Math 4305, Summer 2015,
 Practice Exam 2,solutions

Problem 1 Let $\mathbf{v}=(1,0,1)^{t}$. Define the linear transformation $T: \mathbf{R}^{\mathbf{3}} \rightarrow \mathbf{R}^{\mathbf{3}}$
by $T(\mathbf{x})=\mathbf{v} \times \mathbf{x}$. Where $\left(\begin{array}{c}a_{1} \\ a_{2} \\ a_{3}\end{array}\right) \times\left(\begin{array}{c}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)=\left(\begin{array}{c}a_{2} b_{3}-a_{3} b_{2} \\ a_{3} b_{1}-a_{1} b_{3} \\ a_{1} b_{2}-a_{2} b_{1}\end{array}\right)$.
a) Find the standard matrix A of T.

Solution $A=\left[\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right]$, where $\mathbf{a}_{i}=T\left(\mathbf{e}_{i}\right)$.

$$
T\left(\mathbf{e}_{1}\right)=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), T\left(\mathbf{e}_{2}\right)=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right), T\left(\mathbf{e}_{3}\right)=\left(\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right) .
$$

We thus have

$$
A=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & -1 \\
0 & 1 & 0
\end{array}\right)
$$

b) Find a basis of $\operatorname{im}(A)$.

Solution: We do the interchange of r_{1} and r_{2}, then $r_{3}+r_{2}$, we thus reach the REF of A :

$$
\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Therefore, we know that a basis of $\operatorname{im}(A)$ is $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$.
c) What's the dimension of $\operatorname{ker}(A)$?

Solution By the Rank Theorem, we know that

$$
\operatorname{dim} \operatorname{ker}(A)=3-\operatorname{dim} \operatorname{im}(A)=1
$$

Problem 2 Consider an $m \times n$ matrix A and an $n \times m$ matrix B (with $n \neq m)$ such that $A B=I_{m}$. Are the columns of B linearly independent? What about columns of A ?

Solution: If columns of B are linearly dependent, so are columns of $A B$. Thus, if $A B=I_{m}$, then columns of B are linearly independent. Furthermore, we know that $n>m$ (otherwise, columns of B are linearly dependent). Since A is $m \times n$, columns of A are linearly dependent.

Problem 3 Find a basis \mathbf{B} of \mathbf{R}^{2} such that

$$
\left[\begin{array}{l}
1 \\
2
\end{array}\right]_{\mathrm{B}}=\left[\begin{array}{l}
3 \\
5
\end{array}\right], \quad\left[\begin{array}{l}
3 \\
4
\end{array}\right]_{\mathrm{B}}=\left[\begin{array}{l}
2 \\
3
\end{array}\right] .
$$

Solution: Let the vectors in \mathbf{B} be \mathbf{v}_{1} and \mathbf{v}_{2}, and the matrix $S=\left[\mathbf{v}_{1}, \mathbf{v}_{2}\right]$. For any $\mathbf{x} \in \mathbf{R}^{2}$, it is clear that $S[\mathbf{x}]_{\mathbf{B}}=\mathbf{x}$. Therefore, one reads from the problem that

$$
S A=C
$$

where

$$
A=\left(\begin{array}{ll}
3 & 2 \\
5 & 3
\end{array}\right), C=\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right)
$$

Therefore

$$
S=C A^{-1}=\left(\begin{array}{ll}
12 & -7 \\
14 & -8
\end{array}\right)
$$

Remark One can also solve in the way like $3 v_{1}+5 v_{2}=(1,2)^{t}$ and $2 v_{1}+3 v_{2}=(3,4)^{t}$. This way is simpler in calculations.

Problem 4 Find all possible values of a so that the columns of A given below are linearly dependent?

$$
\left(\begin{array}{llll}
a & 2 a & 0 & 0 \\
0 & 0 & a-3 & 3(a-3) \\
0 & -2 a & 0 & 1 \\
0 & 0 & a-2 & 2(a-2)
\end{array}\right)
$$

Solution: Clearly, if $a=0$, first two columns are zero columns, A has linearly dependent columns. Furthermore, if $a=2$ or $a=3, A$ has zero rows, it will not have 4 pivots and thus A must have linearly dependet columns. Now, assumpe $a \neq 0, a \neq 2$ and $a \neq 3$, by sclaing, A becomes

$$
\left(\begin{array}{llll}
1 & 2 & 0 & 0 \\
0 & 0 & 1 & 3 \\
0 & -2 a & 0 & 1 \\
0 & 0 & 1 & 2
\end{array}\right)
$$

which has REF

$$
\left(\begin{array}{llll}
1 & 2 & 0 & 0 \\
0 & -2 a & 0 & 1 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

There is a pivot in each columns, and thus columns of A are linearly independet.

Columns of A are linearly dependent if and only if $a=0$, or $a=2$ or $a=3$.

Problem 5 (a) Prove that the set $\mathbf{B}=\left\{1+t^{2}, t+t^{2}, 1+2 t+t^{2}\right\}$ is a basis for \mathbf{P}_{2}.

Proof Since $\operatorname{dim} \mathbf{P}_{2}=3$ and \mathbf{B} has 3 vectors, it is sufficient to show that \mathbf{B} is linearly independet. Fix the standard basis $S=\left\{1, t, t^{2}\right\}$, we check the corresponding coordinate vectors are linearly independent. Let $p_{1}(t)=1+t^{2}$, $p_{2}(t)=t+t^{2}$, and $p_{3}(t)=1+2 t+t^{2}$, we have

$$
A=\left[\left[p_{1}\right]_{S},\left[p_{2}\right]_{S},\left[p_{3}\right]_{S}\right]=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 2 \\
1 & 1 & 1
\end{array}\right)
$$

We easily verify that A is invertible and thus proves that B is linearly independent and so is a basis for \mathbf{P}_{2}.
b) Find the matrix of the linear transformation $T(f(t))=f^{\prime}-3 f$ from \mathbf{P}_{2} to \mathbf{P}_{2} withe respect to the basis \mathbf{B} found in part (a).

Solution: The desired matrix M can be obtained by

$$
\left.A M=\left[\left[T\left(p_{1}\right)\right]_{S},\left[T\left(p_{2}\right)\right]_{S}\right],\left[T\left(p_{3}\right)\right]_{S}\right]=D .
$$

Since $T\left(p_{1}\right)=-3+2 t-3 t^{2}, T\left(p_{2}\right)=1-t-3 t^{2}$ and $T\left(p_{3}\right)=-1-4 t-3 t^{2}$, thus

$$
M=A^{-1} D=A^{-1}\left(\begin{array}{ccc}
-3 & 1 & -1 \\
2 & -1 & -4 \\
-3 & -3 & -3
\end{array}\right)=\left(\begin{array}{ccc}
-4 & -\frac{1}{2} & 0 \\
0 & -4 & -2 \\
1 & \frac{3}{2} & -1
\end{array}\right) .
$$

