CS 3510 - Spring 2009 Practice Problems 2

Here are some easier exercises to review (or in some cases introduce) modulus and big O notation to make sure you are comfortable with them.

1. Recall that $x \bmod n$ is a function that maps x to a number between 0 and $n-1$ and is the remainder when you divide x by n. We say that $x \equiv y$ $(\bmod n)$ if $x \bmod n=y \bmod n$, which is equivalent to saying that n is a divisor of $x-y$.

Show that $(x \bmod n)(y \bmod n)$ might not equal $x y \bmod n$. Now show that $(x \bmod n)(y \bmod n) \equiv x y(\bmod n)$.
2. Calculate (by hand):
(a) $-354 \bmod 500$.
(b) $453 * 243(\bmod 1000)$.
(c) $25483 \bmod 742$.
(d) $848332+85392$ (as an integer).
(e) $257 * 834(\bmod 53)$.
3. Given two functions f and g, we say that $f=O(g)$ if there exists integers $c>0, n$ such that for all $n^{\prime} \geq n, f\left(n^{\prime}\right) \leq c g\left(n^{\prime}\right)$. Show the following are true:
(a) $3 n=O(n)$.
(b) $3 n=O(n+5)$.
(c) $3 n+7=O\left(n^{2}\right)$.
(d) $n \log n=O\left(n^{2}\right)$.
4. We showed in class that the product of two n digit numbers can be calculated by the simple (fourth grade) algorithm in $O\left(n^{2}\right)$ operations. Show that we can calculate $k * x$ faster if x is an n digit number, but k is a 1 digit number. How many operations does your algorithm require? What if k had 7 digits?

