2} y d y & =\iint_{D} 2 x y d x d y=\int_{0}^{R} \int_{0}^{R-y} 2 x y d x d y \\
& =\int_{0}^{R} y(R-y)^{2} d y=\frac{1}{2} R^{4}-\frac{2}{3} R^{4}+\frac{1}{4} R^{4} \\
& =\frac{R^{4}}{12}
\end{aligned}
$$

Problem 4 Let S be the portion of the surface $x=5-y^{2}-z^{2}$ in the half space $x \geq 1$, oriented so that the normal vector at $(5,0,0)$ is equal to \mathbf{i}. Let $\mathbf{F}(x, y, z)=-\mathbf{i}+\mathbf{j}$ (a constant vector field) .
(a) Set up and evaluate the flux of \mathbf{F} across S.

Solution: Step 1: We first paramatrize the surface S by $\mathbf{r}(y, z)=\left(5-y^{2}-\right.$ $\left.z^{2}\right) \mathbf{i}+y \mathbf{j}+z \mathbf{k},(y, z) \in D$. Here D is the disc

$$
y^{2}+z^{2} \leq 4
$$

Step 2: We now compute the fundamental vector product $\mathbf{N}(\mathbf{y}, \mathbf{z})$.

$$
\begin{gathered}
\mathbf{r}_{y}^{\prime}=-2 y \mathbf{i}+\mathbf{j} \\
\mathbf{r}_{z}^{\prime}=-2 z \mathbf{i}+\mathbf{k} \\
\mathbf{N}=\mathbf{r}_{y}^{\prime} \times \mathbf{r}_{z}^{\prime}=\mathbf{i}+2 y \mathbf{j}+2 z \mathbf{k} .
\end{gathered}
$$

We confirm that $\mathbf{N}(0,0)=\mathbf{i}$. Set \mathbf{n} be unit vector normalized from \mathbf{N}.

Step 3: We now compute the flux of \mathbf{F} across S :

$$
\begin{aligned}
\text { the flux } & =\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma \\
& =\iint_{D} \mathbf{F} \cdot \mathbf{N} d y d z \\
& =\iint_{D}(-1+2 y) d y d z \\
& =\int_{0}^{2 \pi} \int_{0}^{2}(-1+2 r \cos \theta) r d r d \theta \\
& =\int_{0}^{2 \pi}(-2+4 \cos (\theta)) d \theta \\
& =-4 \pi .
\end{aligned}
$$

(b) Verify that $\mathbf{F}=\nabla \times \mathbf{G}$, where $\mathbf{G}=z \mathbf{j}-x \mathbf{k}$.

Solution: Obivious, omitted.
(c) Give an alternative calculation of the surface integral of part (a) by applying Stokes' theorem.

Solution: The bounding curve of C is $y^{2}+z^{2}=4$ oriented in the counterclockwise direction coresponding to i. C is parametrized as $y=2 \cos \theta, z=$ $2 \sin \theta$, with $\theta \in[0,2 \pi]$. Along $C, x=1$.

By Stokes' Theorem, we can compute the flux as following:

$$
\begin{aligned}
\text { the flux } & =\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma \\
& =\iint_{S}(\nabla \times \mathbf{G} \cdot \mathbf{n}) d \sigma \\
& =\oint_{C} z d y-x d z \\
& =\int_{0}^{2 \pi}[2 \sin (\theta)(-2 \sin (\theta))-2 \cos (\theta)] d \theta \\
& =\int_{0}^{2 \pi}\left(-4 \sin ^{2}(\theta)-2 \cos (\theta)\right) d \theta \\
& =-4 \pi
\end{aligned}
$$

Problem 5 For each item, circle the correct answer or indicate if the statement is ture or false. Assume that the functions, fields and curves below are smooth.

Solution:

(a) Let C be an arc from $(0,0)$ to $(2,1)$. According to the fundamental theorem for line integrals, $\int_{C}(y-1) d x+(x+2 y) d y$ is equal to
(1) 2 ,
(2) 1, (3) It depends on what C is.

Solution: The vector field $(y-1) \mathbf{i}+(x+2 y) \mathbf{j}=\nabla f$ with $f=x y-x+$ y^{2}, and therefore the fundamental theorem applies. The correct answer is $f(2,1)-f(0,0)=1$. So, Choose (2).
(b) For every smooth function f, the integral $\int_{0}^{1} \int_{0}^{2 y^{2}+1} f(x, y) d x d y$ is equal to
(1) $\int_{0}^{3} \int_{0}^{\sqrt{\frac{1}{2}(x-1)}} f(x, y) d y d x$,
(2) $\int_{1}^{3} \int_{0}^{\sqrt{\frac{1}{2}(x+1)}} f(x, y) d y d x$,
(3) None of the above.

Solution: The region of integration is of type II but not of type I. So correct answer is (3).
(c) If \mathbf{F} is a field such that $\int_{C} \mathbf{F} \cdot d \mathbf{r}=0$ where C is the unit circle, then \mathbf{F} must be conservative.

> (1) True, (2) False.

Solution: One cannot conclude that \mathbf{F} is conservative just by knowing that the integral of \mathbf{F} around a particular closed curve is zero. One would need to know that the integra of \mathbf{F} around every closed curve is zero to conclude that \mathbf{F} is conservative. So the correct answer is (2).
(d) If C is the boundary of a bounded domain D and C is oriented as in the statement of Green's theorem, then $\int_{C} x^{2} y d x-y d y$ equals
(1) $\iint_{D}(2 x y-1) d x d y$
(2) $\iint_{D}\left(1-x^{2}\right) d x d y$
(3) $\iint_{D}\left(-x^{2}\right) d x d y$
(4) None of the above.

Solution: In this case, $Q_{x}-P_{y}=-x^{2}$, so the correct answer is (3) by Green's Theorem.
(e) If (a, b) is a critical point of a function f, and if

$$
f_{x x}(a, b)=-2, \text { and } f_{y y}(a, b)=1,
$$

then what can one say about (a, b) ?
(1) Noting can be concluded from the given information.
(2) (a, b) is a local minimum of f
(3) (a, b) is a local maximum of f
(4) (a, b) is a saddle point of f

Solution: It is tempting to conclude that, since we don't know anything about the value $f_{x y}(a, b)$, the correct answer should be (1). However, the discriminant of this function at (a, b) is

$$
-2 \times 1-\left(f_{x y}(a, b)\right)^{2} \leq-2<0
$$

and therefore the correct answer is (4).

Problem 6 Consider the surface S that is the part of the cone $z=\sqrt{x^{2}+y^{2}}$
below the plane $z=3$.
(a) Give a parametric representation of S. Make sure to explicitly describe or sketch the parametrization domain D.

Solution: We can parametrize S by $\mathbf{r}(x, y)=x \mathbf{i}+y \mathbf{j}+\left(x^{2}+y^{2}\right) \mathbf{k}$, where $(x, y) \in D$, and D is the disc

$$
x^{2}+y^{2} \leq 9
$$

(b) Find an equation of the tangent plane to S at the point $P(-1,1, \sqrt{2})$.

Solution: Let $g(x, y, z)=\sqrt{x^{2}+y^{2}}-z, S$ is the level surface of $f(x, y, z)=$ 0 .

$$
\nabla g(-1,1, \sqrt{2})=-\frac{1}{\sqrt{2}} \mathbf{i}+\frac{1}{\sqrt{2}} \mathbf{j}-\mathbf{k}
$$

So the tangent plane to S at $P(-1,1, \sqrt{2})$ is

$$
-\frac{1}{\sqrt{2}}(x+1)+\frac{1}{\sqrt{2}}(y-1)-(z-\sqrt{2})=0 .
$$

(c) If the density function $\lambda(x, y, z)$ is equal to the distance to the $x y$-plane, find the total mass of the surface S.

Solution: $f(x, y)=\sqrt{x^{2}+y^{2}}, x^{2}+y^{2} \leq 9$.

$$
\begin{aligned}
M & =\iint_{S} \lambda(x, y, z) d \sigma \\
& =\iint_{D} \sqrt{x^{2}+y^{2}} \sqrt{f_{x}^{2}+f_{y}^{2}+1} d x d y \\
& =\iint_{D} \sqrt{x^{2}+y^{2}} \sqrt{2} d x d y \\
& =\int_{0}^{2 \pi} \int_{0}^{3} \sqrt{2} r r d r d \theta \\
& =18 \sqrt{2} \pi .
\end{aligned}
$$

Problem 7 Let E denote the portion of the solid ball of radius R in the first octant, and let

$$
\mathbf{F}=(2 x+y) \mathbf{i}+y^{2} \mathbf{j}+\cos (x y) \mathbf{k} .
$$

Applying the Divergence Theorem, compute the net flux of the field \mathbf{F} across the boundary of E, oriented by the outward-pointing normal vectors.

Solution: The divergence of \mathbf{F} is

$$
\nabla \cdot \mathbf{F}=2+2 y
$$

By the divergence theorem, the flux out of the given suface is equal to

$$
\iiint_{E}(2+2 y) d x d y d z=2(\operatorname{volum}(E))+2 \iiint_{E} y d x d y d z
$$

where E is the region inside the surface. The volume of E is one eigth of the volume of the ball of radius R. Thus

$$
2(\operatorname{volum}(E))=\frac{1}{3} \pi R^{3}
$$

In spherical coordinates, we have

$$
\begin{aligned}
2 \iiint_{E} y d x d y d z & =2 \int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{R} \rho \sin (\theta) \sin (\phi) \rho^{2} \sin (\phi) d \rho d \theta d \phi \\
& =\frac{R^{4}}{2} \int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \sin (\theta) \sin ^{2}(\phi) d \theta d \phi \\
& =\frac{R^{4}}{2} \int_{0}^{\pi / 2} \sin ^{2}(\phi) d \phi \\
& =\frac{R^{4}}{8} \pi
\end{aligned}
$$

So the final answer is

$$
\frac{1}{3} \pi R^{3}+\frac{1}{8} \pi R^{4}
$$

Problem 8 Please complete the course survey. Your comments will help me to improve my teaching in the future. Thank you in advance.

