MATH 4305, Summer 2015, Exam 2, Practice

Show all your work. Please give yourself 100 minutes.

Problem 1 Let $\mathbf{v} = (1, 0, 1)^t$. Define the linear transformation $T : \mathbf{R}^3 \to \mathbf{R}^3$ by $T(\mathbf{x}) = \mathbf{v} \times x$. Where $\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$. a) Find the standard matrix A of T.

- b) Find a basis of im(A).
- c) What's the dimension of ker(A)?

Problem 2 Consider an $m \times n$ matrix A and an $n \times m$ matrix B (with $n \neq m$) such that $AB = I_m$. Are the columns of B linearly independent? What about columns of A?

Problem 3 Find a basis **B** of \mathbf{R}^2 such that

Γ	1]	$\begin{bmatrix} 3 \end{bmatrix}$	$\begin{bmatrix} 3 \end{bmatrix}$	$\begin{bmatrix} 2 \end{bmatrix}$
	$\begin{bmatrix} 1\\2 \end{bmatrix}_{\mathbf{B}} =$	$\begin{bmatrix} 5 \end{bmatrix}$,	$\begin{bmatrix} 4 \end{bmatrix}_{\mathbf{B}}$	$= \begin{bmatrix} 2\\ 3 \end{bmatrix}.$

Problem 4 Find all possible values of a so that the columns of A given below are linearly dependent?

$$\left(\begin{array}{cccc} a & 2a & 0 & 0 \\ 0 & 0 & a-3 & 3(a-3) \\ 0 & -2a & 0 & 1 \\ 0 & 0 & a-2 & 2(a-2) \end{array}\right)$$

Problem 5 (a) Prove that the set $\mathbf{B} = \{1 + t^2, t + t^2, 1 + 2t + t^2\}$ is a basis for \mathbf{P}_2 .

b) Find the matrix of the linear transformation T(f(t)) = f' - 3f from \mathbf{P}_2 to \mathbf{P}_2 with respect to the basis **B** found in part (a).