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Abstract: In this note, we present a framework for the large time behavior of
general uniformly bounded weak entropy solutions to the Cauchy problem of
Euler-Poisson system of semiconductor devices. It is shown that the solutions
converges to the stationary solutions exponentially in time. No smallness and
regularity conditions are assumed.

1 Introduction

Consider the following one-dimensional Euler-Poisson system modeling semi-
conductor devices:







nt + Jx = 0,

Jt + (J2

n
+ p(n))

x
= nE − J, x ∈ R, t > 0,

Ex = n − b(x).

(1)

Here n ≥ 0, J, and E denote the electron density, electron current density
and the (negative) electric field, respectively. The function b = b(x) > 0,
called doping profile, stands for the density of fixed, positively charged back-
ground ions. In this paper, we assume b(x) satisfies

b(x) ∈ C2(R), b′(x) ∈ L1(R) ∩ H1(R),

lim
x→±∞

b(x) = b± > 0, b∗ = sup
x∈R

b(x) ≥ inf
x∈R

b(x) = b∗ > 0. (2)
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We also assume the pressure p satisfies the γ-law: p(n) = nγ (γ ≥ 1).
Several physical constants have been set to unity for the simplicity of pre-
sentation. Such a system, replacing the most commonly used drift-diffusion
model for charged carriers, is valid in the region occupied by the semicon-
ductor. We refer to [14] for background on modeling and analysis.

This system is supplemented with a condition at x = −∞ for the electric
field

lim
x→−∞

E(x, t) = E−, for a.e. t ∈ [0, +∞), (3)

and the initial conditions

n(x, 0) = n0(x), J(x, 0) = J0(x) (4)

such that

lim
x→±∞

n0(x) = b± > 0, lim
x→±∞

J0(x) = J̄ , b−E− = J̄ . (5)

Due to the relaxation mechanism, smooth solutions exist globally in time
if the initial data is chosen from the so-called sub-critical region; see [1] and
[17]. However, when data is out of that region, the solutions break down in
finite time, c.f. [2]. The global existence of weak entropy solutions are proven
in [13], [16] and [18]. Concerning with the large time behavior of solutions, we
refer to [10], [11] for small smooth solutions, and to [9] for piecewise smooth
solutions. There were also some results concerning the initial boundary value
problems, we refer the readers to [8], [12] and [4] and the references therein.

In this paper, we will focus on a framework on large time asymptotic
behavior that applies to any uniformly bounded entropy weak solutions. The
entropy and entropy flux pair we will use here are the physical ones defined
as following:

ηe =
J2

2n
+

nγ

γ − 1
, qe =

J3

2n2
+

γ

γ − 1
nγ−1J, γ > 1;

ηe =
J2

2n
+ n ln n, qe =

J3

2n2
+ (ln n + 1)J, γ = 1.

(6)

We now define the concept of entropy weak solutions.

Definition 1: The bounded measurable function (n, J, E)(x, t) is said to be
an entropy weak solution of problem (1), (3)–(5), if it satisfies the system

2



(1) in the distributional sense, verifies the initial and limiting restrictions
(3)–(5), and the following entropy inequality

ηet + qex +
J

n
(J − nE) ≤ 0, (7)

holds in the distributional sense.

Throughout this paper, we assume

H1): Assume that (n, J, E)(x, t) is any globally defined weak entropy solu-
tions which satisfies

0 ≤ n(x, t) ≤ C0. (8)

Under this assumption, we will prove that the entropy weak solution de-
fined above converges exponentially fast toward the corresponding stationary
states if the background current J̄ has small amplitude. In section 2, we will
study the stationary states in subsonic region. Our main result will be es-
tablished in section 3. Some remarks are collected in section 4.

2 Stationary states

Again, due to the relaxation mechanism in the current equation of (1), we
expect that all the solutions of our problem converge to the solutions of the
following stationary problem,















J̃x = 0,

(
J̃2

ñ
+ p(ñ))x = ñẼ − J̃ ,

Ẽx = ñ − b(x),

(9)

under the conditions

ñ(x) − b(x) ∈ H1(R), J̃ = J̄ , Ẽ(−∞) = E−. (10)

A straightforward calculation (see [9]) shows that (9)–(10) gives

[(
p′(ñ)

ñ
−

J̄2

ñ3
)ñx]x + (

J̄

ñ
)x = ñ − b(x), (11)
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which is a second order ODE for ñ(x). Clearly, the strictly elliptic condition
is equivalent to

p′(ñ) >
J̄2

ñ2
. (12)

This is exactly the subsonic condition [3], recalling that
J

n
represents the

particle velocity. We also note that (12) is equivalent to

ñ > (
J̄2

γ
)

1
(γ+1) . (13)

In order to ensure the subsonic condition, we assume that

H2): b(x) and J̄ satisfy b∗ > (
J̄2

γ
)1/(γ+1).

Under H2), it is proven by [11] (see also [9]) that

Theorem 1: Suppose b(x) satisfies the condition (2). Assume that H2)
holds. Then problem (9)-(10) has a unique solution (ñ, J̄, Ẽ), such that
b±Ẽ(±∞) = J̄ , and

b∗ ≤ ñ(x) ≤ b∗, x ∈ R, (14)

|ñ(x) − b±| = O(1)e−c±|x|, as x → ±∞, (15)

‖ñ − b‖H2 + sup
x∈R

(|ñ′(x)| + |ñ′′(x)| + |Ẽ(x)|) ≤ C1, (16)

where C1 is a positive constant that only depends on b(x), and

c± =
Ẽ±

p′(b±) − Ẽ2
±

.

We remark that, (14) and H2) together ensure the subsonic condition (13)
and then the proof of Theorem 1 is carried out by standard ODE theory. The
proof of statement (14) is done through a comparison argument as that in
[10].
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3 Large time behavior

Now, our aim is to prove the entropy-weak solution of (1), (3)-(5) strongly
converges to its stationary solution in L2(R) with exponential decay rate.
We set

y = −(E − Ẽ). (17)

Then systems (1) and (9) infer that

yx = −(n − ñ), yt = J − J̄ . (18)

As expected, the entropy inequality (7) will play an important role in our
analysis. For this purpose, we introduce

η∗ = ηe − η̃e −∇η̃e(
−→v −

−→
ṽ ),

q∗ = qe − q̃e −∇η̃e(
−→
f −

−→
f̃ ),

(19)

where
η̃e = ηe(ñ, J̄), q̃e = qe(ñ, J̄),

−→v = (n, J)T ,
−→
f = (J,

J2

n
+ p(n))T .

(20)

The following theorem is our main result.

Theorem 2: Let (ñ, J̄ , Ẽ) be given in Theorem 1. Let (n, J, E)(x, t) be
any weak entropy solution of (1), (3)–(5) satisfying H1) such that y(x, 0) ∈

L2(R),

∫ ∞

−∞

η∗(x, 0)dx < ∞, then there exists a positive constant δ such that

if
J̄ ≤ δ,

then
∫ ∞

−∞

(y2
t + y2

x + y2)dx ≤ Ce−C̃t

∫ ∞

−∞

(η∗(x, 0) + y2(x, 0)) dx, (21)

holds for any t > 0 and some positive constants C and C̃.
Proof: First, from (17) and (18) we have the following equation on y

ytt + (
J2

n
−

J̄2

ñ
)x + (p(n) − p(ñ))x + yt = −ñy − Ẽyx + yyx. (22)
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Multiplying y with (22) and integrating over (−∞, +∞), we get

d

dt

∫ ∞

−∞

(yyt +
1

2
y2)dx +

∫ ∞

−∞

(p(n) − p(ñ))(n − ñ) + (ñ −
Ẽx

2
)y2) dx

≤

∫ ∞

−∞

y2
t dx +

∫ ∞

−∞

(
J2

n
−

J̄2

ñ
)yx dx.

(23)
We now note that

ñ −
Ẽx

2
=

1

2
(ñ + b(x)). (24)

Thanks to (14), the Lemma 3.1 of [6] says that

(p(n) − p(ñ))(n − ñ) = O(1)(n − ñ)2 = O(1)y2
x. (25)

Therefore, we conclude from (23) that there exists a positive constant C2

such that
d

dt

∫ ∞

−∞

(yyt +
1

2
y2)dx + C2

∫ ∞

−∞

(y2
x + y2) dx

≤

∫ ∞

−∞

y2
t dx +

∫ ∞

−∞

(
J2

n
−

J̄2

ñ
)yx dx.

(26)

As our solution has no further regularity, standard energy estimates such
as (26) do not generalize to higher order. Following the ideas introduced
in [5] and [6], we will now explore the entropy dissipation. In view of the
definition of η∗ and q∗ in (19), we substitute them into the entropy inequality
(7) to obtain

0 ≥ ηet + qex −
J

n
(nE − J)

= η∗t + q∗x + ∇η̃e(
−→v −

−→
ṽ )t + ∇η̃e(

−→
f −

−→
f̃ )x

+q̃ex + (∇η̃e)x(
−→
f −

−→
f̃ ) −

J

n
(nE − J).

(27)

We now simplify the terms in (27). Using the equations (17), (18) and
(22), we observe that

∇η̃e(
−→v −

−→
ṽ )t + ∇η̃e(

−→
f −

−→
f̃ )x =

J̄

ñ
(nE − ñẼ − yt), (28)

and

q̃ex + (∇η̃e)x(
−→
f −

−→
f̃ )

= [γñγ−2J +
J̄2

ñ3
J − 2

J̄3

ñ3
−

J̄

ñ2
(
J2

n
−

J̄2

ñ
+ p(n) − p(ñ))]ñx.

(29)
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We thus have from (27) that

η∗t + q∗x ≤ JE −
J2

n
−

J̄

ñ
(nE − ñẼ − yt)

−[q̃ex + (∇η̃e)x(
−→
f −

−→
f̃ )].

(30)

For further simplification is necessary, we note that

Ẽ =
1

ñ
(
J̄2

ñ
+ p(ñ))x +

J̄

ñ
= γñγ−2ñx −

J̄2

ñ3
ñx +

J̄

ñ
,

then
JE = JẼ − yyt − yJ̄

= −
J̄2

ñ3
Jñx + γñγ−2Jñx +

J̄

ñ
yt +

J̄2

ñ
− yyt − yJ̄.

(31)

On the other hand, we have

−
J̄

ñ
(nE − ñẼ − yt) = −

J̄

ñ
(yyx − Ẽyx − yñ − yt)

= −
J̄3

ñ4
yxñx + γñγ−3J̄yxñx +

J̄2

ñ2
yx −

J̄

ñ
yyx + J̄y +

J̄

ñ
yt.

(32)

From (29)–(32), manipulating the terms properly, we conclude that

(η∗ +
1

2
y2)t + q∗x + Q1 ≤

J̄ ñx

ñ2
(Q1 + Q2 +

1

2
y2) − (

J̄

2ñ
y2)x, (33)

where

Q1 =
J2

n
−

J̄2

ñ
−

2J̄

ñ
yt −

J̄2

ñ2
yx, Q2 = nγ − ñγ + γñγ−1yx. (34)

Clearly, Q1 is the quadratic remainder of the Taylor expansion of
J2

n
around

J̄ and ñ, while Q2 is the one for pressure. Furthermore, Q2 = 0 for γ = 1.
Due to the convexity, we remark that both Q1 and Q2 are non-negative.

Integrating (33) over (−∞, +∞), we get

d

dt

∫ ∞

−∞

(η∗ +
1

2
y2)dx +

∫ ∞

−∞

Q1dx ≤

∫ ∞

−∞

J̄ ñx

ñ2
(Q1 + Q2 +

1

2
y2)dx. (35)
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Let Λ = max{b∗, C0}, where C0 is given in H1). We now multiply (35)
by λ = 2Λ + 1, add the results to (23) to obtain

d

dt

∫ ∞

−∞

F1 dx +

∫ ∞

−∞

(F2 + F3 + F4) dx ≤ 0, (36)

where

F1 = λη∗ +
1

2
(1 + λ)y2 + yyt,

F2 = λ(1 −
J̄ ñx

ñ2
)Q1 − y2

t − (
J2

n
−

J̄2

ñ
)yx,

F3 = (p(n) − p(ñ))(n − ñ) − λ
J̄ñx

ñ2
Q2,

F4 = [(ñ −
Ẽx

2
) −

1

2
λ

J̄ñx

ñ2
]y2.

(37)

By Theorem 1, we know there is C3 > 0 such that

J̄ ñx

ñ2
≤ C3δ.

For F4, it is clear from (14) and (24) that

F4 ≥
1

2
(2b∗ − λC3δ)y

2. (38)

When γ = 1, Q2 = 0, and thus F3 = y2
x. When γ > 1, Lemma 5.2 of [15]

states that there exits a positive C4 such that

Q2 ≤ C4(p(n) − p(ñ))(n − ñ),

and therefore
F3 ≥ (1 − C3C4λδ)(p(n) − p(ñ))(n − ñ). (39)

We now treat F2. From the definition of Q1 in (34), we know that

(
J2

n
−

J̄2

ñ
)yx = yxQ1 +

2J̄

ñ
ytyx +

J̄2

ñ2
y2

x. (40)

On the other hand,

Q1 =
J2

n
−

J2

ñ
+

J2

ñ
−

J̄2

ñ
−

2J̄

ñ
yt −

J̄2

ñ2
yx

=
y2

t

ñ
+

yx

ñ
(
J2

n
−

J̄2

ñ
)

=
y2

t

ñ
+

yx

ñ
(Q1 +

2J̄

ñ
yt +

J̄2

ñ2
yx),
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from which we have

n

ñ
Q1 =

y2
t

ñ
+

2J̄

ñ2
ytyx +

J̄2

ñ3
y2

x. (41)

Then we get










Q1 ≥
y2

t

ñ
+

2J̄

ñ2
ytyx, n ≤ ñ;

Q1 ≥
ñ

n
(
y2

t

ñ
+

2J̄

ñ2
ytyx), n > ñ.

(42)

We are now able to give a good estimate on F2. From (40) and (42), and the
fact that |yx| ≤ Λ, we have, for some positive constants C5 and C6, that

F2 ≥ [λ(1 − C3δ) − yx]Q1 − y2
t −

2J̄

ñ
ytyx −

J̄2

ñ2
y2

x

≥ C5Q1 − C6δy
2
x,

(43)

provided C3λδ < 1
2
, this is achieved if δ < 1

2
(C3λ)−1. Therefore, for suitably

small δ, we have from (38), (39) and (43) that there is C7 > 0 such that

F2 + F3 + F4 ≥ C7(Q1 + y2
x + y2). (44)

We now turn to F1. It is easy to see that

η∗ =
Q1

2
+

1

γ − 1
Q2, γ > 1; η∗ =

Q1

2
+ Q3, γ = 1, (45)

where
Q3 = n ln n − ñ ln ñ − (ln ñ + 1)(n − ñ). (46)

From Lemma 3.1 of [6], we know that there is C8 > 0 such that

Q2 ≥ C8y
2
x. (47)

We now claim that there are C9 > 0 and C10 > 0 such that

C9y
2
x ≤ Q3 ≤ C10y

2
x. (48)

Indeed, Q3 is the quadratic remainder of the Taylor expansion of the convex
function n ln n about ñ ≥ b∗ > 0. (48) is easily proven using the strict
convexity of n lnn and the bound of n. Therefore, we conclude from (37),
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(42), (45)–(48) and the smallness of δ that there are C11 > 0 and C12 > 0
such that

C11(y
2 + y2

x + y2
t ) ≤ C12(y

2 + y2
x + Q1) ≤ F1 ≤ C13(y

2 + y2
x + Q1). (49)

Hence, (36), (44) and (49) imply that

d

dt

∫ ∞

−∞

F1 dx +
C7

C13

∫ ∞

−∞

F1 dx ≤ 0, (50)

which together with (49) yields the decay estimate (21). This completes the
proof of Theorem 2.

4 Conclusion Remarks

In this section, we make some remarks on our assumptions, results and proofs.

1) In the proof of Theorem 2, we used the fact that y(±∞, t) = 0. The ini-
tial assumption does imply that y(±∞, 0) = 0. Therefore, (21) and standard
continuity argument do verify this fact.

2) We also remark that the smallness assumption on J̄ also ensures H2),
that guarantees the subsonic condition. However, it is clear that the proof of

Theorem 2 is still valid if we request small background velocity
J̄

b∗
instead.

Furthermore, δ does not have to be arbitrary small in our Theorem 2. It is
clear from our proof that one may determine a constant upper bound for δ

depending on b∗, b∗, C0 and certain convex functions appear in the proof.
This will leads to a tedious elementary calculation which is not the main
purpose of this paper. It is not clear whether the statement (21) is true
without any restriction on the amplitude of J̄ or background velocity.

3) The uniform upper bound on density is very important in our proof.
We remark that the uniform bound (8) on n is still an open problem for L∞

weak entropy solutions to system (1), although it seems natural from physical
point of view. The bounds obtained in [13] or [16] grow in time. However,
for the piecewise smooth solutions constructed in [9], the uniform bound (8)
is verified. Also, the sub-critical global smooth solutions constructed in [17]
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have uniform upper bound on n. Therefore, our Theorem 2 is valid for the
solutions obtained by [9] and [17].
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