
contains q changes as a result of the ith insertion. Let Pi denote this probability (where the probability is taken
over random insertion orders, irrespective of the choice of q). Since q could fall through up to three levels in the
search tree as a result of each the insertion, the expected length of q’s search path in the final structure is at most

n∑

i=1

3Pi.

We will show that Pi ≤ 4/i. From this it will follow that the expected path length is at most

n∑

i=1

3
4
i

= 12
n∑

i=1

1
i
,

which is roughly 12 ln n = O(log n) by the Harmonic series.

To show that Pi ≤ 4/i, we apply a backwards analysis. In particular, consider the trapezoid that contains q after
the ith insertion. Recall from last time that this trapezoid is dependent on at most four segments, which define
the top and bottom edges, and the left and right sides of the trapezoid. Since each segment is equally likely to be
the last segment to have been added, the probability that the last insertion caused q to belong to a new trapezoid
is at most 4/i. This completes the proof.

Guarantees on Search Time: One shortcoming with this analysis is that even though the search time is provably
small in the expected case for a given query point, it might still be the case that once the data structure has been
constructed there is a single very long path in the search structure, and the user repeatedly performs queries
along this path. Hence, the analysis provides no guarantees on the running time of all queries.

Although we will not prove it, the book presents a stronger result, namely that the length of the maximum search
path is also O(log n) with high probability. In particular, they prove the following.

Lemma: Given a set of n non-crossing line segments in the plane, and a parameter λ > 0, the probability that
the total depth of the randomized search structure exceeds 3λ ln(n + 1), is at most 2/(n + 1)λ ln 1.25−3.

For example, for λ = 20, the probability that the search path exceeds 60 ln(n + 1) is at most 2/(n + 1)1.5. (The
constant factors here are rather weak, but a more careful analysis leads to a better bound.)

Nonetheless, this itself is enough to lead to variant of the algorithm for which O(log n) time is guaranteed.
Rather than just running the algorithm once and taking what it gives, instead keep running it and checking the
structure’s depth. As soon as the depth is at most c log n for some suitably chosen c, then stop here. Depending
on c and n, the above lemma indicates how long you may need to expect to repeat this process until the final
structure has the desired depth. For sufficiently large c, the probability of finding a tree of the desired depth will
be bounded away from 0 by some constant factor, and therefore after a constant number of trials (depending on
this probability) you will eventually succeed in finding a point location structure of the desired depth. A similar
argument can be applied to the space bounds.

Theorem: Given a set of n non-crossing line segments in the plane, in expected O(n log n) time, it is possible
to construct a point location data structure of (worst case) size O(n) that can answer point location queries
in (worst case) time O(log n).

Lecture 16: Voronoi Diagrams and Fortune’s Algorithm

Reading: Chapter 7 in the 4M’s.

Euclidean Geometry: We now will make a subtle but important shift. Up to now, virtually everything that we have
done has not needed the notion of angles, lengths, or distances (except for our work on circles). All geometric
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tests were made on the basis of orientation tests, a purely affine construct. But there are important geometric
algorithms that depend on nonaffine quantities such as distances and angles. Let us begin by defining the
Euclidean length of a vector v = (vx, vy) in the plane to be |v| =

√
v2

x + v2
y . In general, in dimension d it is

|v| =
√

v2
1 + . . . + v2

d.

The distance between two points p and q, denoted dist(p, q) or |pq|, is defined to be |p− q|.

Voronoi Diagrams: Voronoi diagrams (like convex hulls) are among the most important structures in computational
geometry. A Voronoi diagram records information about what is close to what. Let P = {p1, p2, . . . , pn} be a
set of points in the plane (or in any dimensional space), which we call sites. Define V(pi), the Voronoi cell for
pi, to be the set of points q in the plane that are closer to pi than to any other site. That is, the Voronoi cell for
pi is defined to be:

V(pi) = {q | |piq| < |pjq|,∀j $= i}.

Another way to define V(pi) is in terms of the intersection of halfplanes. Given two sites pi and pj , the set of
points that are strictly closer to pi than to pj is just the open halfplane whose bounding line is the perpendicular
bisector between pi and pj . Denote this halfplane h(pi, pj). It is easy to see that a point q lies in V(pi) if and
only if q lies within the intersection of h(pi, pj) for all j $= i. In other words,

V(pi) = ∩j "=ih(pi, pj).

Since the intersection of halfplanes is a (possibly unbounded) convex polygon, it is easy to see that V(pi) is a
(possibly unbounded) convex polygon. Finally, define the Voronoi diagram of P , denoted Vor(P ) to be what
is left of the plane after we remove all the (open) Voronoi cells. It is not hard to prove (see the text) that the
Voronoi diagram consists of a collection of line segments, which may be unbounded, either at one end or both.
An example is shown in the figure below.

Figure 58: Voronoi diagram

Voronoi diagrams have a number of important applications. These include:

Nearest neighbor queries: One of the most important data structures problems in computational geometry is
solving nearest neighbor queries. Given a point set P , and given a query point q, determine the closest
point in P to q. This can be answered by first computing a Voronoi diagram and then locating the cell of
the diagram that contains q. (We have already discussed point location algorithms.)

Computational morphology: Some of the most important operations in morphology (used very much in com-
puter vision) is that of “growing” and “shrinking” (or “thinning”) objects. If we grow a collection of
points, by imagining a grass fire starting simultaneously from each point, then the places where the grass
fires meet will be along the Voronoi diagram. The medial axis of a shape (used in computer vision) is just
a Voronoi diagram of its boundary.
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Facility location: We want to open a new Blockbuster video. It should be placed as far as possible from any
existing video stores. Where should it be placed? It turns out that the vertices of the Voronoi diagram are
the points that are locally at maximum distances from any other point in the set.

Neighbors and Interpolation: Given a set of measured height values over some geometric terrain. Each point
has (x, y) coordinates and a height value. We would like to interpolate the height value of some query point
that is not one of our measured points. To do so, we would like to interpolate its value from neighboring
measured points. One way to do this, called natural neighbor interpolation, is based on computing the
Voronoi neighbors of the query point, assuming that it has one of the original set of measured points.

Properties of the Voronoi diagram: Here are some observations about the structure of Voronoi diagrams in the
plane.

Voronoi edges: Each point on an edge of the Voronoi diagram is equidistant from its two nearest neighbors pi

and pj . Thus, there is a circle centered at such a point such that pi and pj lie on this circle, and no other
site is interior to the circle.

pi

pj

pi

pj

pk

Figure 59: Properties of the Voronoi diagram.

Voronoi vertices: It follows that the vertex at which three Voronoi cells V(pi), V(pj), and V(pk) intersect,
called a Voronoi vertex is equidistant from all sites. Thus it is the center of the circle passing through these
sites, and this circle contains no other sites in its interior.

Degree: If we make the general position assumption that no four sites are cocircular, then the vertices of the
Voronoi diagram all have degree three.

Convex hull: A cell of the Voronoi diagram is unbounded if and only if the corresponding site lies on the
convex hull. (Observe that a site is on the convex hull if and only if it is the closest point from some point
at infinity.) Thus, given a Voronoi diagram, it is easy to extract the convex hull in linear time.

Size: If n denotes the number of sites, then the Voronoi diagram is a planar graph (if we imagine all the
unbounded edges as going to a common vertex infinity) with exactly n faces. It follows from Euler’s
formula that the number of Voronoi vertices is at most 2n− 5 and the number of edges is at most 3n− 6.
(See the text for details.)

Computing Voronoi Diagrams: There are a number of algorithms for computing Voronoi diagrams. Of course,
there is a naive O(n2 log n) time algorithm, which operates by computing V(pi) by intersecting the n − 1
bisector halfplanes h(pi, pj), for j $= i. However, there are much more efficient ways, which run in O(n log n)
time. Since the convex hull can be extracted from the Voronoi diagram in O(n) time, it follows that this is
asymptotically optimal in the worst-case.
Historically, O(n2) algorithms for computing Voronoi diagrams were known for many years (based on incre-
mental constructions). When computational geometry came along, a more complex, but asymptotically superior
O(n log n) algorithm was discovered. This algorithm was based on divide-and-conquer. But it was rather com-
plex, and somewhat difficult to understand. Later, Steven Fortune invented a plane sweep algorithm for the
problem, which provided a simpler O(n log n) solution to the problem. It is his algorithm that we will discuss.
Somewhat later still, it was discovered that the incremental algorithm is actually quite efficient, if it is run as a
randomized incremental algorithm. We will discuss this algorithm later when we talk about the dual structure,
called a Delaunay triangulation.
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Fortune’s Algorithm: Before discussing Fortune’s algorithm, it is interesting to consider why this algorithm was not
invented much earlier. In fact, it is quite a bit trickier than any plane sweep algorithm we have seen so far. The
key to any plane sweep algorithm is the ability to discover all “upcoming” events in an efficient manner. For
example, in the line segment intersection algorithm we considered all pairs of line segments that were adjacent
in the sweep-line status, and inserted their intersection point in the queue of upcoming events. The problem
with the Voronoi diagram is that of predicting when and where the upcoming events will occur. Imagine that
you are designing a plane sweep algorithm. Behind the sweep line you have constructed the Voronoi diagram
based on the points that have been encountered so far in the sweep. The difficulty is that a site that lies ahead of
the sweep line may generate a Voronoi vertex that lies behind the sweep line. How could the sweep algorithm
know of the existence of this vertex until it sees the site. But by the time it sees the site, it is too late. It is these
unanticipated events that make the design of a plane sweep algorithm challenging. (See the figure below.)

unanticipated
events

sweep line

Figure 60: Plane sweep for Voronoi diagrams. Note that the position of the indicated vertices depends on sites that
have not yet been encountered by the sweep line, and hence are unknown to the algorithm. (Note that the sweep line
moves from top to bottom.)

Fortune made the clever observation of rather than computing the Voronoi diagram through plane sweep in its
final form, instead to compute a “distorted” but topologically equivalent version of the diagram. This distorted
version of the diagram was based on a transformation that alters the way that distances are measured in the
plane. The resulting diagram had the same topological structure as the Voronoi diagram, but its edges were
parabolic arcs, rather than straight line segments. Once this distorted diagram was generated, it was an easy
matter to “undistort” it to produce the correct Voronoi diagram.

Our presentation will be different from Fortune’s. Rather than distort the diagram, we can think of this algorithm
as distorting the sweep line. Actually, we will think of two objects that control the sweeping process. First, there
will be a horizontal sweep line, moving from top to bottom. We will also maintain an x-monotonic curve called a
beach line. (It is so named because it looks like waves rolling up on a beach.) The beach line is a monotone curve
formed from pieces of parabolic arcs. As the sweep line moves downward, the beach line follows just behind.
The job of the beach line is to prevent us from seeing unanticipated events until the sweep line encounters the
corresponding site.

The Beach Line: In order to make these ideas more concrete, recall that the problem with ordinary plane sweep is
that sites that lie below the sweep line may affect the diagram that lies above the sweep line. To avoid this
problem, we will maintain only the portion of the diagram that cannot be affected by anything that lies below
the sweep line. To do this, we will subdivide the halfplane lying above the sweep line into two regions: those
points that are closer to some site p above the sweep line than they are to the sweep line itself, and those points
that are closer to the sweep line than any site above the sweep line.

What are the geometric properties of the boundary between these two regions? The set of points q that are
equidistant from the sweep line to their nearest site above the sweep line is called the beach line. Observe that
for any point q above the beach line, we know that its closest site cannot be affected by any site that lies below
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the sweep line. Hence, the portion of the Voronoi diagram that lies above the beach line is “safe” in the sense
that we have all the information that we need in order to compute it (without knowing about which sites are still
to appear below the sweep line).

What does the beach line look like? Recall from high school geometry that the set of points that are equidistant
from a site lying above a horizontal line and the line itself forms a parabola that is open on top (see the figure
below, left). With a little analytic geometry, it is easy to show that the parabola becomes “skinnier” as the site
becomes closer to the line. In the degenerate case when the line contains the site the parabola degenerates into
a vertical ray shooting up from the site. (You should work through the distance equations to see why this is so.)

points equidistant

p

L

from p and L

beach line

sweep line

Figure 61: The beach line. Notice that only the portion of the Voronoi diagram that lies above the beach line is
computed. The sweep line status maintains the intersection of the Voronoi diagram with the beach line.

Thus, the beach line consists of the lower envelope of these parabolas, one for each site. Note that the parabola
of some sites above the beach line will not touch the lower envelope and hence will not contribute to the beach
line. Because the parabolas are x-monotone, so is the beach line. Also observe that the vertex where two arcs of
the beach line intersect, which we call a breakpoint, is a point that is equidistant from two sites and the sweep
line, and hence must lie on some Voronoi edge. In particular, if the beach line arcs corresponding to sites pi and
pj share a common breakpoint on the beach line, then this breakpoint lies on the Voronoi edge between pi and
pj . From this we have the following important characterization.

Lemma: The beach line is an x-monotone curve made up of parabolic arcs. The breakpoints of the beach line
lie on Voronoi edges of the final diagram.

Fortune’s algorithm consists of simulating the growth of the beach line as the sweep line moves downward,
and in particular tracing the paths of the breakpoints as they travel along the edges of the Voronoi diagram. Of
course, as the sweep line moves the parabolas forming the beach line change their shapes continuously. As with
all plane-sweep algorithms, we will maintain a sweep-line status and we are interested in simulating the discrete
event points where there is a “significant event”, that is, any event that changes the topological structure of the
Voronoi diagram and the beach line.

Sweep Line Status: The algorithm maintain the current location (y-coordinate) of the sweep line. It stores, in
left-to-right order the set of sites that define the beach line. Important: The algorithm never needs to store
the parabolic arcs of the beach line. It exists solely for conceptual purposes.

Events: There are two types of events.
Site events: When the sweep line passes over a new site a new arc will be inserted into the beach line.
Vertex events: (What our text calls circle events.) When the length of a parabolic arc shrinks to zero, the

arc disappears and a new Voronoi vertex will be created at this point.

The algorithm consists of processing these two types of events. As the Voronoi vertices are being discovered
by vertex events, it will be an easy matter to update a DCEL for the diagram as we go, and so to link the entire
diagram together. Let us consider the two types of events that are encountered.
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Site events: A site event is generated whenever the horizontal sweep line passes over a site. As we mentioned before,
at the instant that the sweep line touches the point, its associated parabolic arc will degenerate to a vertical ray
shooting up from the point to the current beach line. As the sweep line proceeds downwards, this ray will widen
into an arc along the beach line. To process a site event we will determine the arc of the sweep line that lies
directly above the new site. (Let us make the general position assumption that it does not fall immediately below
a vertex of the beach line.) We then split this arc of the beach line in two by inserting a new infinitesimally small
arc at this point. As the sweep proceeds, this arc will start to widen, and eventually will join up with other edges
in the diagram. (See the figure below.)

Figure 62: Site events.

It is important to consider whether this is the only way that new arcs can be introduced into the sweep line. In
fact it is. We will not prove it, but a careful proof is given in the text. As a consequence of this proof, it follows
that the maximum number of arcs on the beach line can be at most 2n − 1, since each new point can result in
creating one new arc, and splitting an existing arc, for a net increase of two arcs per point (except the first).

The nice thing about site events is that they are all known in advance. Thus, after sorting the points by y-
coordinate, all these events are known.

Vertex events: In contrast to site events, vertex events are generated dynamically as the algorithm runs. As with the
line segment plane sweep algorithm, the important idea is that each such event is generated by objects that are
neighbors on the beach line. However, unlike the segment intersection where pairs of consecutive segments
generated events, here triples of points generate the events.

In particular, consider any three consecutive sites pi, pj , and pk whose arcs appear consecutively on the beach
line from left to right. (See the figure below.) Further, suppose that the circumcircle for these three sites lies at
least partially below the current sweep line (meaning that the Voronoi vertex has not yet been generated), and
that this circumcircle contains no points lying below the sweep line (meaning that no future point will block the
creation of the vertex).

Consider the moment at which the sweep line falls to a point where it is tangent to the lowest point of this
circle. At this instant the circumcenter of the circle is equidistant from all three sites and from the sweep line.
Thus all three parabolic arcs pass through this center point, implying that the contribution of the arc from pj has
disappeared from the beach line. In terms of the Voronoi diagram, the bisectors (pi, pj) and (pj , pk) have met
each other at the Voronoi vertex, and a single bisector (pi, pk) remains. (See the figure below.)

Sweep-line algorithm: We can now present the algorithm in greater detail. The main structures that we will maintain
are the following:

(Partial) Voronoi diagram: The partial Voronoi diagram that has been constructed so far will be stored in a
DCEL. There is one technical difficulty caused by the fact that the diagram contains unbounded edges. To
handle this we will assume that the entire diagram is to be stored within a large bounding box. (This box
should be chosen large enough that all of the Voronoi vertices fit within the box.)
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Figure 63: Vertex events.

Beach line: The beach line is represented using a dictionary (e.g. a balanced binary tree or skip list). An
important fact of the construction is that we do not explicitly store the parabolic arcs. They are just there
for the purposes of deriving the algorithm. Instead for each parabolic arc on the current beach line, we
store the site that gives rise to this arc. Notice that a site may appear multiple times on the beach line (in
fact linearly many times in n). But the total length of the beach line will never exceed 2n− 1. (You should
try to construct an example where a single site contributes multiple arcs to the beach line.)
Between each consecutive pair of sites pi and pj , there is a breakpoint. Although the breakpoint moves as
a function of the sweep line, observe that it is possible to compute the exact location of the breakpoint as a
function of pi, pj , and the current y-coordinate of the sweep line. In particular, the breakpoint is the center
of a circle that passes through pi, pj and is tangent to the sweep line. Thus, as with beach lines, we do not
explicitly store breakpoints. Rather, we compute them only when we need them.
The important operations that we will have to support on the beach line are

(1) Given a fixed location of the sweep line, determine the arc of the beach line that intersects a given
vertical line. This can be done by a binary search on the breakpoints, which are computed “on the
fly”. (Think about this.)

(2) Compute predecessors and successors on the beach line.
(3) Insert an new arc pi within a given arc pj , thus splitting the arc for pj into two. This creates three

arcs, pj , pi, and pj .
(4) Delete an arc from the beach line.

It is not difficult to modify a standard dictionary data structure to perform these operations in O(log n)
time each.

Event queue: The event queue is a priority queue with the ability both to insert and delete new events. Also the
event with the largest y-coordinate can be extracted. For each site we store its y-coordinate in the queue.
For each consecutive triple pi, pj , pk on the beach line, we compute the circumcircle of these points.
(We’ll leave the messy algebraic details as an exercise, but this can be done in O(1) time.) If the lower
endpoint of the circle (the minimum y-coordinate on the circle) lies below the sweep line, then we create a
vertex event whose y-coordinate is the y-coordinate of the bottom endpoint of the circumcircle. We store
this in the priority queue. Each such event in the priority queue has a cross link back to the triple of sites
that generated it, and each consecutive triple of sites has a cross link to the event that it generated in the
priority queue.

The algorithm proceeds like any plane sweep algorithm. We extract an event, process it, and go on to the next
event. Each event may result in a modification of the Voronoi diagram and the beach line, and may result in the
creation or deletion of existing events.

Here is how the two types of events are handled:
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Site event: Let pi be the current site. We shoot a vertical ray up to determine the arc that lies immediately
above this point in the beach line. Let pj be the corresponding site. We split this arc, replacing it with the
triple of arcs pj , pi, pj which we insert into the beach line. Also we create new (dangling) edge for the
Voronoi diagram which lies on the bisector between pi and pj . Some old triples that involved pj may be
deleted and some new triples involving pi will be inserted.
For example, suppose that prior to insertion we had the beach-line sequence

〈p1, p2, pj , p3, p4〉.

The insertion of pi splits the arc pj into two arcs, denoted p′j and p′′j . Although these are separate arcs,
they involve the same site, pj . The new sequence is

〈p1, p2, p
′
j , pi, p

′′
j , p3, p4〉.

Any event associated with the old triple p2, pj , p3 will be deleted. We also consider the creation of new
events for the triples p2, p′j , pi and pi, p′′j , p3. Note that the new triple p′j , pi, p′′j cannot generate an event
because it only involves two distinct sites.

Vertex event: Let pi, pj , and pk be the three sites that generate this event (from left to right). We delete the
arc for pj from the beach line. We create a new vertex in the Voronoi diagram, and tie the edges for the
bisectors (pi, pj), (pj , pk) to it, and start a new edge for the bisector (pi, pk) that starts growing down
below. Finally, we delete any events that arose from triples involving this arc of pj , and generate new
events corresponding to consecutive triples involving pi and pk (there are two of them).
For example, suppose that prior to insertion we had the beach-line sequence

〈p1, pi, pj , pk, p2〉.

After the event we have the sequence
〈p1, pi, pk, p2〉.

We remove any events associated with the triples p1, pi, pj and pj , pk, p2. (The event pi, pj , pk has already
been removed since we are processing it now.) We also consider the creation of new events for the triples
p1, pi, pk and pi, pk, p2.

The analysis follows a typical analysis for plane sweep. Each event involves O(1) processing time plus a
constant number accesses to the various data structures. Each of these accesses takes O(log n) time, and the
data structures are all of size O(n). Thus the total time is O(n log n), and the total space is O(n).

Lecture 17: Delaunay Triangulations

Reading: Chapter 9 in the 4M’s.

Delaunay Triangulations: Last time we gave an algorithm for computing Voronoi diagrams. Today we consider the
related structure, called a Delaunay triangulation (DT). Since the Voronoi diagram is a planar graph, we may
naturally ask what is the corresponding dual graph. The vertices for this dual graph can be taken to be the sites
themselves. Since (assuming general position) the vertices of the Voronoi diagram are of degree three, it follows
that the faces of the dual graph (excluding the exterior face) will be triangles. The resulting dual graph is a
triangulation of the sites, the Delaunay triangulation.
Delaunay triangulations have a number of interesting properties, that are consequences of the structure of the
Voronoi diagram.

Convex hull: The boundary of the exterior face of the Delaunay triangulation is the boundary of the convex
hull of the point set.
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Figure 64: Delaunay triangulation.

Circumcircle property: The circumcircle of any triangle in the Delaunay triangulation is empty (contains no
sites of P ).

Empty circle property: Two sites pi and pj are connected by an edge in the Delaunay triangulation, if and
only if there is an empty circle passing through pi and pj . (One direction of the proof is trivial from
the circumcircle property. In general, if there is an empty circumcircle passing through pi and pj , then
the center c of this circle is a point on the edge of the Voronoi diagram between pi and pj , because c is
equidistant from each of these sites and there is no closer site.)

Closest pair property: The closest pair of sites in P are neighbors in the Delaunay triangulation. (The circle
having these two sites as its diameter cannot contain any other sites, and so is an empty circle.)

If the sites are not in general position, in the sense that four or more are cocircular, then the Delaunay triangula-
tion may not be a triangulation at all, but just a planar graph (since the Voronoi vertex that is incident to four or
more Voronoi cells will induce a face whose degree is equal to the number of such cells). In this case the more
appropriate term would be Delaunay graph. However, it is common to either assume the sites are in general
position (or to enforce it through some sort of symbolic perturbation) or else to simply triangulate the faces of
degree four or more in any arbitrary way. Henceforth we will assume that sites are in general position, so we do
not have to deal with these messy situations.

Given a point set P with n sites where there are h sites on the convex hull, it is not hard to prove by Euler’s
formula that the Delaunay triangulation has 2n−2−h triangles, and 3n−3−h edges. The ability to determine the
number of triangles from n and h only works in the plane. In 3-space, the number of tetrahedra in the Delaunay
triangulation can range from O(n) up to O(n2). In dimension n, the number of simplices (the d-dimensional
generalization of a triangle) can range as high as O(n$d/2%).

Minimum Spanning Tree: The Delaunay triangulation possesses some interesting properties that are not directly
related to the Voronoi diagram structure. One of these is its relation to the minimum spanning tree. Given a
set of n points in the plane, we can think of the points as defining a Euclidean graph whose edges are all

(n
2

)

(undirected) pairs of distinct points, and edge (pi, pj) has weight equal to the Euclidean distance from pi to pj .
A minimum spanning tree is a set of n − 1 edges that connect the points (into a free tree) such that the total
weight of edges is minimized. We could compute the MST using Kruskal’s algorithm. Recall that Kruskal’s
algorithm works by first sorting the edges and inserting them one by one. We could first compute the Euclidean
graph, and then pass the result on to Kruskal’s algorithm, for a total running time of O(n2 log n).
However there is a much faster method based on Delaunay triangulations. First compute the Delaunay trian-
gulation of the point set. We will see later that it can be done in O(n log n) time. Then compute the MST of
the Delaunay triangulation by Kruskal’s algorithm and return the result. This leads to a total running time of
O(n log n). The reason that this works is given in the following theorem.

Theorem: The minimum spanning tree of a set of points P (in any dimension) is a subgraph of the Delaunay
triangulation.
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Proof: Let T be the MST for P , let w(T ) denote the total weight of T . Let a and b be any two sites such that ab
is an edge of T . Suppose to the contrary that ab is not an edge in the Delaunay triangulation. This implies
that there is no empty circle passing through a and b, and in particular, the circle whose diameter is the
segment ab contains a site, call it c. (See the figure below.)

a

c

b

T’T

a

c

b

Figure 65: The Delaunay triangulation and MST.

The removal of ab from the MST splits the tree into two subtrees. Assume without loss of generality that
c lies in the same subtree as a. Now, remove the edge ab from the MST and add the edge bc in its place.
The result will be a spanning tree T ′ whose weight is

w(T ′) = w(T ) + |bc|− |ab| < w(T ).

The last inequality follows because ab is the diameter of the circle, implying that |bc| < |ab|. This
contradicts the hypothesis that T is the MST, completing the proof.

By the way, this suggests another interesting question. Among all triangulations, we might ask, does the Delau-
nay triangulation minimize the total edge length? The answer is no (and there is a simple four-point counterex-
ample). However, this claim was made in a famous paper on Delaunay triangulations, and you may still hear
it quoted from time to time. The triangulation that minimizes total edge weight is called the minimum weight
triangulation. To date, no polynomial time algorithm is known for computing it, and the problem is not known
to be NP-complete.

Maximizing Angles and Edge Flipping: Another interesting property of Delaunay triangulations is that among all
triangulations, the Delaunay triangulation maximizes the minimum angle. This property is important, because it
implies that Delaunay triangulations tend to avoid skinny triangles. This is useful for many applications where
triangles are used for the purposes of interpolation.

In fact a much stronger statement holds as well. Among all triangulations with the same smallest angle, the
Delaunay triangulation maximizes the second smallest angle, and so on. In particular, any triangulation can be
associated with a sorted angle sequence, that is, the increasing sequence of angles (α1,α2, . . . , αm) appearing
in the triangles of the triangulation. (Note that the length of the sequence will be the same for all triangulations
of the same point set, since the number depends only on n and h.)

Theorem: Among all triangulations of a given point set, the Delaunay triangulation has the lexicographically
largest angle sequence.

Before getting into the proof, we should recall a few basic facts about angles from basic geometry. First, recall
that if we consider the circumcircle of three points, then each angle of the resulting triangle is exactly half the
angle of the minor arc subtended by the opposite two points along the circumcircle. It follows as well that if
a point is inside this circle then it will subtend a larger angle and a point that is outside will subtend a smaller
angle. This in the figure part (a) below, we have θ1 > θ2 > θ3.

We will not give a formal proof of the theorem. (One appears in the text.) The main idea is to show that for
any triangulation that fails to satisfy the empty circle property, it is possible to perform a local operation, called
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Figure 66: Angles and edge flips.

an edge flip, which increases the lexicographical sequence of angles. An edge flip is an important fundamental
operation on triangulations in the plane. Given two adjacent triangles (abc and (cda, such that their union
forms a convex quadrilateral abcd, the edge flip operation replaces the diagonal ac with bd. Note that it is
only possible when the quadrilateral is convex. Suppose that the initial triangle pair violates the empty circle
condition, in that point d lies inside the circumcircle of (abc. (Note that this implies that b lies inside the
circumcircle of (cda.) If we flip the edge it will follow that the two circumcircles of the two resulting triangles,
(abd and (bcd are now empty (relative to these four points), and the observation above about circles and
angles proves that the minimum angle increases at the same time. In particular, in the figure above, we have

φab > θab φbc > θbc φcd > θcd φda > θda.

There are two other angles that need to be compared as well (can you spot them?). It is not hard to show that,
after swapping, these other two angles cannot be smaller than the minimum of θab, θbc, θcd, and θda. (Can you
see why?)
Since there are only a finite number of triangulations, this process must eventually terminate with the lexico-
graphically maximum triangulation, and this triangulation must satisfy the empty circle condition, and hence is
the Delaunay triangulation.

Lecture 18: Delaunay Triangulations: Incremental Construction

Reading: Chapter 9 in the 4M’s.

Constructing the Delaunay Triangulation: We will present a simple randomized O(n log n) expected time algo-
rithm for constructing Delaunay triangulations for n sites in the plane. The algorithm is remarkably similar in
spirit to the randomized algorithm for trapezoidal map algorithm in that not only builds the triangulation but also
provides a point-location data structure as well. We will not discuss the point-location data structure in detail,
but the details are easy to fill in.
As with any randomized incremental algorithm, the idea is to insert sites in random order, one at a time, and
update the triangulation with each new addition. The issues involved with the analysis will be showing that after
each insertion the expected number of structural changes in the diagram is O(1). As with other incremental
algorithm, we need some way of keeping track of where newly inserted sites are to be placed in the diagram.
We will describe a somewhat simpler method than the one we used in the trapezoidal map. Rather than building
a data structure, this one simply puts each of the uninserted points into a bucket according to the triangle that
contains it in the current triangulation. In this case, we will need to argue that the expected number of times that
a site is rebucketed is O(log n).

Incircle Test: The basic issue in the design of the algorithm is how to update the triangulation when a new site is
added. In order to do this, we first investigate the basic properties of a Delaunay triangulation. Recall that a
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triangle (abc is in the Delaunay triangulation, if and only if the circumcircle of this triangle contains no other
site in its interior. (Recall that we make the general position assumption that no four sites are cocircular.) How do
we test whether a site d lies within the interior of the circumcircle of (abc? It turns out that this can be reduced
to a determinant computation. First off, let us assume that the sequence 〈abcd〉 defines a counterclockwise
convex polygon. (If it does not because d lies inside the triangle (abc then clearly d lies in the circumcircle
for this triangle. Otherwise, we can always relabel abc so this is true.) Under this assumption, d lies in the
circumcircle determined by the (abc if and only if the following determinant is positive. This is called the
incircle test. We will assume that this primitive is available to us.

inCircle(a, b, c, d) = det





ax ay a2
x + a2

y 1
bx by b2

x + b2
y 1

cx cy c2
x + c2

y 1
dx dy d2

x + d2
y 1



 > 0.

We will not prove the correctness of this test, but a simpler assertion, namely that if the above determinant is
equal to zero, then the four points are cocircular. The four points are cocircular if there exists a center point
q = (qx, qy) and a radius r such that

(ax − qx)2 + (ay − qy)2 = r2,

and similarly for the other three points. Expanding this and collecting common terms we have

(a2
x + a2

y)− 2qx(ax)− 2qy(ay) + (q2
x + q2

y − r2)(1) = 0,

and similarly for the other three points, b, c, and d. If we let X1, X2, X3 and X4 denote the columns of the
above matrix we have

X3 − 2qxX1 − 2qyX2 + (q2
x + q2

y − r2)X4 = 0.

Thus, the columns of the above matrix are linearly dependent, implying that their determinant is zero. We will
leave the completion of the proof as an exercise. Next time we will show how to use the incircle test to update
the triangulation, and present the complete algorithm.

Incremental update: When we add the next site, pi, the problem is to convert the current Delaunay triangulation into
a new Delaunay triangulation containing this site. This will be done by creating a non-Delaunay triangulation
containing the new site, and then incrementally “fixing” this triangulation to restore the Delaunay properties.
The fundamental changes will be: (1) adding a site to the middle of a triangle, and creating three new edges,
and (2) performing an edge flip. Both of these operations can be performed in O(1) time, assuming that the
triangulation is maintained, say, as a DCEL.

Figure 67: Basic triangulation changes.

The algorithm that we will describe has been known for many years, but was first analyzed by Guibas, Knuth,
and Sharir. The algorithm starts within an initial triangulation such that all the points lie in the convex hull. This
can be done by enclosing the points in a large triangle. Care must be taken in the construction of this enclosing
triangle. It is not sufficient that it simply contain all the points. It should be the case that these points do not lie
in the circumcircles of any of the triangles of the final triangulation. Our book suggests computing a triangle
that contains all the points, but then fudging with the incircle test so that these points act as if they are invisible.

The sites are added in random order. When a new site p is added, we find the triangle (abc of the current
triangulation that contains this site (we will see how later), insert the site in this triangle, and join this site to
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the three surrounding vertices. This creates three new triangles, (pab, (pbc, and (pca, each of which may or
may not satisfy the empty-circle condition. How do we test this? For each of the triangles that have been added,
we check the vertex of the triangle that lies on the opposite side of the edge that does not include p. (If there is
no such vertex, because this edge is on the convex hull, then we are done.) If this vertex fails the incircle test,
then we swap the edge (creating two new triangles that are adjacent to p). This replaces one triangle that was
incident to p with two new triangles. We repeat the same test with these triangles. An example is shown in the
figure below.
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Triangle pbc is illegal.

Triangle pfc is okay. Triangle pca is okay.

Triangle pdb is illegal.Triangle pad is okay.Triangle pab is illegal.
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Figure 68: Point insertion.

The code for the incremental algorithm is shown in the figure below. The current triangulation is kept in a global
data structure. The edges in the following algorithm are actually pointers to the DCEL.
There is only one major issue in establishing the correctness of the algorithm. When we performed empty-circle
tests, we only tested triangles containing the site p, and only sites that lay on the opposite side of an edge of such
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Randomized Incremental Delaunay Triangulation Algorithm
Insert(p) {

Find the triangle (abc containing p;
Insert edges pa, pb, and pc into triangulation;
SwapTest(ab); // Fix the surrounding edges
SwapTest(bc);
SwapTest(ca);

}

SwapTest(ab) {
if (ab is an edge on the exterior face) return;
Let d be the vertex to the right of edge ab;
if (inCircle(p, a, b, d) { // d violates the incircle test

Flip edge ab for pd;
SwaptTest(ad); // Fix the new suspect edges
SwaptTest(db);

}
}

a triangle. We need to establish that these tests are sufficient to guarantee that the final triangulation is indeed
Delaunay.

First, we observe that it suffices to consider only triangles that contain p in their circumcircle. The reason is that
p is the only newly added site, it is the only site that can cause a violation of the empty-circle property. Clearly
the triangle that contained p must be removed, since its circumcircle definitely contains p. Next, we need to
argue that it suffices to check only the neighboring triangles after each edge flip. Consider a triangle (pab that
contains p and consider the vertex d belonging to the triangle that lies on the opposite side of edge ab. We argue
that if d lies outside the circumcircle of pab, then no other point of the point set can lie within this circumcircle.

A complete proof of this takes some effort, but here is a simple justification. What could go wrong? It might be
that d lies outside the circumcircle, but there is some other site, say, a vertex e of a triangle adjacent to d, that
lies inside the circumcircle. This is illustrated in the following figure. We claim that this cannot happen. It can
be shown that if e lies within the circumcircle of (pab, then a must lie within the circumcircle of (bde. (The
argument is a exercise in geometry.) However, this violates the assumption that the initial triangulation (before
the insertion of p) was a Delaunay triangulation.

p

e

b a

d

Figure 69: Proof of sufficiency of testing neighboring sites.

As you can see, the algorithm is very simple. The only things that need to be implemented are the DCEL (or
other data structure) to store the triangulation, the incircle test, and locating the triangle that contains p. The first
two tasks are straightforward. The point location involves a little thought.

Point Location: The point location can be accomplished by one of two means. Our text discusses the idea of building
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a history graph point-location data structure, just as we did in the trapezoid map case. A simpler approach is
based on the idea of maintaining the uninserted sites in a set of buckets. Think of each triangle of the current
triangulation as a bucket that holds the sites that lie within this triangle and have yet to be inserted. Whenever
an edge is flipped, or when a triangle is split into three triangles through point insertion, some old triangles are
destroyed and are replaced by a constant number of new triangles. When this happens, we lump together all the
sites in the buckets corresponding to the deleted triangles, create new buckets for the newly created triangles,
and reassign each site into its new bucket. Since there are a constant number of triangles created, this process
requires O(1) time per site that is rebucketed.

Analysis: To analyze the expected running time of algorithm we need to bound two quantities: (1) how many changes
are made in the triangulation on average with the addition of each new site, and (2) how much effort is spent
in rebucketing sites. As usual, our analysis will be in the worst-case (for any point set) but averaged over all
possible insertion orders.

We argue first that the expected number of edge changes with each insertion is O(1) by a simple application of
backwards analysis. First observe that (assuming general position) the structure of the Delaunay triangulation is
independent of the insertion order of the sites so far. Thus, any of the existing sites is equally likely to have been
the last site to be added to the structure. Suppose that some site p was the last to have been added. How much
work was needed to insert p? Observe that the initial insertion of p involved the creation of three new edges, all
incident to p. Also, whenever an edge swap is performed, a new edge is added to p. These are the only changes
that the insertion algorithm can make. Therefore the total number of changes made in the triangulation for the
insertion of p is proportional to the degree of p after the insertion is complete. Thus the work needed to insert p
is proportional to p’s degree after the insertion.

Thus, by a backwards analysis, the expected time to insert the last point is equal to the average degree of a vertex
in the triangulation. (The only exception are the three initial vertices at infinity, which must be the first sites to
be inserted.) However, from Euler’s formula, we know that the average degree of a vertex in any planar graph
is at most 6. (To see this, recall that a planar graph can have at most 3n edges, and the sum of vertex degrees is
equal to twice the number of edges, which is at most 6n.) Thus, (irrespective of which insertion this was) the
expected number of edge changes for each insertion is O(1).
Next we argue that the expected number of times that a site is rebucketed (as to which triangle it lies in) is
O(log n). Again this is a standard application of backwards analysis. Consider the ith stage of the algorithm
(after i sites have been inserted into the triangulation). Consider any one of the remaining n− i sites. We claim
that the probability that this site changes triangles is at most 3/i (under the assumption that any of the i points
could have been the last to be added).

To see this, let q be an uninserted site and let ∆ be the triangle containing q after the ith insertion. As observed
above, after we insert the ith site all of the newly created triangles are incident to this site. Since ∆ is incident
to exactly three sites, if any of these three was added last, then ∆ would have come into existence after this
insertion, implying that q required (at least one) rebucketing. On the other hand, if none of these three was the
last to have been added, then the last insertion could not have caused q to be rebucketed. Thus, (ignoring the
three initial sites at infinity) the probability that q required rebucketing after the last insertion is exactly 3/i.
Thus, the total number of points that required rebucketings as part of the last insertion is (n− i)3/i. To get the
total expected number of rebucketings, we sum over all stages, giving

n∑

i=1

3
i
(n− i) ≤

n∑

i=1

3
i
n = 3n

n∑

i=1

1
i

= 3n lnn + O(1).

Thus, the total expected time spent in rebucketing is O(n log n), as desired.

There is one place in the proof that we were sloppy. (Can you spot it?) We showed that the number of points that
required rebucketing is O(n log n), but notice that when a point is inserted, many rebucketing operations may be
needed (one for the initial insertion and one for each additional edge flip). We will not give a careful analysis of
the total number of individual rebucketing operations per point, but it is not hard to show that the expected total
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number of individual rebucketing operations will not be larger by more than a constant factor. The reason is that
(as argued above) each new insertion only results in a constant number of edge flips, and hence the number of
individual rebucketings per insertion is also a constant. But a careful proof should consider this. Such a proof is
given in our text book.

Lecture 19: Line Arrangements

Reading: Chapter 8 in the 4M’s.

Arrangements: So far we have studied a few of the most important structures in computational geometry: convex
hulls, Voronoi diagrams and Delaunay triangulations. Perhaps, the next most important structure is that of a
line arrangement. As with hulls and Voronoi diagrams, it is possible to define arrangements (of d − 1 dimen-
sional hyperplanes) in any dimension, but we will concentrate on the plane. As with Voronoi diagrams, a line
arrangement is a polygonal subdivision of the plane. Unlike most of the structures we have seen up to now, a
line arrangement is not defined in terms of a set of points, but rather in terms of a set L of lines. However, line
arrangements are used mostly for solving problems on point sets. The connection is that the arrangements are
typically constructed in the dual plane. We will begin by defining arrangements, discussing their combinatorial
properties and how to construct them, and finally discuss applications of arrangements to other problems in
computational geometry.

Before discussing algorithms for computing arrangements and applications, we first provide definitions and
some important theorems that will be used in the construction. A finite set L of lines in the plane subdivides
the plane. The resulting subdivision is called an arrangement, denoted A(L). Arrangements can be defined for
curves as well as lines, and can also be defined for (d − 1)-dimensional hyperplanes in dimension d. But we
will only consider the case of lines in the plane here. In the plane, the arrangement defines a planar graph whose
vertices are the points where two or more lines intersect, edges are the intersection free segments (or rays) of
the lines, and faces are (possibly unbounded) convex regions containing no line. An example is shown below.

face

edge

vertex

bounding box

Figure 70: Arrangement of lines.

An arrangement is said to be simple if no three lines intersect at a common point. We will make the usual general
position assumptions that no three lines intersect in a single point. This assumption is easy to overcome by some
sort of symbolic perturbation.

An arrangement is not formally a planar graph, because it has unbounded edges. We can fix this (topologically)
by imagining that a vertex is added at infinity, and all the unbounded edges are attached to this vertex. A
somewhat more geometric way to fix this is to imagine that there is a bounding box which is large enough
to contain all the vertices, and we tie all the unbounded edges off at this box. Rather than computing the
coordinates of this huge box (which is possible in O(n2) time), it is possible to treat the sides of the box as
existing at infinity, and handle all comparisons symbolically. For example, the lines that intersect the right side
of the “box at infinity” have slopes between +1 and −1, and the order in which they intersect this side (from
top to bottom) is in decreasing order of slope. (If you don’t see this right away, think about it.)
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