
CS 3510 - Spring 2009

Homework 1

Due: February 11

You must hand in this homework. Please work alone on this assignment. Do
not use a calculator (except to check, if you want), and please show all of your
work.

1. Run the extended Euclidean algorithm for a = 697, b = 969.

969 = 1 ∗ 697

697 = 2 ∗ 272 + 153

272 = 1 ∗ 153 + 119

153 = 1 ∗ 119 + 34

119 = 34 ∗ 3 + 17

34 = 17 ∗ 2 + 0

17 = 17− 0

So gcd(969, 697) = 17. Now we work backwards to determine the values
for x and y for the extended algorithm.

17 = 17− 0

= 17− (34− 17 ∗ 2) = −1 ∗ 34 + 3 ∗ 17

= −1 ∗ 34 + 3 ∗ (119− 34 ∗ 3) = −10 ∗ 34 + 3 ∗ 119

= 3 ∗ 119− 10 ∗ (153− 119 ∗ 1) = 13 ∗ 119− 10 ∗ 153

= 13 ∗ (272− 1 ∗ 153)− 10 ∗ 153 = 13 ∗ 272− 23 ∗ 153

= 13 ∗ 272− 23 ∗ (697− 2 ∗ 272) = −23 ∗ 697 + 59 ∗ 272

= −23 ∗ 697 + 59(969− 1 ∗ 697) = 59 ∗ 969− 82 ∗ 697

So
d = 17, x = −82, y = 59.

1



2. Prove or disprove: If a has an inverse modulo b, then b has an inverse
modulo a.

The statement is true.

Proof. If a has an inverse mod b then there exists x such that ax = 1 mod
b. It follows then that the gcd of a and b is 1. Therefore there exists y
and z such that ay + bz = 1. Taking this moda gives us bz = 1 mod a.
So bhas an inverse moda.

3. Calculate 2125 mod 127 using any method you choose. (Hint: 127 is
prime).

2125 (mod 127) ≡ 27∗17
∗ 26 (mod 127)

≡ (27 mod 127)17 ∗ 26 (mod 127)

≡ 117
∗ 26 (mod 127)

≡ 26 (mod 127)

≡ 64 (mod 127)

4. Consider an RSA key set with p = 17, q = 23, N = 391, and e = 3 (as in
Figure 1.9). What value of d should be used for the secret key? What is
the encryption of the message M = 41?

To find d we use the extended gcd to find x and y s.t. e ∗ x + (p− 1)(q −
1) ∗ y = 1. Note that x is d, the inverse of emod(p− 1)(q − 1).

(p− 1)(q − 1) = 16 ∗ 22 = 352

352 = 117 ∗ 3 + 1

3 = 1 ∗ 3 + 0

So gcd(352, 3) = 17. Now we work backwards to determine the values for
x and y for the extended algorithm.

1 = 1− 0

= 1− (3− 1 ∗ 3) = −1 ∗ 3 + 4 ∗ 1

= −1 ∗ 3 + 4 ∗ (352− 117 ∗ 3) = 4 ∗ 352− (4 ∗ 117 + 1) ∗ 3

Taking the last equation mod 352, we find that

d ≡ −469 (mod 352) ≡ 235 (mod 352).

2



Now we encode message M.

y = M e mod N

= 413 mod 391

= 68921 mod 391

= 105

5. In an RSA cryptosystem, p = 7 and q = 11 (as in Figure 1.9). Find
appropriate exponents d and e.

We should choose an e such that it is relatively prime to (p− 1)(q− 1). In
this case, p = 7, q = 11, and so e should be relatively prime to 60. Since
60 has factors 2, 3, 4, 5, and 6, it suffices to choose 7. Now that we have
e, we run the extended Euclidean algorithm in the same manner as the
previous problem.
Then a = 7, b = 60, and we calculate

60 = 8 ∗ 7 + 4

7 = 1 ∗ 4 + 3

4 = 1 ∗ 3 + 1

3 = 3 ∗ 1 + 0

So gcd(60, 7) = 1. Now we work backwards to determine the values for x
and y for the extended algorithm.

1 = 1− 0

= 1− (3− 3 ∗ 1) = −1 ∗ 3 + 4 ∗ 1

= −1 ∗ 3 + 4 ∗ (4− 1 ∗ 3) = 4 ∗ 4− 5 ∗ 3

= 4 ∗ 4− 5 ∗ (7− 1 ∗ 4) = 5 ∗ 4− 5 ∗ 7

= 5(60− 8 ∗ 7)− 5 ∗ 7 = 5 ∗ 60− 45 ∗ 7

d = −45

.

6. Recurrences

Solve the following recurrences. You can use the Master Theorem, where
applicable. Big-O notation is fine.

(a) T (n) = 2T (n/3) + n
We use the Master theorem. Then a = 2, b = 3 and d = 1 and we
find that we are in case 1 because d > log3 2. So the running time is
T (n) = O(n)

3



(b) T (n) = 2T (n/3) + 1
We use the Master theorem. Then a = 2, b = 3 and d = 0 and we
find that we are in case 3 because d < log3 2. So the running time is
T (n) = O(nlog

3
2).

(c) T (n) = 9T (n/2) + n2

We use the Master theorem. Then a = 9, b = 2 and d = 2 and we
find that we are in case 3 because d < log2 9. So the running time is
T (n) = O(nlog

2
9).

(d) T (n) = T (n/4) + 3
We use the Master theorem. Then a = 1, b = 4 and d = 0 and we
find that we are in case 2 because d = log4 1 = 0. So the running
time is T (n) = O(log n).

(e) T (n) = 3T (n/2) + 1
We use the Master theorem. Then a = 3, b = 2 and d = 0 and we
find that we are in case 3 because d < log2 3. So the running time is
T (n) = O(nlog

2
3).

(f) T (n) = 2T (n− 1) + 1

Let T (1) = c. We want to sub in values for T(n-1), T(n-2), and so
on using the original equation and see if a pattern develops.

T (n) = 2T (n− 1) + 1

= 2(2T (n− 2) + 1) + 1

= 4T (n− 2) + 2 + 1

= 4(2T (n− 3) + 1) + 4 + 2 + 1

= 8T (n− 3) + 4 + 2 + 1

. . .

We notice that for each level deeper we go, the coefficient in front of
T (n − i) is increasing by two, at the ith level. So we can create a
general form that determines T (n) at level i. T (n) = 2i

∗T (n−i)+k,
where k = 2i−1+2i−2+ ...+20. Since the added k is always of a lower
exponent than the coefficient, we know the coefficient will dominate.
So in the overall case, we know that this iteration can only occur
n− 1 times otherwise you run out of elements to operate on.

= 2n−1T (1) + k

4



Also, once we get to this level there should only be a constant amount
of work remaining.

T (n) = 2n−1
∗ c + k

So the running time is T (n) = O(2n).

7. Stooge Sort

Professor Randall thinks she has a new sorting algorithm. Here is the
proposed algorithm. The input is a list A[1 . . . n] of n numbers, where n
is a power of 2.
RandallSort(A)
1 if length(A) = 1,
2 then return A
3 RandallSort(A[1 . . . n/2])
4 RandallSort(A[n/2 + 1 . . . n])
5 for i = 1→ n/2
6 if A[i] > A[i + n/2],
7 then Swap(A[i], A[i + n/2])
8 RandallSort(A[1 . . . n/2])
9 RandallSort(A[n/2 + 1, n])

Swap(k, l)
1 temp← A(l)
2 A[l]← A[k]
3 A[k]← temp

(a) Analyze the running time of RandallSort by stating and solving the
appropriate recurrence.
T (n) = 4T (n/2) + O(n)
We use the Master theorem. Then a = 4, b = 2 and d = 1 and we
find we are in case 3 because d < log2 4 = 2. So the running time is
T (n) = O(n2).

(b) Does the algorithm sort correctly? If yes, argue why. If no, give an
example for which the above algorithm does not sort correctly.

No. Let A = [1, 2, 4, 5, 3, 6, 7, 8]. We divide the array into the sub-
arrays [1, 2, 3, 5] and [3, 6, 7, 8]. These are already sorted, so let’s
ignore the sorting step and go to the swapping stage. For all values of
i, A[i] < A[i + n/2] so no swapping occurs. The two halves are again
independently sorted yielding the same array that we had initially
[1, 2, 4, 5, 3, 6, 7, 8], which is not in sorted order.

5



8. Fixed Point

Given a sorted array of distinct integers A[1, . . . , n], you want to find out
whether there is an index i for which A[i] = i. Give a divide-and-conquer
algorithm that runs in time O(logn).

function(start, end, array)
1 if start == end
2 if A[start] == start
3 return start
4 else
5 return -1
6 i = floor ((end - start)/2)
7 if A[i] > i
8 return function(start, i - 1, array)
9 else if A[i] < i
10 return function(i+1, end, array)
11 else
12 return i

The idea behind this algorithm is that we look at the value of the midpoint.
If it is larger than the value of its position then all values to the right of
it will be larger than their position. This is because both i and the value
at i must increase by at least 1 for the list to be sorted in ascending order
and have no repeated values. This logic also applies if the value at the
midpoint is less than i. All values to the left of the midpoint will be
less than their value for i. So this results in three cases, one where the
right half can be discarded, one where the left can be discarded and one
where the sought point is found immediately. We are effectively allowed
to cut the problem size in half for every recursive call. The recurrence for
this algorithm is T (n) = T (n/2) + c. We use the master theorem to solve
it. Then a = 1, b = 2, and d = 0 and we find we are in case 2 because
log

a
1 = 0. So the running time is O(log n).

6


