CS 3510 - Spring 2009 Practice Problems 1 Solutions

1. Let a, b, and c be positive and real numbers. Show that $a^{\log_b c} = c^{\log_b a}$.

Proof. First note that

$$\log_b c = \log_b c / \log_b a * \log_b a$$
$$= \log_a c * \log_b a.$$

Then we have

$$a^{\log_b c} = a^{\log_a c * \log_b a}$$
$$= (a^{\log_a c})^{\log_b a}$$
$$= c^{\log_b a}.$$

2. Let b be a real number greater than 1, and let x and y be positive real numbers. Show that $\log_b(x^y) = y \log_b x$.

Proof. Let $z = \log_b x$. By definition, this means that $b^z = x$. Therefore $b^{zy} = x^y$. Taking the logarithm of both sides, we find that

$$\log_b b^{zy} = \log_b x^y,$$

 So

 $zy = \log_b x^y.$

Substituting back for z gives the desired claim.

3. Let a and b be real numbers greater than 1, and let x be a positive real number. Show $\log_a x = \log_b x / \log_b a$.

Proof. Let $\log_a x = u$, so $x = a^u$). Also, let $\log_b x = v$, so we have $x = b^v$ and let $\log_b a = w$, so $a = b^w$. It follows that

$$\begin{aligned} x &= a^u = b^v \\ \Rightarrow (b^w)^u &= b^v \\ \Rightarrow b^{wu} &= b^v \end{aligned}$$

But exponentiation is one-to-one, so it follows that wu = v and therefore $\log_a x = \log_b x / \log_b a$.

4. Let m be a positive integer. Show that $a \equiv b \pmod{m}$ if $a \pmod{m} = b \pmod{m}$.

Proof. If $a \pmod{m} = b \pmod{m}$, then a and b have the same reminder when divided by m. Hence $a = q_1m + r$ and $b = q_2m + r$, where $0 \le r < m$. It follows that $a - b = (q_1 - q_2)m$ so that m|(a - b). It follows that $a \equiv b \pmod{m}$.

5. Let *m* be a positive integer. Show that if $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ then $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$

Proof. Since $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, there are integers s, and t with b = a + sm and d = c + tm. Hence,

$$b + d = (a + sm) + (c + tm) = (a + c) + m(s + t)$$

and

$$bd = (a + sm)(c + tm) = ac + m(at + cs + stm).$$

Hence,

 $a + c \equiv b + d \pmod{m}$

and

$$ac \equiv bd \pmod{m}$$

6. Find $2^{1744} \pmod{127}$.

Notice that $2^7 = 128 = 1 \pmod{127}$. Then,

$$2^{1744} \pmod{127} \equiv 2^{7*249} * 2 \pmod{127}$$
$$\equiv (2^7 \mod 127)^{249} * 2 \pmod{127}$$
$$\equiv 1^{249} * 2 \pmod{127}$$
$$\equiv 2 \pmod{127}.$$

7. Find the unit's digit of 287^{3503} .

First notice that $287^{3503} \pmod{10}$ is the unit's digit, and this is equivalent to $(287 \mod 10)^{3503} \equiv 7^{3503} \pmod{10}$.

If we look at successive powers of 7 mod10, we find $7^0 = 1 \pmod{10}$, $7^1 \equiv 7 \pmod{10}$, $7^2 \equiv 9 \pmod{10}$, $7^3 \equiv 7^2 * 7 \equiv 9 * 7 \equiv 3 \pmod{10}$, and then $7^4 \equiv 7^3 * 7 \equiv 3 * 7 \equiv 1 \pmod{10}$. At this point the sequence $\{1, 7, 9, 3\}$ just repeats for successive powers of 7, so $7^{4k} \equiv 1 \pmod{10}$ for every integer k. Therefore,

$$287^{3503} \mod 10 \equiv 7^{3503} \pmod{10}$$
$$\equiv (7^{4*875} * 7^3) \pmod{10}$$
$$\equiv 1^{875} * 7^3 \pmod{10}$$
$$\equiv 3 \pmod{10}.$$

8. What is 3⁶⁰² (mod 7)? (Hint: Use Fermat's little theorem.)

Fermat's little theorem tells us

$$3^6 \equiv 1 \pmod{7}.$$

This tells us that

$$3^{602} \equiv 3^{6*100+2} \pmod{7}$$

$$\equiv (3^6 \mod 7)^{100} * 3^2 \pmod{7}$$

$$\equiv 1^{100} * 3^2 \pmod{7}$$

$$\equiv 2 \pmod{7}.$$