
CS 3510 - Spring 2009

Pratice Problems 2

Here are some easier exercises to review (or in some cases introduce) modulus
and big O notation to make sure you are comfortable with them.

1. Recall that x mod n is a function that maps x to a number between 0 and
n − 1 and is the remainder when you divide x by n. We say that x ≡ y
(mod n) if x mod n = y mod n, which is equivalent to saying that n is a
divisor of x− y.

Show that (x mod n)(y mod n) might not equal xy mod n. Now show
that (x mod n)(y mod n) ≡ xy (mod n).

For the first part we can just come up with a counterexample to show that
these two terms are not always equal. Consider, for example, x = 15, y =
15 and n = 10. Then (x mod n) = 5, (y mod n) = 5 and their product
(over the integers) is 25. Clearly this is not equal to (xy mod 10) = 5.

However, we can indeed show that (x mod n)(y mod n) ≡ xy (mod n),
as follows.

If (x mod n) = q, then there exists p such that

x = pn + q.

Similarly, if (y mod n) = s, then there exists r such that

y = rn + s.

Therefore

xy = (pn + q)(rn + s)

= pr(n2) + (ps + qr)n + qs,

so
xy ≡ qs (mod n).

2. Calculate (by hand):

1



(a) −354 mod 500.
Mod operations on negative numbers can be thought of as turning
the second hand of a clock counter-clockwise. Thus −354 mod 500
is 354 units counter-clockwise on a clock with 500 seconds. Now we
can say −354 = 500 ∗ −1 + 146. Thus −354 mod 500 = 146.

(b) 453 ∗ 243 (mod 1000).
= (400 + 50 + 3) ∗ (200 + 40 + 3) (mod 1000)
Now we drop all subproducts whose expansion results in a multiple
of 1000. For example, 50*40 = 2000 and is dropped as a result.
Therefore,

(400+50 + 3) ∗ (200 + 40 + 3) (mod 1000)
= 400 ∗ 3 + 50 ∗ 3 + 3 ∗ 200 + 3 ∗ 40 + 3 ∗ 3 (mod 1000)
= 1200 + 150 + 243 ∗ 3 (mod 1000)
= 1200 + 150 + 729 (mod 1000)
= 1350 + 729 (mod 1000)
= 2079 (mod 1000)
= 79.

(c) 25483 mod 742.
25483 mod 742 = 34, so

25483 ≡ 25483− 742 ∗ 34
≡ 25483− 25338
≡ 255 (mod 742).

(d) 848332 + 85392 (as an integer).
848332 + 85392 = 933724. (Addition is O(n).)

(e) 257 ∗ 834 (mod 53)

257 ∗ 834 (mod 53) ≡ 257 (mod 53) ∗ 843 (mod 53)
≡ 45 ∗ 39 (mod 53)
≡ 1755 (mod 53)
≡ 6 mod 53

3. Given two functions f and g, we say that f = O(g) if there exists integers
c > 0, n such that for all n′ ≥ n, f(n′) ≤ cg(n′). Show the following are
true:

(a) Show 3n = O(n).
Let c = 3. For all n ≥ 0, we have 3n ≤ cn. Thus, by definition
3n = O(n).

2



(b) Show 3n = O(n + 5).
Let c = 3. For all n ≥ 0, 3n ≤ 3(n + 5). Thus 3n = O(n + 5).

(c) Show 3n + 7 = O(n2).
Let c = 10. For n ≥ 0, we have 3n + 7 ≤ 3n2 + 7n2 = 10n2. Let’s
find where 3n + 7 = n2

Therefore 3n + 7 = O(n2).

(d) Show n log n = O(n2).
For all x > 1, log x < x
Thus n log n ≤ n2 for all n ≥ 1. Therefore n log n = O(n2).

4. We showed in class that the product of two n digit numbers can be calcu-
lated by the simple (fourth grade) algorithm in O(n2) operations. Show
that we can calculate k ∗ x faster if x is an n digit number, but k is a 1
digit number. How many operations does your algorithm require? What
if k had 7 digits?
Let x = a1a2a3 . . . an and k = b1 be bit representations.
⇒ x ∗ k = a1a2a3 . . . an ∗ b1

One can see that it involves n n by 1 bit multiplications and n − 1
possible carry additions and so it is O(n).Also consider the case where
k = b1b2b3 . . . b7.In this case, the same thing will occur seven timesas well
as an additional shift and addition. Thus the O(n) cost will be incurred
seven times, which only differs from the original running time by a con-
stant factor. So if the size of k remains constant the overall running time
will be O(n).

3


