CS 3510 - Spring 2009 Practice Problems 1 Solutions

1. Let a, b, and c be positive and real numbers. Show that $a^{\log _{b} c}=c^{\log _{b} a}$.

Proof. First note that

$$
\begin{aligned}
\log _{b} c & =\log _{b} c / \log _{b} a * \log _{b} a \\
& =\log _{a} c * \log _{b} a
\end{aligned}
$$

Then we have

$$
\begin{aligned}
a^{\log _{b} c} & =a^{\log _{a} c * \log _{b} a} \\
& =\left(a^{\log _{a} c}\right)^{\log _{b} a} \\
& =c^{\log _{b} a}
\end{aligned}
$$

2. Let b be a real number greater than 1 , and let x and y be positive real numbers. Show that $\log _{b}\left(x^{y}\right)=y \log _{b} x$.

Proof. Let $z=\log _{b} x$. By definition, this means that $b^{z}=x$. Therefore $b^{z y}=x^{y}$. Taking the logarithm of both sides, we find that

$$
\log _{b} b^{z y}=\log _{b} x^{y}
$$

So

$$
z y=\log _{b} x^{y}
$$

Substituting back for z gives the desired claim.
3. Let a and b be real numbers greater than 1 , and let x be a positive real number. Show $\log _{a} x=\log _{b} x / \log _{b} a$.

Proof. Let $\log _{a} x=u$, so $x=a^{u}$). Also, let $\log _{b} x=v$, so we have $x=b^{v}$ and let $\log _{b} a=w$, so $a=b^{w}$. It follows that

$$
\begin{aligned}
x=a^{u} & =b^{v} \\
\Rightarrow\left(b^{w}\right)^{u} & =b^{v} \\
\Rightarrow b^{w u} & =b^{v} .
\end{aligned}
$$

But exponentiation is one-to-one, so it follows that $w u=v$ and therefore $\log _{a} x=\log _{b} x / \log _{b} a$.
4. Let m be a positive integer. Show that $a \equiv b(\bmod m)$ if $a(\bmod m)=$ $b(\bmod m)$.

Proof. If $a(\bmod m)=b(\bmod m)$, then a and b have the same reminder when divided by m. Hence $a=q_{1} m+r$ and $b=q_{2} m+r$, where $0 \leq r<m$. It follows that $a-b=\left(q_{1}-q_{2}\right) m$ so that $m \mid(a-b)$. It follows that $a \equiv b(\bmod m)$ 。
5. Let m be a positive integer. Show that if $a \equiv b(\bmod m)$ and $c \equiv d(\bmod$ $m)$ then $a+c \equiv b+d(\bmod m)$ and $a c \equiv b d(\bmod m)$

Proof. Since $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, there are integers s, and t with $b=a+s m$ and $d=c+t m$. Hence,

$$
b+d=(a+s m)+(c+t m)=(a+c)+m(s+t)
$$

and

$$
b d=(a+s m)(c+t m)=a c+m(a t+c s+s t m)
$$

Hence,

$$
a+c \equiv b+d \quad(\bmod m)
$$

and

$$
a c \equiv b d \quad(\bmod m)
$$

6. Find $2^{1744}(\bmod 127)$.

Notice that $2^{7}=128=1(\bmod 127)$.
Then,

$$
\begin{aligned}
2^{1744}(\bmod 127) & \equiv 2^{7 * 249} * 2 \quad(\bmod 127) \\
& \equiv\left(2^{7} \bmod 127\right)^{249} * 2 \quad(\bmod 127) \\
& \equiv 1^{249} * 2 \quad(\bmod 127) \\
& \equiv 2 \quad(\bmod 127)
\end{aligned}
$$

7. Find the unit's digit of 287^{3503}.

First notice that $287^{3503}(\bmod 10)$ is the unit's digit, and this is equivalent to $(287 \bmod 10)^{3503} \equiv 7^{3503}(\bmod 10)$.
If we look at successive powers of $7 \bmod 10$, we find $7^{0}=1(\bmod 10)$, $7^{1} \equiv 7(\bmod 10), 7^{2} \equiv 9(\bmod 10), 7^{3} \equiv 7^{2} * 7 \equiv 9 * 7 \equiv 3(\bmod 10)$, and then $7^{4} \equiv 7^{3} * 7 \equiv 3 * 7 \equiv 1(\bmod 10)$. At this point the sequence $\{1,7,9,3\}$ just repeats for successive powers of 7 , so $7^{4 k} \equiv 1(\bmod 10)$ for every integer k. Therefore,

$$
\begin{aligned}
287^{3503} \bmod 10 & \equiv 7^{3503} \quad(\bmod 10) \\
& \equiv\left(7^{4 * 875} * 7^{3}\right) \quad(\bmod 10) \\
& \equiv 1^{875} * 7^{3} \quad(\bmod 10) \\
& \equiv 3 \quad(\bmod 10)
\end{aligned}
$$

8. What is $3^{602}(\bmod 7)$? (Hint: Use Fermat's little theorem.)

Fermat's little theorem tells us

$$
3^{6} \equiv 1 \quad(\bmod 7)
$$

This tells us that

$$
\begin{aligned}
3^{602} & \equiv 3^{6 * 100+2} \quad(\bmod 7) \\
& \equiv\left(3^{6} \bmod 7\right)^{100} * 3^{2} \quad(\bmod 7) \\
& \equiv 1^{100} * 3^{2} \quad(\bmod 7) \\
& \equiv 2 \quad(\bmod 7)
\end{aligned}
$$

