CS 3510 - Spring 2009 Practice Problems 2

Here are some easier exercises to review (or in some cases introduce) modulus and big O notation to make sure you are comfortable with them.

1. Recall that $x \mod n$ is a function that maps x to a number between 0 and n-1 and is the remainder when you divide x by n. We say that $x \equiv y \pmod{n}$ if $x \mod n = y \mod n$, which is equivalent to saying that n is a divisor of x - y.

Show that $(x \mod n)(y \mod n)$ might not equal $xy \mod n$. Now show that $(x \mod n)(y \mod n) \equiv xy \pmod{n}$.

- 2. Calculate (by hand):
 - (a) $-354 \mod 500$.
 - (b) $453 * 243 \pmod{1000}$.
 - (c) 25483 mod 742.
 - (d) 848332 + 85392 (as an integer).
 - (e) $257 * 834 \pmod{53}$.
- 3. Given two functions f and g, we say that f = O(g) if there exists integers c > 0, n such that for all $n' \ge n$, $f(n') \le cg(n')$. Show the following are true:
 - (a) 3n = O(n).
 - (b) 3n = O(n+5).
 - (c) $3n + 7 = O(n^2)$.
 - (d) $n \log n = O(n^2)$.
- 4. We showed in class that the product of two n digit numbers can be calculated by the simple (fourth grade) algorithm in $O(n^2)$ operations. Show that we can calculate k * x faster if x is an n digit number, but k is a 1 digit number. How many operations does your algorithm require? What if k had 7 digits?