MATH 4305, Summer 2015,
 Exam 2, Practice

Show all your work. Please give yourself 100 minutes.
Problem 1 Let $\mathbf{v}=(1,0,1)^{t}$. Define the linear transformation $T: \mathbf{R}^{\mathbf{3}} \rightarrow \mathbf{R}^{\mathbf{3}}$
by $T(\mathbf{x})=\mathbf{v} \times x$. Where $\left(\begin{array}{c}a_{1} \\ a_{2} \\ a_{3}\end{array}\right) \times\left(\begin{array}{c}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)=\left(\begin{array}{c}a_{2} b_{3}-a_{3} b_{2} \\ a_{3} b_{1}-a_{1} b_{3} \\ a_{1} b_{2}-a_{2} b_{1}\end{array}\right)$.
a) Find the standard matrix A of T.
b) Find a basis of $i m(A)$.
c) What's the dimension of $\operatorname{ker}(A)$?

Problem 2 Consider an $m \times n$ matrix A and an $n \times m$ matrix B (with $n \neq m$) such that $A B=I_{m}$. Are the columns of B linearly independent? What about columns of A ?

Problem 3 Find a basis \mathbf{B} of \mathbf{R}^{2} such that

$$
\left[\begin{array}{l}
1 \\
2
\end{array}\right]_{\mathrm{B}}=\left[\begin{array}{l}
3 \\
5
\end{array}\right], \quad\left[\begin{array}{l}
3 \\
4
\end{array}\right]_{\mathrm{B}}=\left[\begin{array}{l}
2 \\
3
\end{array}\right] .
$$

Problem 4 Find all possible values of a so that the columns of A given below are linearly dependent?

$$
\left(\begin{array}{llll}
a & 2 a & 0 & 0 \\
0 & 0 & a-3 & 3(a-3) \\
0 & -2 a & 0 & 1 \\
0 & 0 & a-2 & 2(a-2)
\end{array}\right)
$$

Problem 5 (a) Prove that the set $\mathbf{B}=\left\{1+t^{2}, t+t^{2}, 1+2 t+t^{2}\right\}$ is a basis for \mathbf{P}_{2}.
b) Find the matrix of the linear transformation $T(f(t))=f^{\prime}-3 f$ from \mathbf{P}_{2} to \mathbf{P}_{2} withe respect to the basis \mathbf{B} found in part (a).

