Quiz 1 Solutions
 CS3510 (and 3511), Algorithms, February 13, 2009

1. Problem 1. [20 points]
(a) What is $3^{65} \bmod 21$?

Since 21 is not prime, we cannot apply Fermat's little theorem here. So we use the modular exponentiation algorithm described by the book.

We start with $3^{2} \bmod 21$ and build up to $3^{64} \bmod 21$.

$$
3^{2} \bmod 21=9 \bmod 21
$$

We square the result to find $3^{4} \bmod 21$ and so on.

$$
3^{4} \bmod 21=(9 \bmod 21)^{2}=81 \bmod 21=18 \bmod 21
$$

$$
\begin{gathered}
3^{8} \bmod 21=(18 \bmod 21)^{2}=(9 * 2 \bmod 21)^{2}=(2 \bmod 21)^{2} *(9 \bmod 21)^{2} \\
=(4 \bmod 21)(18 \bmod 21)=72 \bmod 21 \\
=9 \bmod 21
\end{gathered}
$$

$$
\begin{aligned}
& 3^{16} \bmod 21=(9 \bmod 21)^{2}=18 \bmod 21, \text { From } 3^{4} \bmod 21 \\
& 3^{32} \bmod 21=(18 \bmod 21)^{2}=9 \bmod 21, \text { From } 3^{8} \bmod 21 \\
& 3^{64} \bmod 21=(9 \bmod 21)^{2}=18 \bmod 21, \text { From } 3^{4} \bmod 21
\end{aligned}
$$

Now that we have $3^{65} \bmod 21$, we can solve the original problem.

$$
\begin{gathered}
3^{65} \bmod 21=3 * 3^{64} \bmod 21=(3 \bmod 21)\left(3^{64} \bmod 21\right) \\
=(3 \bmod 21)(18 \bmod 21)=54 \bmod 21=12 \bmod 21
\end{gathered}
$$

(b) What is $25^{462} \bmod 11$?

Since 11 is prime, we can use Fermat's little theorem, which states that $a^{p-1} \equiv 1 \bmod p$. So we want to exploit the fact that $a^{10} \equiv$ $1 \bmod 11$.

$$
\begin{gathered}
25^{462} \bmod 11=25^{46 * 10} * 25^{2} \bmod 11 \\
=\left(25^{46 * 10} \bmod 11\right)(25 \bmod 11)^{2} \\
=\left(25^{46} \bmod 11\right)^{10}(3 \bmod 11)^{2} \\
=\left(1^{10} \bmod 11\right)(9 \bmod 11) \\
=9 \bmod 11
\end{gathered}
$$

2. Problem 2. [25 points]

Suppose there are two alternatives for solving a problem using divide and conquer by dividing a problem of size n into subproblems of smaller size:

- If you solve 3 subproblems of size $n / 2$, then the cost of combining the solutions of the subproblems to obtain a solution for the original problem is $\Theta\left(n^{5 / 2}\right)$.
- If you solve 4 subproblems of size $n / 2$, then the cost for combining the solutions is $\Theta\left(n^{2}\right)$.

Which alternative do you prefer and why?

The recurrence for the first algorithm is

$$
T_{1}(n)=3 T_{1}(n / 2)+\Theta\left(n^{5 / 2}\right)
$$

We can use the Master theorem to find the overall running time and since $5 / 2>\log _{2} 3$, we are in case 1 .
So $T_{1}(n)=O\left(n^{5 / 2}\right)$.
The recurrence for the second algorithm is

$$
T_{2}(n)=4 T_{2}(n / 2)+\Theta\left(n^{2}\right)
$$

We can use the Master theorem to find the overall running time and since $2=\log _{2} 4$, we are in case 2 .
So $T_{2}(n)=O\left(n^{2} \log n\right)$.
The function $n^{5 / 2}$ grows faster than $n^{2} \log n$ as n approaches infinity. So the second approach is preferred and more efficient.
3. Problem 3. [25 points]

True or false? If true, give a (short) proof. If false, give a counterexample.

1. 1 has an inverse $\bmod n$ for every integer $n>1$.

This statement is true. If 1 has an inverse $\bmod n$, then there exists an x such that $1 x \equiv 1 \bmod n$. If n were 1 , then for any value of x, $x \bmod n$ would be 0 and so no inverse would exist.
Back to the original prolem, $x \bmod n=1 \bmod n$. If $x=n+1$ then $n+1 \bmod n=1 \bmod n$. Therefore $n+1 \equiv 1 \bmod n$ and $n+1$ is an inverse $\bmod n$ for every $n>1$.
2. If p is a prime, then p has an inverse $\bmod n$ for every integer $n>1$. This statement is false. If $n=p$, then $p x \bmod p=0$ and no inverse exists.
3. If $a x \equiv a y \bmod n$, then $x \equiv y \bmod n$.

This statement is false.

$$
\begin{gathered}
a x \bmod n-a y \bmod n=0 \\
(a \bmod n)(x \bmod n)-(a \bmod n)(y \bmod n)=0 \\
(a \bmod n)(x \bmod n-y \bmod n)=0
\end{gathered}
$$

Either $a \bmod n=0$ or $x \bmod n=y \bmod n$. If $a \bmod n=0$, then it is not necessarily the case that $x \equiv y \bmod n$.
4. Problem 4. [30 points]

For primes $p=13, q=29$, in the RSA cryptosystem:

1. Specify a valid public key.

We should choose a value for e such that it is relatively prime to $(p-1)(q-1)=366$. The values $2,3,4$ are not relatively prime to 336 so we choose 5 . So our public key is $(377,5)$.
2. What is a valid private key?

To find a valid private key, d, we use the extended gcd to find x and y such that $e * x+(p-1)(q-1) y=1$. Note that x is d, the inverse of $e \bmod (p-1)(q-1)$.

$$
\begin{gathered}
336=67 * 5+1 \\
5=5 * 1+0
\end{gathered}
$$

So $\operatorname{gcd}(5,336)=1$, which is what we would expect from relatively prime numbers. Now we run the extended Euclidean algorithm.

$$
\begin{gathered}
1=1-0 \\
=6 * 1-5 \\
=6(336-67 * 5)-5 \\
=6 * 336-403 * 5
\end{gathered}
$$

So $d=-403$.

Are there other choices for the private key?

Yes, d can be $-403+336 * k$, where k is any integer. Additionally, the private key would be different if for a different choice of e.
3. If Alice wants to send the message $m=3$, what would be the encrypted message she would send under the RSA protocol?
$3^{5} \bmod 377=243 \bmod 377$

Is this encrypted message secure?

No, this message is not secure because the values for p and q are too small, which result in a value for N that is easily factored.

