CS 3510 - Spring 2009 Pratice Problems 2

Here are some easier exercises to review (or in some cases introduce) modulus and big O notation to make sure you are comfortable with them.

1. Recall that $x \bmod n$ is a function that maps x to a number between 0 and $n-1$ and is the remainder when you divide x by n. We say that $x \equiv y$ $(\bmod n)$ if $x \bmod n=y \bmod n$, which is equivalent to saying that n is a divisor of $x-y$.
Show that $(x \bmod n)(y \bmod n)$ might not equal $x y \bmod n$. Now show that $(x \bmod n)(y \bmod n) \equiv x y(\bmod n)$.

For the first part we can just come up with a counterexample to show that these two terms are not always equal. Consider, for example, $x=15, y=$ 15 and $n=10$. Then $(x \bmod n)=5,(y \bmod n)=5$ and their product (over the integers) is 25 . Clearly this is not equal to $(x y \bmod 10)=5$.
However, we can indeed show that $(x \bmod n)(y \bmod n) \equiv x y(\bmod n)$, as follows.
If $(x \bmod n)=q$, then there exists p such that

$$
x=p n+q .
$$

Similarly, if $(y \bmod n)=s$, then there exists r such that

$$
y=r n+s
$$

Therefore

$$
\begin{aligned}
x y & =(p n+q)(r n+s) \\
& =p r\left(n^{2}\right)+(p s+q r) n+q s
\end{aligned}
$$

so

$$
x y \equiv q s \quad(\bmod n)
$$

2. Calculate (by hand):
(a) $-354 \bmod 500$.

Mod operations on negative numbers can be thought of as turning the second hand of a clock counter-clockwise. Thus $-354 \bmod 500$ is 354 units counter-clockwise on a clock with 500 seconds. Now we can say $-354=500 *-1+146$. Thus $-354 \bmod 500=146$.
(b) $453 * 243(\bmod 1000)$.
$=(400+50+3) *(200+40+3)(\bmod 1000)$
Now we drop all subproducts whose expansion results in a multiple of 1000 . For example, $50 * 40=2000$ and is dropped as a result. Therefore,

$$
\begin{aligned}
(400+50 & +3) *(200+40+3) \quad(\bmod 1000) \\
& =400 * 3+50 * 3+3 * 200+3 * 40+3 * 3 \quad(\bmod 1000) \\
& =1200+150+243 * 3 \quad(\bmod 1000) \\
& =1200+150+729 \quad(\bmod 1000) \\
& =1350+729 \quad(\bmod 1000) \\
& =2079 \quad(\bmod 1000) \\
& =79 .
\end{aligned}
$$

(c) $25483 \bmod 742$.
$25483 \bmod 742=34$, so

$$
\begin{aligned}
25483 & \equiv 25483-742 * 34 \\
& \equiv 25483-25338 \\
& \equiv 255 \quad(\bmod 742) .
\end{aligned}
$$

(d) $848332+85392$ (as an integer).
$848332+85392=933724$. (Addition is $O(n)$.)
(e) $257 * 834(\bmod 53)$

$$
\begin{aligned}
257 * 834 \quad(\bmod 53) & \equiv 257 \quad(\bmod 53) * 843 \quad(\bmod 53) \\
& \equiv 45 * 39 \quad(\bmod 53) \\
& \equiv 1755 \quad(\bmod 53) \\
& \equiv 6 \quad \bmod 53
\end{aligned}
$$

3. Given two functions f and g, we say that $f=O(g)$ if there exists integers $c>0, n$ such that for all $n^{\prime} \geq n, f\left(n^{\prime}\right) \leq c g\left(n^{\prime}\right)$. Show the following are true:
(a) Show $3 n=O(n)$.

Let $c=3$. For all $n \geq 0$, we have $3 n \leq c n$. Thus, by definition $3 n=O(n)$.
(b) Show $3 n=O(n+5)$.

Let $c=3$. For all $n \geq 0,3 n \leq 3(n+5)$. Thus $3 n=O(n+5)$.
(c) Show $3 n+7=O\left(n^{2}\right)$.

Let $c=10$. For $n \geq 0$, we have $3 n+7 \leq 3 n^{2}+7 n^{2}=10 n^{2}$. Let's find where $3 n+7=n^{2}$
Therefore $3 n+7=O\left(n^{2}\right)$.
(d) Show $n \log n=O\left(n^{2}\right)$.

For all $x>1, \log x<x$
Thus $n \log n \leq n^{2}$ for all $n \geq 1$. Therefore $n \log n=O\left(n^{2}\right)$.
4. We showed in class that the product of two n digit numbers can be calculated by the simple (fourth grade) algorithm in $O\left(n^{2}\right)$ operations. Show that we can calculate $k * x$ faster if x is an n digit number, but k is a 1 digit number. How many operations does your algorithm require? What if k had 7 digits?
Let $x=a_{1} a_{2} a_{3} \ldots a_{n}$ and $k=b_{1}$ be bit representations.
$\Rightarrow x * k=a_{1} a_{2} a_{3} \ldots a_{n} * b_{1}$
One can see that it involves $n n$ by 1 bit multiplications and $n-1$ possible carry additions and so it is $O(n)$.Also consider the case where $k=b_{1} b_{2} b_{3} \ldots b_{7}$.In this case, the same thing will occur seven timesas well as an additional shift and addition. Thus the $O(n)$ cost will be incurred seven times, which only differs from the original running time by a constant factor. So if the size of k remains constant the overall running time will be $O(n)$.

